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Abstract

Proteasome inhibitors, such as bortezomib and carfilzomib, are FDA approved for the treatment of 

hemopoietic cancers, but recent studies have shown their great potential for treatment of solid 

tumors. BaxΔ2, a unique proapoptotic Bax isoform, promotes non-mitochondrial cell death and 

sensitizes cancer cells to chemotherapy. However, endogenous BaxΔ2 proteins are unstable and 

susceptible to proteasomal degradation. Here, we screened a panel of proteasome inhibitors in 

colorectal cancer cells with different Bax statuses. We found that all proteasome inhibitors tested 

were able to block BaxΔ2 degradation without affecting the level of Baxα or Bcl-2 proteins. 

Among the inhibitors tested, only bortezomib and carfilzomib were able to induce differential cell 

death corresponding to the distinct Bax statuses. BaxΔ2-positive cells had a significantly higher 

level of cell death at low nanomolar concentrations than Baxα-positive or Bax-negative cells. 

Furthermore, bortezomib-induced cell death in BaxΔ2-positive cells was predominantly dependent 

on the caspase 8/3 pathway, consistent with our previous studies. These results imply that BaxΔ2 

can selectively sensitize cancer cells to proteasome inhibitors, enhancing their potential to treat 

colon cancer and other solid tumors.
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1. Introduction

The 26S proteasome is a critical intracellular complex that is necessary for the degradation 

of many cytosolic proteins [1]. Alteration of cellular proteostasis by inhibition of the 26S 

proteasome has proven to be effective for targeting cancer cells. Unlike conventional 

chemotherapeutic drugs, proteasome inhibitors specifically target the 20S core particle of the 

26S proteasome without affecting drug transporters [1,2]. These inhibitors can cause 

apoptosis, mainly through protein accumulation-mediated cellular stress or proteotoxicity 

[1,3,4]. Several proteasome inhibitors have been approved by the FDA or are undergoing 

clinical and pre-clinical studies for cancer therapy [5–10]. The primary applications of 
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proteasome inhibitors in cancer therapy are for the treatment of multiple myeloma or mantle 

cell lymphoma [2,3,11,12]. To date, no proteasome inhibitor has been approved for the 

treatment of solid tumors.

MG132 is a reversible 26S proteasome inhibitor commonly used in laboratories, that directly 

promotes apoptosis through various mechanisms, including production of radical oxygen 

species (ROS) and activation of caspase 8 [1,4,13,14]. However, MG132 is not FDA 

approved for clinical use due to its non-specific cytotoxicity. Bortezomib, the most common 

and first FDA approved proteasome inhibitor used for the treatment of multiple myeloma, 

belongs to the boronate class of proteasome inhibitors, and induces reversible inhibition 

[1,2,12]. While bortezomib is only approved to treat of multiple myeloma and mantle cell 

lymphoma, multiple studies have shown that the use of bortezomib in concert with other 

chemotherapeutics can significantly increase cell death in solid tumors [8–10,15,16]. 

Ixazomib is another reversible boronate proteasome inhibitor, which recently gained clinical 

approval for treatment of multiple myeloma, and has also shown the ability to inhibit 

proliferation and induce apoptosis in solid tumors [2,3,5,12]. On the other hand, carfilzomib, 

is a potent irreversible proteasome inhibitor approved for treatment of multiple myeloma, 

especially in patients who didn’t respond well to previous treatment with bortezomib 

[2,3,7,12]. Recent research has shown that carfilzomib can also suppress cell proliferation 

and promote apoptosis in solid tumors when used in combination with other 

chemotherapeutics [7,17,18]. As a precursor of carfilzomib, epoxomicin has also drawn 

interest due to its anti-neoplastic properties, however, its structure hindered it unsuitable to 

be used as a drug [19].

BaxΔ2 is a unique pro-apoptotic member of the Bax family that was first identified in colon 

cancer tumors with microsatellite instability (MSI) [20–22]. This isoform is generated by the 

combination of an alternative splicing of Bax exon 2 and a mononucleotide deletion in the 

microsatellite region within exon 3 (G8 to G7). As with Baxα, BaxΔ2 is pro-apoptotic, 

forms homodimers, and interacts with Bcl2 [20]. However, the pro-death potency of BaxΔ2 

is stronger than that of the parental Baxα, and unlike the majority of Bax isoforms, BaxΔ2 

fails to target mitochondria due to the lack of exon 2, which encodes for the mitochondrial 

targeting signal [23–27]. Instead, BaxΔ2 induces cell death by formation of large aggregates 

in the cytosol and activation of caspase 8 [20,23,28]. Interestingly, soluble cytosolic BaxΔ2 

monomers are very unstable and susceptible to degradation, which can be blocked by a 

common proteasome inhibitor, MG132 [28].

We wondered whether prevention of BaxΔ2 degradation could promote BaxΔ2-mediated cell 

death and increase the efficiency of chemotherapy. To test this, we screened a group of 

proteasome inhibitors in several colon cancer cell lines. We also used single-cell derived 

sublines which have a similar genetic background, but different statuses of Bax protein 

expression (such as Baxα-positive, BaxΔ2-positive, or Bax-negative) [28]. We compared the 

effect of these inhibitors in terms of accumulation of BaxΔ2 proteins and induction of cell 

death in these cell lines. We also monitored cellular morphological changes and analyzed a 

panel of caspase activities. Our study suggests that BaxΔ2-positive cancer cells are more 

sensitive to proteasome inhibitors than those expressing Baxα or no Bax, and that BaxΔ2 

might serve as an indicator for selective chemotherapy.
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2. Materials and methods

2.1. Materials

Bortezomib, carfilzomib, epoxomicin, and ixazomib were obtained from ApexBio. 

Inhibitors against caspase 3 (Z-DEVD-FMK), caspase 6 (Z-VEID-FMK), caspase 8 (z-

VETD-FMK), caspase 9 (z-LEHD-FMK), and caspase 12 (ATAD-FMK) were obtained 

from Calbiochem. Ethidium-homodimer-1 was obtained from Invitrogen. Antibody against 

BaxΔ2 was generated previously [20]. Antibodies against actin, cleaved caspase 8, LC3B, 

and Bcl-2 were obtained from Cell Signaling. Antibody against Baxα (N20) was from Santa 

Cruz Biotechnology, and HRP-conjugated secondary antibody was from Jackson.

2.2. Cell culture

Human colorectal cancer HCT116 cells were from ATCC. Three sublines, Baxα(+), 

BaxΔ2(+) and Bax(−), were derived from HCT116 cells as described previously [28]. Two 

other colorectal cancer cell lines, LS174T expressing BaxΔ2 and SW1116 expressing Baxα, 

were previously characterized [20]. All cell lines were maintained in DMEM with 10% FBS 

at 37 °C and 5.5% CO2, and incubated in 6 or 24-well plates for 24 h, up to 60% confluency, 

before each experiment.

2.3. Cell viability assay

Cells were treated with the corresponding concentration (0–200 nM) of proteasome 

inhibitors for 48 h with DMSO as a control. Cells were then incubated with Ethidium-

homodimer-1 for 15 min at 37 °C and 5.5% CO2, harvested, and imaged using either light or 

fluorescence microscope. Results from at least three independent experiments were used for 

statistical analysis and fitted to a dose response sigmoid curve that was used to calculate the 

effective concentrations, EC50 and EC95.

2.4. Caspase inhibition assay

Cells were treated with individual caspase inhibitors (50 nM for each) as indicated in the 

text for 30 min. Then, 20 nM of bortezomib was added and cells were incubated for further 

24–48 h. Finally, cells were incubated with Ethidium-homodimer-1 for additional 15 min at 

37 °C and 5.5% CO2 before harvesting for cell viability assay.

2.5. Western blot

BaxΔ2-positive cells were treated as indicated in the text and harvested for lysis. Equal 

amounts of protein for each sample were separated by a 15% SDS-PAGE gel and transferred 

onto a 0.2 μm PVDF membrane. Membranes were blotted with 5% BSA, followed by 

incubation with primary antibody against BaxΔ2 (1:200 dilution), Baxα (N20) (1:200), 

Bcl-2 (1:200), Cleaved Caspase 8 (1:200), or actin (1:3000) overnight at 4 °C, and then with 

a corresponding HRP-conjugated secondary antibody for 1 h. The protein bands were 

visualized on X-ray films with Pierce® ECL Western Blotting Substrate developing kit 

(ThermoScientific).
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2.6. Statistical analysis

All values shown represent the mean ± SD. Two-way ANOVA followed by t-test was 

performed using GraphPad Prism 7.03 (La Jolla, California, USA). P < .05 was considered 

significant.

3. Results

Colorectal cancer HCT116 cells contain mixed populations of wild type and mutant Bax 

microsatellite. We previously established several single-cell derived sublines expressing 

either Baxα (Baxα+) with Bax G7/G8 microsatellite, BaxΔ2 (BaxΔ2+) with G7/G7 

microsatellite, or no Bax (Bax−) with G7/G8 microsatellite (Fig. 1A) [28]. The growth 

profiles are similar under normal culture conditions (Fig. 1B), as well as the morphology 

(Fig. 1C top panel). We previously showed that degradation of BaxΔ2 could be blocked by a 

commonly used proteasome inhibitor, MG132 [28]. Treatment with MG132 caused all three 

sublines to accumulate intracellular vacuole-like structures, and a great number of cells 

rounded up after 24 h (Fig. 1C bottom panel). MG132 treatment was able to accumulate a 

significant amount of BaxΔ2 proteins in the BaxΔ2(+) cells, a very low amount in the 

Baxα(+) cells, and none in the Bax(−) cells (Fig. 1D). Importantly, neither Baxα nor Bcl-2 

protein levels were altered by MG132 (Fig. 1D). To test whether accumulation of BaxΔ2 is 

sufficient to sensitize colon cancer cells to cell death, we treated all three sublines with 

MG132 for 24–48 h. All sublines underwent significant cell death with no difference among 

each other at 24 h. However, at 48 h, there was a moderately higher increase of cell death in 

BaxΔ2(+) cells than in Baxα (+) or Bax(−) cells (Fig. 1E). The non-specific toxicity of 

MG132 may have masked the effect of BaxΔ2, but it gave us a hint that accumulation of 

BaxΔ2 by proteasomal inhibition may potentiate cell death.

The preliminary results with MG132 led us to test a group of proteasome inhibitors which 

are either approved by the FDA (bortezomib, carfilzomib and ixazomib) or are well studied 

(epoxomicin, potent precursor of carfilzomib) [2,5–7,19]. To test whether these drugs could 

differentially kill BaxΔ2(+) cells, a dose range from 0 to 200 nM for each drug was used to 

treat HCT116 BaxΔ2(+), Baxα(+), and Bax(−) sublines for 48 h, and cell viability was 

analyzed. Effective concentrations, EC50 and EC95, were calculated for each inhibitor in all 

three cell sublines. We found that all proteasome inhibitors tested showed lower EC50 

values for the BaxΔ2(+) cells than for the other two sublines, while inducing higher levels of 

cell death (Fig. 2A and B). Among them, bortezomib and carfilzomib showed higher 

differential sensitization between the three sublines. For example, bortezomib at 20 nM 

induced ~70% of cell death in BaxΔ2(+) cells, ~45% in Baxα(+) cells, and less than 10% in 

Bax(−) cells. A similar profile was observed for carfilzomib, but the differences for 

epoxomicin and ixazomib were far less significant. These results indicate that, in colon 

cancer cells with a similar genetic background, loss of Bax results in lower sensitivity to 

proteasome inhibitors, while expression of BaxΔ2 could differentially sensitize the cells, 

especially to bortezomib and carfilzomib.

In the process of analyzing the cellular behaviors and mechanisms underlying proteasome 

inhibitor-induced cell death in BaxΔ2(+) cells, we noticed that all inhibitors tested also 

induced morphological changes like those observed with MG132 (Fig. 1C). Bortezomib and 
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carfilzomib (20 nM each) treated cells had more accumulation of vacuole-like structures in 

BaxΔ2(+) cells than in the other two sublines, while epoxomicin (20 nM) and ixazomib (100 

nM) presented similar levels of vacuole-like structures in all three sublines (Fig. 3A). We 

wondered whether these vacuole-like structures could be autophagosomes. To test this, 

BaxΔ2(+) cells were stained with antibodies against BaxΔ2 and autophagy marker LC3B. 

We found that BaxΔ2 aggregates and moderate LC3B positive staining could be detected in 

many cells, but none of them was colocalized with the vacuole-like structures (Fig. 3B). 

Interestingly, the presence of vacuole-like structures appears consistent with the cell viability 

(Figs. 2 and 3), in which bortezomib and carfilzomib caused more vacuoles and higher 

percentage of cell death in BaxΔ2-positive cells.

We have previously shown that BaxΔ2 induces cell death through activation of caspase 8 

[23,28]. To determine whether the proteasome inhibitor-induced cell death could also be 

through BaxΔ2-meditated activation of caspase 8, BaxΔ2(+) cells were treated with 

proteasome inhibitors for 24 h, and analyzed for BaxΔ2 expression and caspase 8 activation 

by immunoblotting. When compared with the control group (DMSO), all proteasome 

inhibitors induced accumulation of BaxΔ2, especially bortezomib (Fig. 4A). Of note, the 

accumulation of BaxΔ2 appears to be specific, as the levels of Bcl-2 and actin remained 

unaltered. Regarding caspase 8, cleaved fragments (P41 and P18) could be detected for all 

proteasome inhibitors (Fig. 4B), including MG132, which is known to directly activate 

caspase 8 even in the absence of Bax [4]. Furthermore, based on the caspase inhibition 

assay, cell death appeared to be caspase 8-dependent, as it could be significantly blocked by 

caspase 8 inhibitor, as well as its downstream caspase 3 inhibitor, but not by mitochondrial 

pathway caspase 9 inhibitor (Fig. 4C). Caspase 12 inhibitor also appeared to be effective, 

consistent with the fact that bortezomib mediates endoplasmic reticulum stress [29,30]. The 

results from the inhibition of caspase 6 could be explained by the fact that caspase 6 is 

known to be activated by caspase 3 [31]. These results together suggest that bortezomib-

induced-cell death in BaxΔ2(+) cells is, to a significant extent, through activation of caspase 

8.

Finally, to determine whether the BaxΔ2-mediated sensitization to proteasome inhibitors 

observed in HCT116 cells would also occur in other colorectal cancer cell lines, we tested 

LS174T cells (G7/G7), which express BaxΔ2, and SW1116 cells (G8/G8), which express 

Baxα [20]. Both cell lines were treated with a range of concentrations of bortezomib. The 

effective dose analysis showed that, although the EC50 values for both cell lines were 

similar, the levels of cell death at EC95 were significantly different (61.86% for LS174T, 

38.51% for SW1116). Statistically significant differences between these two cell lines start 

at 20 nM (Fig. 4D and E). These results indicate that BaxΔ2-mediated sensitization of 

colorectal cancer cells to proteasome inhibitors could have a broad implication, rather than 

being cell line specific.

4. Discussion

Proteasome inhibitors have been extensively studied for cancer therapy. Some are FDA 

approved for the treatment of hemopoietic malignancies, while several are being tested for 

the treatment of solid tumors [5–7,16]. In this study, we demonstrated that the pro-apoptotic 
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Bax isoform, BaxΔ2, can sensitize colorectal cancer cells to proteasome inhibitor-based 

therapeutics. All proteasome inhibitors tested promote accumulation of BaxΔ2, without 

altering either Baxα or Bcl-2 protein levels (Figs. 1D and 4A). However, only bortezomib 

and carfilzomib showed higher differential killing at low concentration in BaxΔ2(+) cells 

(Fig. 2). Furthermore, bortezomib-induced cell death in BaxΔ2(+) cells is predominantly 

dependent on the caspase 8/3 pathway (Fig. 4), consistent with our previous findings 

[20,23,28]. BaxΔ2-mediated sensitization of colon cancer cells is not cell line-specific, as a 

similar behavior was also observed in other colorectal cancer cell lines (Fig. 4). Our results 

suggest that the presence of BaxΔ2 can sensitize cancer cells to proteasome inhibitors, 

highlighting their potential to treat solid tumors, like colorectal cancer.

During the study, we noted that the cell death induced by these inhibitors appears 

morphologically different from conventional apoptosis. These cells swelled and accumulated 

cytosolic vacuole-like bodies before rounding up and blebbing (Fig. 3). Furthermore, the 

amount of the vacuoles appears consistent with the potency of the inhibitors, especially for 

bortezomib and carfilzomib. One possible explanation for the formation of these vacuole is 

from the process of autophagy, but our results showed that neither LC3B nor BaxΔ2 were 

colocalized with the vacuoles. The results from many other studies regarding proteasome 

inhibitor-mediated autophagy have often been controversial and inconsistent [29,32–34], 

therefore the association between proteasome inhibitors and autophagy still remains to be 

further explored.

It is worth mentioning that the cell death induced by bortezomib seems to be not solely 

caspase-dependent. There is still ~20% of cell death that cannot be inhibited by individual 

caspase inhibitors (Fig. 4C). This is consistent with our previous finding that ectopic 

expression of BaxΔ2 results in formation large cytosolic aggregates, which serve as platform 

for recruiting caspase 8 [20,23,28]. Here, we were able to detect BaxΔ2 aggregates in cells 

treated with the proteasome inhibitors. Therefore, it is possible that BaxΔ2 accumulation and 

aggregation lead to direct cytotoxicity through other types of cell death.

High microsatellite instability (MSI-H) is a hallmark of many solid tumors, such as 

endometrial, stomach, and colorectal cancers. In general, MSI-H tumors are resistant to 

conventional chemotherapeutic drugs, like 5-Fluorouracil. Contrary to that trend, in a 

significant number of cases, tumors with mutations in the Bax microsatellite show better 

prognosis [35–37]. We have previously shown that BaxΔ2(+) cancer cells are more sensitive 

to certain chemotherapeutic agents [28] and here, we demonstrated that BaxΔ2 can also 

sensitize cancer cells to proteasome inhibitors, such as bortezomib and carfilzomib. 

Although the detailed underlying mechanisms remains to be further explored, the cumulative 

results from our BaxΔ2 studies imply that BaxΔ2 might be a useful biomarker for selection 

of personalized chemotherapeutics for cancer treatments.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. MG132 blocks BaxΔ2 degradation and moderately promotes cell death
A. Schematic representation of the generation of single cell-derived sublines: BaxΔ2(+), 

G7/G7 microsatellite expressing BaxΔ2; Baxα(+), G8/G7 expressing Baxα; Bax(−), G8/G7 

expressing no Bax protein. B. Growth rate analysis for HCT116 sublines. C. Phase contrast 

imaging of the three sublines treated with or without MG132 (10 μM) for 24 h. Scale bar is 

10 μm. D. Immunoblotting of sublines treated with or without MG132 for 24 h using 

antibodies against BaxΔ2, Baxα, Bcl-2, and actin. E. Cell Death Assay of the sublines 

treated with MG132 for 24 h and 48 h. DMSO was used as control.
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Fig. 2. BaxΔ2-positive cells are more sensitive to proteasome inhibitors
A. BaxΔ2(+), Baxα(+), and Bax(−) sublines were treated with bortezomib, carfilzomib, 

epoxomicin, and ixazomib, with a concentration range of 0–200 nM for 48 h. Results from 

the cell viability assay were fitted to dose-response sigmoid curves. B. Analysis from (A) for 

EC50, EC95, and the EC95 cell death values for all proteasome inhibitors in each subline.
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Fig. 3. BaxΔ2-positive cells have high accumulation of vacuole-like bodies when treated with 
proteasome inhibitors
A. BaxΔ2(+), Baxα(+), and Bax(−) sublines were treated with bortezomib (Bort, 20 nM), 

carfilzomib (Carf, 20 nM), epoxomicin (Epox, 20 nM), and ixazomib (Ixaz, 100 nM) for 24 

h and imaged with phase contrast microscopy. DMSO was used as control. B. BaxΔ2(+) 

cells were treated with bortezomib and carfilzomib (20 nM each) for 24 h, stained with 

antibodies against BaxΔ2 (green) and LC3B (red), and imaged using a fluorescence and 

bright-field microscope. DAPI nuclear staining (blue). Scale bars are 10 μm. (For 
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interpretation of the references to color in this figure legend, the reader is referred to the 

Web version of this article.)
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Fig. 4. Proteasome inhibitor-induced cell death in BaxΔ2-positive cells is caspase 8/3-dependent 
and not cell line-specific
A and B. Immunoblotting of cell lysates from BaxΔ2(+) cells treated with MG132 (10 μM), 

bortezomib (20 nM), carfilzomib (20 nM), epoxomicin (20 nM), and ixazomib (100 nM) for 

24 h, using antibodies against BaxΔ2, Bcl-2, and actin (A), or cleaved caspase 8 (B). C. Cell 

death assay of BaxΔ2(+) cells treated with bortezomib (20 nM) for 24–48 h in the absence 

or presence of inhibitors for caspase 3 (C3I, 50 μM), caspase 6 (C6I, 50 μM), caspase 8 

(C8I, 50 μM), caspase 9 (C9I, 50 μM), and caspase 12 (C12I, 50 μM). D. Human colon 

cancer LS174T and SW1116 cell lines were treated with bortezomib (0–200 nM) for 48 h. 

Results from cell death assay were fitted to dose-response sigmoid curves. E. Analysis from 

(D) for EC50, EC95, and the EC95 cell death values in each cell line.
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