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Abstract: Extensins are members of the cell wall hydroxyproline-rich glycoprotein (HRGP) 

superfamily that form covalently cross-linked networks in primary cell walls. A knockout 

mutation in EXT3 (AT1G21310), the gene coding EXTENSIN 3 (EXT3) in Arabidopsis 

Landsberg erecta resulted in a lethal phenotype, although about 20% of the knockout plants 

have an apparently normal phenotype (ANP). In this study the root cell wall HRGP 

components of wild-type, ANP and the ext3 mutant seedlings were characterized by peptide 

fractionation of trypsin digested anhydrous hydrogen fluoride deglycosylated wall residues 

and by sequencing using LC-MS/MS. Several HRGPs, including EXT3, were identified in the 

wild-type root walls but not in walls of the ANP and lethal mutant. Indeed the ANP walls and 

walls of mutants displaying the lethal phenotype possessed HRGPs, but the profiles suggest 

that changes in the amount and perhaps type may account for the corresponding phenotypes. 
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1. Introduction 

Plants devote their extracellular space to a physically rigid cell wall comprised mainly of  

polysaccharides (cellulose, hemicellulose and pectin) and structural glycoproteins with a pectin-rich 

middle-lamella layer. Cell wall structural glycoproteins are rich in hydroxyproline (Hyp, O) and are thus 

named hydroxyproline-rich glycoproteins (HRGPs). HRGPs are ubiquitous components of the plant 

extracellular matrix and comprise up to ~10% (w/w) of the cell wall in dicots [1]. They create covalently 

crosslinked networks [2], generating negatively charged cushions at the membrane-wall interface [3], 

and thereby providing functions such as barriers against pathogen ingress [4,5], adhesives for pollen 

capture [6,7], primers for wall polysaccharide biosynthesis [8], and regulators of Ca2+ signaling [9,10]. 

HRGPs have characteristic repetitive peptide motifs that specify the extent and type of glycosylation 

on some, but not all, of the Hyp residues [11]. Three major types of HRGPs prevail in primary cell walls, 

namely the arabinogalactan proteins (AGPs), proline-rich proteins (PRPs), and extensins (EXTs). AGPs 

have short repetitive AO/SO/SOOAPAP motifs whereby most Hyp residues are heavily O-glycosylated 

with complex arabinogalactan polysaccharides. The AGP protein backbone accounts for less than 10% 

of the total molecule’s mass [12]. Many, but not all, AGPs have a GPI anchor at their C-terminus [13,14] 

and most AGPs react with β-glucosyl Yariv reagent to form a dark red precipitant, a common method 

for identifying AGPs [15]. Recently an Arabidopsis AGP was found to covalently interact with wall 

polysaccharide components rhamnogalacturonan I and arabinoxylan, indicating a structural role for 

AGPs in the cell wall architecture [8]. 

PRPs are lightly glycosylated HRGPs compared to AGPs, as sugar only makes up ~20% of the protein 

on a dry weight basis and they have repetitive peptide motifs such as POVXK, where X is often Tyr or 

Glu [16]. PRPs are expressed in various plant tissues and are tightly regulated during plant development 

and in response to environmental stimuli such as wounding [17]. 

EXTs are a type of HRGP that contribute to cell wall integrity by creating crosslinked networks during 

normal development [18], in response to wounding [5] and pathogen attack [4]. They are characterized 

by glycosylated Ser-(Hyp)4 motifs [19], whereby Ser residues are monogalactosylated and Hyp  

residues usually contain 1 to 4 oligoarabinosyl additions [20]. Another characteristic extensin motif is the 

Tyr-containing YXY motif that enables the covalent crosslinking of EXTs into the cell wall in the form 

of di-isodityrosine [21,22] and pulcherosine [23] presumably by wall bound peroxidases [24,25]. 

Earlier, Hall and Cannon identified a specific Arabidopsis EXT, designated RSH (Root Shoot Hypocotyl 

Defective) [26] and also known as EXT3, which is required for normal wall development. Loss of EXT3 

due to a knock out mutation (the mutant designated “rsh”) was lethal due to abnormal and incomplete cell 

plate development [26,27]. Indeed mutant seedlings were visibly abnormal and died by three weeks of age. 

This dramatic, readily observable difference between the mutant and wild-type phenotype provided 

a route to test EXT3 structure in wall assembly through the creation of altered forms of EXT3 used to rescue 

the mutant. However, this approach was complicated by the observation that some rsh homozygous lines 
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(about 20%), although true mutants, as qPCR experiments found essentially no expression of the EXT3 gene, 

possessed a wild-type phenotype, and were designated apparently normal phenotype (ANP) [28]. Judging 

by qRT-PCR and microarray experiments, we speculated that one or more proteins in ANP lines, including 

some predicted to be members of the HRGP family, recovered the wild-type phenotype in the absence EXT3. 

We set out to characterize the different HRGPs contributing to the networks present in wild type 

(WT) Arabidopsis root walls, and root walls isolated from two ANP lines and from the rsh mutant 

displaying the lethal phenotype (MT) by characterizing the major HRGPs in these walls. Our approach 

involved tryptic peptide mapping of HF-deglycosylated wall to isolate the major peptides present 

followed by peptide sequence analysis by MS/MS. 

Here we identified the major HRGP contributors to the WT, ANP, and MT root cell wall protein 

networks and in consistent with the results of Saha et al. [28], we found little evidence of EXT3 in ANP 

and MT roots while EXT3 was a major HRGP in the WT root. 

2. Results 

2.1. Arabidopsis Root Cell Wall Hyp/Protein Content 

The HRGP contents in root cell walls of different Arabidopsis lines were first assessed by examining the 

amino acid compositions of WT, ANP and MT root cell walls. Hyp was found as the most abundant amino 

acid component of the WT Arabidopsis root cell wall matrix and comprised about 20% (mole) of the total 

amino acids (Table 1), thereby showing that HRGPs are the major components of the Arabidopsis root cell 

wall proteome. Hyp was also a major amino acid component of the WT root walls on a dry weight basis. 

Proteins comprised 7.3% (w/w) of the cell wall dry weight (Table 1) in the root walls, while the weight 

percentage of Hyp alone was 1.5% (w/w), making Hyp a 20.5% (w/w) component of wall proteins. 

ANP and MT root walls shared similar amino acid compositions to WT walls with Hyp being the 

most abundant amino acid accounting for more than 17% (mole) of the total amino acids (Table 1). ANP 

and MT walls also showed a wall protein content similar to that of WT at around 7% (w/w). All walls 

had the same Hyp weight percentage of around 1.5%. Thus Hyp and the corresponding HRGPs were 

indeed major protein components in Arabidopsis root cell walls. 

2.2. HF Deglycosylation of Root Cell Walls 

To allow the release of Hyp-containing peptides from root cell walls for HRGP identification we then 

deglycosylated the walls with HF to remove wall polysaccharides. HF cleaves all neutral and acidic sugar 

linkages within 1 h at 0 °C but leaves peptide bonds intact [2], thus exposing the wall protein network and 

making it accessible to the later protease degradation. Here HF efficiently removed ~80% (w/w) of the 

cell wall dry weight from WT and ANP walls and 65% (w/w) of that in the case of MT walls (Table 1). Based 

on the weight percentage of protein and Hyp before and after HF, HF removed up to 40% (w/w) of the wall 

protein but little wall-bound Hyp, judging by the high content of Hyp (>90%, w/w) recovered from the remaining 

HF insoluble residue (HFI) (calculated from Table 1). Hyp remained the major amino acid that comprised 

more than 20% (mole) of the total amino acids in the root cell wall HFI of WT and ANP and about 15% 

(mole) in MT HFI (Table 1). The resistance of Hyp-containing wall component to HF deglycosylation 

indicates that HRGPs in the cell wall form an independent network from wall polysaccharides. 
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Table 1. Amino Acid Composition (mole %) of the Root Cell Wall (CW), Insoluble Cell Wall Pellet Remaining after Treatment with HF (HFI), 

Trypsin (TI HFI) and Pronase (PI HFI). 

Amino Acid 
WT  

CW 

WT  

HFI 

WT  

TI HFI 

WT  

PI HFI 

ANP4  

CW 

ANP4  

HFI 

ANP4  

TI HFI 

ANP4  

PI HFI 

ANP10  

CW 

ANP10  

HFI 

ANP10  

TI HFI 

ANP10  

PI HFI 

MT  

CW 

MT  

HFI 

MT  

TI HFI 

Asp 6 1 2 1 6 6 4 4 6 4 1 1 7 5 5 

Glu 6 3 2 2 5 4 3 3 6 3 2 2 7 2 4 

Hyp 20 25 27 30 17 22 20 22 18 29 22 28 17 15 19 

Ser 10 14 17 18 11 9 13 18 11 8 15 19 10 2 7 

Gly 11 11 12 13 14 12 17 23 12 10 12 16 12 18 20 

His 2 2 3 2 2 3 1 2 2 4 2 2 2 3 4 

Arg 2 2 2 2 2 3 2 1 2 3 2 2 3 5 2 

Thr 3 5 4 3 3 5 3 3 3 4 5 4 3 5 4 

Ala 6 6 5 5 7 9 9 6 7 9 6 3 7 12 9 

Pro 7 4 4 4 7 5 4 6 6 5 5 4 6 7 5 

Tyr 4 2 2 2 3 2 3 2 3 2 1 2 3 2 1 

Val 7 6 4 4 7 6 3 2 7 6 7 4 7 8 7 

Ile 3 3 2 1 3 2 2 0 4 2 4 2 3 4 3 

Leu 5 5 4 3 4 5 5 2 4 4 6 4 5 6 5 

Phe 4 3 2 2 4 2 3 0 4 2 3 2 4 1 1 

Lys 4 8 8 8 5 5 8 6 5 5 7 5 4 5 4 

Total 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

% Hyp 1 1.5 6.9 5.2 4.5 1.1 3.9 2.1 1.1 1.3 6.3 4.3 4.1 1.1 2.5 3.8 

% Protein 1 7.3 25.5 17.7 13.6 6.4 16.1 7 4.4 6.8 20.5 17.4 13.1 6.2 13.7 14.6 

Hyp/ Protein 2 0.2 0.27 0.29 0.33 0.17 0.24 0.3 0.25 0.19 0.31 0.25 0.31 0.18 0.18 0.26 

DW (mg) 3 50 10 8 7 38 10 7 6 51 10 8 7 4.6 1.6 0.75 

% Hyp Removed 4  6.7 39.7 54.3  10.0 62.3 83.1  7.1 45.4 54.4  10.0 10.9 

% Protein Removed 4  30.1 44.5 62.3  34.4 69.6 83.6  41.1 32.1 55.3  20.0 60.9 

1 % Hyp or Protein: the weight percentage of Hyp and total protein; 2 Hyp/Protein: weight ratio of Hyp in total protein content; 3 DW (mg): the dry weight of cell wall used 

in HF deglycosylation and the remaining HFI before and after trypsin/pronase digestion; 4 % Hyp or Protein removed: the weight percentage of Hyp and protein removed 

after HF, trypsin or, pronase digestion calculated from Hyp/protein weight percentage of stepwise HFI, TI HFI and PI HFI. 
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2.3. Release of Hyp-Containing Material by Protease Degradation of Root Cell Wall HFI 

Following HF deglycosylation of the root cell wall, WT, ANP, and MT HFI were sequentially treated 

with trypsin then pronase (WT and ANP only) to release wall peptides for protein identification. Exhaustive 

trypsin digestion of root wall HFI solubilized up to 60% (w/w) of the wall-bound proteins and more than 

40% (w/w) of the Hyp-containing components from WT and ANP HFI, but only removed ~11% (w/w) 

Hyp from the MT HFI, although it removed 61% (w/w) of the MT HFI protein (Table 1). The trypsin 

insoluble HFI (TI HFI) of WT and ANP was further treated with pronase, which solubilized an additional 

~20% (w/w) protein but a large portion of the wall bound Hyp (~50%, w/w) remained in the pellets that were 

resistant to proteolysis (Table 1). Hyp remained the most abundant amino acid in the protease insoluble 

residues, as indicated by the amino acid composition of the TI HFI and the pronase insoluble HFI (PI HFI, 

Table 1). Thus the HF insoluble protein network was somehow resistant to trypsin and pronase since only 

a portion of the Hyp-containing components in the HFI samples were released by protease degradation. 

2.4. Peptide Fractionation from Trypsin Digested HFI of WT and ANP 

Tryptic peptides from the WT and ANP walls were first fractionated to estimate the composition  

and relative abundance of specific HRGPs in these walls before applied for peptide sequencing by  

LC-MS/MS. Our approach combined size exclusion (SEC), strong cation exchange (SCX) and reverse 

phase chromatography, exploiting peptide properties to fractionate them (Figure 1). 

Size fractionation of tryptic peptides liberated from WT HFI sample yielded three major fractions: a larger 

molecular weight major peak (fractions 7–10; Figure 2b inset), a broad shoulder peak (fractions 11–12; 

Figure 2c inset), and a sharp, smaller molecular weight peak (fractions 13–15; Figure 2d inset). Further 

separation of the SEC fractions 7–10 by SCX gave rise to five major peaks (Figure 2b) that, in turn, 

produced several peptide peaks after further fractionation by reverse-phase HPLC (Figure 2e–g). Four of 

these peaks were designated major peaks (W1, W2, W3, and W4) and several more as minor peaks 

(WM1-11). Similarly fractions 11–12 (Figure 2c inset) and fractions 13–15 (Figure 2d inset) from SEC 

were further fractionated by SCX and reverse-phase HPLC (Figure 2c,h,i,j and Figure 2d,L,m,n,o, 

respectively). Four major peptide peaks from the broad shoulder peak (W5, W6, W7 and W8) and two 

major peptide peaks from the small molecular weight SEC peak (W9 and W10) were identified. 

Analysis of the Hyp content of the major WT wall peptide peaks indicated they all contained Hyp, 

with W3, W5, W6, and W10 being Hyp-rich, each containing more than 30% (mole) Hyp. W2 was 

relatively Hyp-poor and contained only 8% (mole) Hyp (Table S1). 

Size fractionation of the trypsin soluble material from ANP4 and ANP10 HFI samples both resulted 

in profiles similar to that of WT (Figures 3a and 4a). SEC fractions of ANP samples were grouped 

similarly to that of WT (fractions 7–10, 11–12 and 13–15, Figure 1) and fractionated by SCX and 

reverse-phase HPLC. For ANP4 HFI, SEC fractions 7–10 (Figure 3b inset) produced two major peptide 

peaks, F1 and F2 (Figure 3f,g), both of which were Hyp-rich, containing 32% (mole) and 42% (mole) 

Hyp, respectively (Table S1). SEC fractions 11–12 (Figure 3c inset) produced three major peptide peaks, 

F3, F4, and F5 (Figure 3h,i). F3 had 28% (mole) Hyp and F4 had 14% (mole) Hyp (Table S1). The Hyp 

content of F5 was not determined due to lack of material. SEC fractions 13–15 (Figure 3d inset) did not 

yield any peptide peaks judging by reverse-phase fractionation profile. 
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Figure 1. Flow chart outlining the isolation of WT, ANP10 and ANP4 root wall peptides. See Figures 2–4 for the peptide maps from the SEC, 

SCX and reverse-phase HPLC columns. 
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Figure 2. Peptides were isolated from trypsin digested WT HFI using a combination of size 

exclusion chromatography (SEC) (a), strong cation exchange chromatography (SCX) (b–d) 

and reverse phase chromatography (e–o), also summarized in Figure 1. Color-coded inserts 

in panels b to d identify the SEC fractions taken in turn for peptide mapping by SCX. Color-

coded inserts in panels e through o identify the SCX fractions taken in turn for further peptide 

mapping by reverse phase chromatography. Major peptide peaks (A220 > 100) from WT HFI 

are labeled with “W” while minor peptides are labeled as “WM”. 
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Figure 3. Peptides were isolated from trypsin digested ANP4 HFI using a combination of 

size exclusion chromatography (SEC) (a); strong cation exchange chromatography (SCX) 

(b–d) and reverse phase chromatography (e–j); also summarized in Figure 1. Color-coded 

inserts in panels (b) to (d) identify the SEC fractions taken in turn for further fractionation 

by SCX chromatography. Color-coded inserts in panels (e) to (j) identify the SCX fractions 

taken in turn for further peptide mapping by reverse phase chromatography. SCX fractions 

in (d) failed to yield any peptide peaks on further fractionation by reverse-phase HPLC. The 

major peptide peaks (A220 > 100) from the ANP4 HFI are labeled with “F” while minor 

peptides are labeled as “FM”. 
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Figure 4. Peptides were isolated from trypsin digested ANP10 HFI using a combination of 

size exclusion chromatography (SEC) (a), strong cation exchange chromatography (SCX) 

(b–d) and reverse phase chromatography (e–j), also summarized in Figure 1. Color-coded 

inserts in panels b to d identify the SEC fractions taken in turn for further fractionation by 

SCX chromatography. Color-coded inserts in panels e to j identify the SCX fractions taken 

in turn for further peptide mapping by reverse phase chromatography. SCX fractions 35 to 

37 in (b) and fractions 34 to 37 in (d) failed to yield any peptide peaks on further fractionation 

by reverse-phase HPLC. The major peptide peaks (A220 > 100) from the ANP10 HFI are 

labeled with “A” while minor peptides are labeled as “AM”. 
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For ANP10 HFI, SEC fractions 7–10 (Figure 4b inset) did not yield any major peptide peaks but 

instead yielded three minor peptide peaks (AM1, AM2 and AM3, Figure 4e) after reverse-phase 

fractionation, despite the presence of several high UV-absorbing peaks evident during SCX fractionation 

(Figure 4b). SEC fractions 11–12 (Figure 4c inset) produced 5 major peptide peaks, A1 to A5 (Figure 4f,h) 

while SEC fractions 13–15 (Figure 4d inset) produced 2 major peptide peaks, A6 and A7 (Figure 4i,j) 

after reverse-phase fractionation. The Hyp content of the ANP10 major peptide peaks were low 

compared to those from WT and ANP4, with A1, A4, A5, and A6 containing ~17% (mole) Hyp (Table S1). 

A2 was Hyp-poor with 3% (mole) Hyp. No Hyp was detected in A3. The Hyp content of A7 was not 

determined due to lack of material. 

The peptides released from the MT HFI were not fractionated as described above due to the low  

yields of MT walls. Instead, tryptic digests of the MT HFI were sequenced by LC-MS/MS without  

prior fractionation. 

To sum up, we successfully isolated peptides from trypsin digested HFI of WT and ANP walls using 

a combination of chromatographic approaches and most of the major peptides were rich in Hyp, 

indicating the predominance of HRGPs in the root cell wall insoluble protein networks. 

2.5. Peptide Sequencing and HRGP Identification 

It has been suggested that the ANP phenotype may arise due to compensation by other HRGPs [27], 

which would likely result in changes in the protein composition of the HRGP network. Therefore, to 

compare the HRGP components of WT, ANP, and MT root walls, we performed LC-MS/MS peptide 

sequencing of peptides fractionated from WT HFI, ANP HFI, and MT HFI tryptic digests and identified 

HRGPs by their corresponding peptides. HRGPs that had two peptides passing the Scaffold 95% 

confidence filter or those having one peptide that passed the Scaffold 95% confidence filter but with a 

Mascot ion score larger than 40 were considered valid identifications. 

Sequencing of fractionated peptides led to the identification of three EXTs (EXT1, EXT3, and 

EXT21), four AGPs (AGP30, AGP31, Fasciclin-like arabinogalactan proteins FLA7 and FLA15) and 

one PRP (PRP10) from WT HFI while a total of seven EXTs, including two classical EXTs (EXT1 and 

EXT17) and five chimeric EXTs (Leucine-rich Repeat/Extensin LRX1, LRX2, LRX3, LRX6 and 

HAE2), two AGPs (AGP31 and FLA16) and two PRPs (PRP4 and PRP10) were identified from ANP 

HFI (Table 2, see Figure S1 for full protein sequences of identified HRGPs). 

Notably, uncertainties in the location of Hyp in some peptides were observed due to incomplete fragmentation 

of peptides. In those cases the total mass of a peptide suggested the existence of Pro hydroxylation on 

one or a few Pro residues, but the location of the Hyp residues can only be inferred from fragmented ion 

masses. For instance one AGP31 peptide AOVSOOAK(O/P)(O/P)VK(O/P)(O/P)VY(O/P)(O/P)TK had 

a mass of 2162.16, thus it contained 6 Hyp and 3 Pro residues. This peptide was identified in multiple 

locations on the reverse-phase HPLC fractionation peptide maps (Table 2) and showed various fragmentation 

patterns indicating variations in hydroxylation of the Pro residues, as reported earlier as well [29]. Similarly, 

this uncertainty of Hyp location was also observed in PRP4 peptides IEHPO(P/O)VOVYKOO(P/O)K 

and EVPO(P/O)VOVYK(P/O)(P/O)(P/O)K. 
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Table 2. HRGPs Identified in WT and ANP Cell Wall HFI. 

Gene 

Accession # 

Protein Identification 

(Plant Line of Origin) 

Peptides Identified (Number of Occurrence in Protein Sequence;  

Peak of Peptide Identification) 1 

Peptide Mascot 

Ion Score 2 

Signal 

Peptide 3 

MM 

(kDa) 4 
pI 4 

EXTs       

AT1G76930 
EXT1 (WT, ANP4, 

ANP10) 

YYSOOOVYK (3; W2, W6, W8, W10, WM3, WM13; FM16; A2) 

HYSOOOVYK (9; WM6; A5), SOOOOVYK (1; FM8) 

SOOOOVK (8; W1, W2, W5, WM22; AM3) 

 1–24 32.9 10.1 

AT1G21310 EXT3, RSH (WT) 
HYSOOOVYHSOOOOK (13; WM6), HYTOOVK (1; WM4),  

SOOOOVK (13; W1, W2, W5, WM22) 
 1–28 49.2 10.3 

AT3G54580 EXT17 (ANP4) SOOOOYYSOSOK (15; FM8) 54.9 1–22 105.7 9.5 

AT2G43150 EXT215 (WT) 
SOOOOYYYHSOOOOVK (6; W8, W10) 

SOOOOVK (10; W1, W2, W5, WM22) 
54.3 1–27 23.4 9.6 

AT1G12040 LRX1 (ANP4, ANP10) 
LQGPLPSSVGNMK (1; F3) 

LLYELDLSNNR (1; AM4) 

42.3  

44.5 
1–26 81 8.2 

AT1G62440 LRX2 (ANP4, ANP10) 
SLEQLNVANNR (1; FM4, FM12, FM13) 

LSGPLPSSIGNMK (1; A2) 

71.4  

59.4 
 89.8 4.8 

AT4G13340 LRX3 (ANP10) FNEFEGTVPK (1; AM5, AM13, AM15, AM20) 65.9 1–20 82.2 7 

AT3G22800 LRX6 (ANP4) SLEQLNIAHNK (1; FM6) 55.7 1–28 52.3 6.2 

AT3G50580 HAE2 (ANP10) SOOOOTOK (1; AM3, AM12) 41.7 1–24 27.2 9.1 

AGPs       

AT2G33790 AGP30 (WT) LPAYPOAK (1; W2), TLVAVR (1; WM3), VSSLHDGGK (1; WM4)  1–25 25.8 10.6 

AT1G28290 
AGP31  

(WT, ANP4, ANP10) 

SLVAVR (1; W8, W10, WM3), SOVKPOVK (1; WM4, WM14),  

NITAETTTDK (1; FM8), 

AOVSOOAK(O/P)(O/P)VK(O/P)(O/P)VY(O/P)(O/P)TK7  

(1; W3, W4, W7, W8, W10, WM3, WM18, WM19, WM22; F1, F4, FM4, 

FM16; A5, AM1), LFGGDVGAELKPEK  

(1; FM7, FM8, FM18; AM10, AM11, AM18) 

 1–25 38.4 10.8 

AT2G04780 FLA7 (WT) FTDVSGTVR (1; W10, WM3) 61.4 1–22 26.8 6.5 
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Table 2. Cont. 

Gene 

Accession # 

Protein Identification 

(Plant Line of Origin) 

Peptides Identified (Number of Occurrence  

in Protein Sequence; Peak of Peptide Identification) 1 

Peptide Mascot 

Ion Score 2 

Signal 

Peptide 3 

MM 

(kDa) 4 
pI 4 

AT3G52370 FLA15 (WT) HHFNGEAQVK (1; WM24) 42.3 1–20 48.1 6.7 

AT2G35860 FLA16 (ANP4) EETOATEIKPAAOVVK (1; F1, FM4, FM13) 55.4 1–23 49.1 6.8 

PRPs       

AT4G38770 PRP4 (ANP4) 
EVPO(P/O)VOVYK(P/O)(P/O)(P/O)K7 (1; F1),  

IEHPO(P/O)VOVYKOO(P/O)K7 (1; F2, FM18) 
 1–29 49.1 10.3 

AT5G09530 
PRP10  

(WT, ANP4, ANP10) 

FPENSKPEVPK (1; WM8, WM9; F2, FM18; A5) 

VPEIPKPEETK (1; FM4, FM11, FM12) , MPEIQKPELPK  

(1; FM4, FM12, FM13), LPDIPK (1; FM16),  

LPEVPK (1; FM16), LPEFPKPELPK (1; AM4, AM18),  

MPEIPKPELPK (1; AM20) 

64.8 (in WT) 1–35 6 41.6 5.9 

1 Only peptides that pass the 95% Scaffold confidence filter are shown; 2 The Mascot ion score are listed for those HRGPs that only have one peptide that pass the 95% Scaffold confidence 

filter but with score >40; 3 Signal peptides were predicted by SignalP (www.cbs.dtu.dk/services/SignalP); 4 Predicted protein molecular weight (MM) and isoelectric point (pI) values were 

obtained from TAIR (www.arabidopsis.org); 5 EXT21 shares one peptide (SOOOOVK) with EXT1 and EXT3, however the Mascot ion score of its unique peptide SOOOOYYYHSOOOOVK 

is larger than 40, thus validates the existence of EXT21; 6 For PRP10, SignalP prediction indicated the absence of a signal peptide while the cellular localization predicted by TargetP 

(http://www.cbs.dtu.dk/services/TargetP/) indicated a secretory pathway localization and thus the possession of a signal peptide. The signal peptide sequence and the putative cleavage site 

were determined according to the S-score (signal sequence score) and C-score (cleavage score) by SignalP; 7 The hydroxylation of some of the Pro residues in some AGP31 and PRP4 peptides 

could not be precisely determined, thus both possible sequences (either Pro-Hyp or Hyp-Pro) are indicated as P/O. 

 

http://www.cbs.dtu.dk/services/SignalP
http://www.arabidopsis.org/
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The peptides from the trypsin digested MT HFI were not fractionated by multiple chromatographic 

steps due to the low yield of the HFI material. Instead, the peptides from the trypsin digested MT HFI 

were directly sequenced by LC-MS/MS. This approach allowed the determination of protein relative 

abundance via the “total spectra count”, with higher spectra count value corresponding to higher protein 

abundance (Table 3). This feature did not apply to the peptide mapping approach since every peptide 

peak was sequenced individually thus the relative abundance of proteins identified by LC-MS/MS 

referred to the value in that particular peak. A total of 11 HRGPs were identified in MT walls including 

8 EXTs, 2 AGPs and 1 PRP (Table 3). LRX2, LRX3 and LRX4 were the most abundant HRGPs 

identified in MT with high total spectra counts while PAG2, PRP3 and EXT3 were minor components 

of the MT wall judging by their low total spectra counts (Table 3). Notably, only a trace of EXT3 was 

identified with a total spectra count of 1 by peptide HYSOOOVYHSOOOOK that occurs 13 times in 

the protein. The low peptide abundance of such a major repetitive unit in EXT3 was consistent with the 

result of Saha et al. [28] who found EXT3 expression in the mutant was 0.06 times of that in WT [28]. Thus 

our result confirmed the virtual absence of EXT3 in MT walls. 

In conclusion, here we identified several HRGP members in the root cell walls of WT, ANP and MT 

and in the meantime confirmed the absence of EXT3 in ANP and MT. 

2.6. Comparison of HRGP Networks 

Finally, the HRGP members in the root cell wall of different Arabidopsis lines identified by this 

proteomics approach were compared. WT Arabidopsis and ext3 knockout lines (ANP and MT) showed 

somewhat different HRGP networks but the differences did not allow a diagnosis for the ANP phenotype. 

For WT and ANP plants that display a normal phenotype, EXT1, AGP31 and PRP10 are in common 

while the two ANP lines have two chimeric LRX EXTs, LRX1 and LRX2, in common (Figure 5a). 

Notably, despite the absence of the LRX proteins in WT, ANP4 HRGP network also differed from  

that of WT with the presence of EXT17 and PRP4 (Figure 5a) that could potentially contribute to the 

wild-type phenotype in ANP4. 

The MT and ANP plants both lack EXT3 and despite the profound phenotypic differences, they both 

have EXT1, LRX1, LRX2 and AGP31 (Figure 5b). Here again worth noticing is that the presence of 

EXT17, LRX6, PRP4, and PRP10 in ANP4 but not in MT. These HRGPs could potentially result in the 

rescue of MT to restore the wild-type phenotype (Figure 5b). WT and MT plants have the classical 

EXTs, i.e., EXT1, EXT3 and EXT21, as well as AGP31 in common, even though EXT3 is a minor 

component in the MT walls (Figure 5c). 

2.7. Potential Candidate HRGPs for the Arising of ANP 

Previously Saha et al. [28] explored the arising of the ANP using microarray analysis and qRT-PCR. 

Several HRGPs were proposed to be responsible for the ANP phenotype based on their elevated gene 

expression levels (Table 6 in [28]). In the current study we aimed to obtain biochemical evidence to 

address the ANP phenotype issue and in the meantime, support the findings by Saha et al. [28]. 

Here we indeed identified several HRGPs in the ANP walls (Table 2). However, while the proteomics 

analysis confirmed their existence, this data alone is not sufficient to make an assessment on their 

involvement in rescuing of the ext3 knockout mutant. To provide more evidence, we compared the 
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expression of genes coding for those ANP HRGPs identified by proteomics with their expression in WT 

and MT roots (Table 4) to identify potential candidates for the ANP phenotype. 

 

Figure 5. Comparison of members in HRGP networks of (a) WT and ANPs; (b) MT and 

ANPs and (c) WT and MT identified by proteomics approach. 

In ANP4, the gene expression levels of most of the proteomics-identified HRPGs were slightly down 

regulated compared to WT, except for PRP4, which showed a more than 2-fold up-regulation. Notably, 

compared to MT, the expression level of three ANP4 HRGPs, LRX1, PRP4 and PRP10 showed more 

than 2-fold up regulation. Meanwhile, when compared to WT, the expression level of LRX1, PRP4 and 

PRP10 in MT showed a more than 2-fold down regulation [28]. This implies that ANP4 has increased 

expression of LRX1, PRP4 and PRP10 genes almost to the WT level. The peptide isolation reported here 

from the ANP4 wall confirmed that these proteins were indeed present and might possibly be applied by 

ANP4 to restore the normal phenotype. Similarly in the ANP10 line, LRX1, LRX2 and PRP10 were also 

candidates for the rescue (Table 4). 
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Table 3. HRGPs Identified in MT Cell Wall HFI. 

Gene 

Accession # 

Protein 

Identification 

Peptides Identified 1 (Number of  

Occurrence in Protein Sequence) 

Peptide Mascot  

Ion Score 2 

Total Spectra 

Count 3 

Signal 

Peptide 4 

MM 

(kDa) 5 
pI 5 

EXTs        

AT1G76930 EXT1 HYSOOOVYK (9), YYSOOOVYK (3)  6 1–24 32.9 10.1 

AT1G21310 EXT3, RSH HYSOOOVYHSOOOOK (13) 46.6 1 1–28 49.2 10.3 

AT2G43150 EXT21 SOOOOYYYHSOOOOVK (6) 54.4 3 1–27 23.4 9.6 

AT1G12040 LRX1 
KVTVFDITSNR (1), VTVFDITSNR (1),  

VVLSLPSLK (1) 
 5 1–26 81 8.2 

AT1G62440 LRX2 
ELGLLTDLALFHLNSNR (1), FPNVVLSLPSLK (1), 

SLEQLNVANNR (1) 
 10  89.8 4.8 

AT4G13340 LRX3 

DLDAIFINHNR (1), FNEFEGTVPK (1), 

FPTVVLQLPSLK (1) 

FRFELPENFGDSPVSVIVLANNR (1) 

 11 1–20 82.2 7 

AT3G24480 LRX4 FPTVVLHLPSLK (1), SAYIALQAWK (1)  11 1–25 54.7 6.9 

AT4G18670 LRX5 FAGIFPTVVLQLPSLK (1), FNEFEGPVPR (1)  9 1–31 6 90.8 6.7 

AGPs        

AT1G28290 AGP31 
LFGGDVGAELKPEK (1),  

NGYFLLLAPK (1), TVTNFGFR (1) 
 5 1–25 38.4 10.8 

AT2G25060 PAG2 LSLVVISPR (1) 44.7 1 1–28 19.5 7.4 

PRPs        

AT3G62680 PRP3 GLTGVPLALYGYR (1), SNTEVVIYSNPTDSK (1)  2 1–22 34.4 9.7 

1 Only peptides that pass the 95% Scaffold confidence filter are shown; 2 The Mascot ion score are listed for those HRGPs that only have one peptide that pass the 95% 

Scaffold confidence filter but with score >40.; 3 Total spectra count indicates the relative abundance of protein in the sample; 4 Signal peptides were predicted by SignalP;  

5 Predicted protein molecular weight (MM) and isoelectric point (pI) values were obtained from TAIR; 6 For LRX5, SignalP prediction indicated the absence of a signal 

peptide while the cellular localization predicted by TargetP indicated a secretory pathway localization and thus the possession of a signal peptide. The signal peptide sequence 

and the putative cleavage site were determined according to the S-score and C-score by SignalP. 
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Table 4. Gene Expression Patterns of Proteomics Identified ANP HRGPs using qRT-PCR: 

A Comparing of WT and rsh Mutant and ANP Revertants. 

 Protein (Accession #) Fold Change (Log2) ANP vs. WT 1 Fold Change (Log2) ANP vs. MT1 

ANP4 EXTs: 

AtEXT1 (AT1G76930) 

AtEXT17 (AT3G54580) 

LRX1 (AT1G12040) 

LRX2 (AT1G62440) 

LRX6 (AT3G22800) 

AGPs: 

AGP31 (AT1G28290) 

FLA16 (AT2G35860) 

PRPs: 

PRP4 (AT4G38770) 

PRP10 (AT5G09530) 

 

0.22; (0.72) 2 

−0.94; (0.13) 

−0.45; (0.29) 

−0.85; (0.05) 

−0.50; (0.30) 

 

n/d 3 

n/d 

 

1.20; (0.00) 

−0.55; (0.05) 

 

−2.50; (0.00) 

1.03; (0.20) 

5.35; (0.02) 

−0.66; (0.05) 

−0.95; (0.05) 

 

n/d 

n/d 

 

2.25; (0.00) 

3.30; (0.01) 

ANP10 EXTs: 

AtEXT1 (AT1G76930) 

LRX1 (AT1G12040) 

LRX2 (AT1G62440) 

LRX3 (AT4G13340) 

HAE2 (AT3G50580) 

AGPs: 

AGP31 (AT1G28290) 

PRPs: 

PRP10 (AT5G09530) 

 

0.40; (0.04) 

−0.07; (0.86) 

−0.07; (0.79) 

0.64; (0.02) 

3.33; (0.02) 

 

n/d 

 

−1.33; (0.00) 

 

−1.69; (0.001) 

6.90; (0.0001) 

0.89; (0.01) 

−2.27; (0.0003) 

0.14; (0.77) 

 

n/d 

 

3.7; (7.9 × 10−6) 

1 The culture generation compared: ANP4/10-F3 vs. WT-F2, ANP4-F2 vs. MT-F1 and ANP10-F3 vs. MT-F1; 

2 Numbers in parenthesis: significance value, p ≤ 0.05 are considered statistically significant; 3 n/d: not determined. 

3. Discussion 

3.1. Structural Protein Network in Arabidopsis Root Cell Wall 

HRGPs are major protein components in the dicot plant and cell culture walls as suggested by their 

high Hyp contents (>10 mole% of total amino acids) [30–33]. As a model dicot, Arabidopsis is of no 

exception as the amino acid composition of WT Arabidopsis root cell walls showed that it was indeed a 

Hyp-rich matrix (Table 1). 

Cell wall structural proteins have long been proposed to form a covalently linked network in the  

wall [34]. This network appears to be independent from the other cell wall polysaccharide networks 

since it is preserved after HF treatment, which cleaves all glycosidic linkages in tomato suspension 

culture cell walls [2]. A previous study of the legumes root cell wall EXT components further confirmed 

this notion where HF deglycosylation of the cell wall removed two-thirds of the wall dry weight mass, 

about 29% (w/w) of the wall protein, but less than 3% (w/w) of the wall-bound Hyp [35]. Here we report 

a similar observation with Arabidopsis root cell walls that more than 90% (w/w) of the Hyp remained 

after HF deglycosylation whereas more than 60% of the cell wall dry weight and up to 40% (w/w) of the 

wall protein was removed (Table 1), indicating the insolubilized Hyp-rich protein network was firmly 

held in Arabidopsis root cell wall, most likely through covalent interactions. 
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3.2. Protease Degradation of HFI 

The wall pellets after HF deglycosylation contained the remaining wall protein components that 

accounted for up to 25% of the WT wall dry weight while the weight percentage of protein in ANP and 

MT HF insoluble pellets were close to or less than 20% (Table 1). A large portion of the pellet weight 

was comprised of “unknown substances” that were neither protein nor sugar considering the high 

efficiency of HF deglycosylation [2]. The presence of such “unknown substances” in the HF insoluble 

wall was reported earlier for tomato suspension culture cells [2], legume root hairs [36], legume root and 

root nodules [34]. The nature of these substances has yet to be determined, but secondary cell wall 

substances such as lignin from root xylem vessels [37] and suberin from cuticles [38,39] are possibilities. 

Under the conditions of HF treatment used here the phenolic linkages of lignin would not have been 

cleaved [40] nor would the ester linkages between the fatty acid components of cutin, which are identical 

to those of suberin [41,42]. 

Hyp remained the most abundant amino acid in the protease insoluble residues and indeed protease 

digestion left the WT and MT pellets enriched in Hyp judging by the increase in the Hyp/protein ratio 

(Table 1). This observation suggested that the Hyp containing portion of the protein network is relatively 

more resilient to proteases. The associations between wall proteins and the “unknown substances” in the 

HF insoluble wall residues could account for the incomplete removal of Hyp-containing peptides by 

proteases. A significant portion of the wall protein is likely embedded or crosslinked to the network of 

the “unknown substances” [43–45] and therefore inaccessible to the proteases. 

3.3. EXT3 in Root Cell Wall 

Apart from EXT3, ANP and MT cell walls showed similar protein and Hyp contents to WT (Table 1). 

Therefore EXT3 is either a minor but crucial component of the wall as the knock-out of ext3 does not 

affect the total protein content or in the absence of EXT3 other Hyp containing proteins are present. 

Although the absolute amount of EXT3 in these different Arabidopsis lines has not been determined, 

Saha et al. [28] showed in previous work that many HRGP genes have altered expression (some up and 

others down) in the ANP and MT plants compared to WT, while there was no significant difference in 

the total HRGP levels between WT, ANP and MT plants, supporting the latter notion. 

Also surprising, is the fact that the abundant (13 repeats in EXT3) EXT3 peptide 

HYSOOOVYHSOOOOK was only found in a minor peptide fraction of WT; this may be because EXT3 

is a minor component of the HFI or because the peptide remained with the trypsin insoluble wall pellet 

due to extensive intermolecular cross-lining. The latter possibility seems likely in light of the abundance 

of cross-linking sites on EXT3 molecule (see below) and as shown in earlier work with Arabidopsis cell 

suspension cultures that identified EXT3 as the major salt-elutable extensin present in growing cells [46]. 

3.4. Cross-linking of HRGPs into the Cell Wall 

The mechanism for the formation of the covalently cross-linked wall HRGPs network is largely unknown. 

Tyr residues, especially those involved in the YXY motif, have been shown to form intramolecular 

isodityrosine (Idt) cross-links [47,48] that lead to insolubilization by intermolecular cross-linking to produce 

di-isodityrosine (Di-Idt) [21,22] and pulcherosine [23]. Another putative cross-linking motif is the VYK 
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motif in HRGPs, as the monomeric P1 type tomato extensin (contains majorly VYK motif with only 

small amount of Idt) [49,50] cross-linked efficiently by a wall bound peroxidase [24]. Classical EXTs 

usually contain multiple Idts and/or VYK motifs that are candidates for pulcherosine formation. 

For the classical EXTs identified in HF insoluble Arabidopsis root cell walls, EXT1 has 1 Idt, 8 VYK 

motifs and 14 lone Tyr residues (Figure S1 for protein sequences). Here notably, multiple peptides 

containing VYK motifs were released by trypsin from WT and ANP10 HFI, in the major peptide 

fractions (Tables 3 and 4). This argues against the role of VYK motifs in the formation of covalent  

cross-links. Indeed, an EXT analog containing six SOOOOTOVYK repeats with no YXY motif was 

cross-linked very slowly by tomato extensin peroxidase [51] suggesting that VYK might at best be a 

minor participant in HRGP cross-linking. These data support the argument that EXT1 is held covalently 

in the protein network mainly through pulcherosine formed between EXT1 and other HRGPs. 

EXT3, EXT17 and EXT21 are classical EXTs rich in Idt motifs and lone Tyr residues. EXT3 contains 

16 Idt motifs and 15 lone Tyr residues that could be involved in insolubilizing EXT3 by forming Di-Idt 

and pulcherosine. Pulcherosine may be preferred as suggested by Cannon et al. [27] based on the result 

that it was the major in vitro cross-linking product of EXT3 by peroxidase. Much like EXT3, EXT17 

contains 24 Idts and 126 lone Tyr residues and EXT21 has 12 Idts and 8 lone Tyr residues, all of  

which could contribute to their cross-linking in the wall. The high potential of extensive cross-linking 

of these EXTs might contribute to the observations that their corresponding peptides were only  

recovered as minor fractions on the peptide maps and the Hyp-rich substances remained in the pellets 

after protease digestion. 

LRX is a family of chimeric EXTs that possess N-terminal non-HRGP Leucine-rich domains and  

C-terminal EXT domains. They are crucial components of the cross-linked root hair cell wall protein 

network and contribute to the root hair morphology [52–55]. LRX proteins were identified previously 

in the loosely bound cell wall proteome of Arabidopsis cell suspension cultures (LRX2, LRX3 and 

LRX4) [56] and etiolated hypocotyl walls (LRX3, LRX4 and LRX5) [57]. Here we identified several 

members of the LRX family proteins in the HFI from ANP and MT walls, confirming that LRXs are 

firmly bound to cell wall [55]. One common feature of the LRXs identified is that all the peptides isolated 

were found in the N-terminal non-HRGP Leucine-rich domain and no peptides from the C-terminal EXT 

domains. This is important since it could be due to the EXT domains of these LRXs being cross-linked 

in the protein networks. For the extensin domains of the LRX proteins identified, there are 9 Idt motifs 

and 30 lone Tyr residues in LRX1, 3 Idt motifs and 34 lone Tyr residues in LRX2, 2 Idt motifs and 22 

lone Tyr residues in LRX3, and 3 Idt motifs and 18 lone Tyr in LRX5. LRX6 has a relatively small EXT 

domain, having 5 Idt motifs and 1 lone Tyr residue. One exception is LRX4, which has a very short EXT 

domain with 5 Tyr residues but no Idt motif. Nevertheless, LRX4 has the potential to form Tyr-related 

cross-links with other wall HRGPs or through other type of interactions as documented earlier [55]. 

Similar to LRX4 is HAE2, a short chimeric EXT with 6 lone Tyr residues but no Idt motifs, found in 

ANP10 HFI. Strikingly, no LRX proteins were found in WT HFI. This could indicate that (1) the LRX 

are minor components of WT walls, (2) they were extensively cross-linked in the wall and could not be 

released by trypsin, or (3) the LRX peptides were somehow lost during the peptide collecting process. 

Similar to EXTs, PRP3 has 16 VYX (9X = K and 7X = T) motifs and 19 lone Tyr residues while 

PRP4 has 5 VYK motifs and 8 lone Tyr residues that could potentially insolubilize them in the wall 
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protein network. The mechanism of PRP10 cross-linking in the walls remains unknown since it has no 

Tyr residues, thus the traditional cross-linking via Tyr does not apply to PRP10. 

AGPs have been reported to interact with wall polysaccharides, especially pectin via non-covalent [58] 

or covalent linkages [8,59]. AGPs also self-associate with each other. The PAC domain of AGP31 was 

recently reported to interact non-covalently with the polygalactan chains on its Pro-rich domain [60]. 

Previously, AGP31 was found in etiolated Arabidopsis hypocotyl cell walls [57] and it was also one of 

the two abundant salt-elutable HRGPs present in Arabidopsis cell suspension cultures [46]. Here we 

report for the first time AGP peptides isolated from HF deglycosylated walls. For AGP31, due to the 

removal of sugars on the glycan chain of the Pro-rich domain by HF, the interaction between the  

PRP-AGP containing Cys (PAC) domain and the Pro-rich domain was disrupted thus a self-association 

mechanism for the presence of AGP31 in the HFI is unlikely. One possible mechanism for the occurrence 

of AGP31 could be due to hydrophobic interactions with other wall protein components during the 

removal of HF. AGP30 has a structure similar to AGP31 with a PAC domain that shares 61% sequence 

identity with that of AGP31, thus it is likely that these two AGPs were associated with the walls via 

identical mechanisms. 

The FLA proteins are characterized by their fasciclin-like domains that are involved in protein-protein 

recognition via non-covalent forces, such as hydrophobic interactions [61,62], an interaction that tended 

to be dissociated by HF treatment [63]. However, upon the removal of HF, these interactions might 

direct the re-association of FLAs and hold them in the HFI. Other interactions between AGPs or AGP 

and wall proteins also exist. One example of AGPs covalent cross-linking was reported in sugar beet 

leaves and this covalent coupling of two AGP molecules was H2O2 mediated and potentially follows a 

mechanism similar to the Tyr-involved cross-linking of extensins [64]. This could be one potential 

mechanism for the cross-linking of the AGPs identified in the wall HFI—through the formation of Tyr 

derivatives judging by their high Tyr content (Figure S1). 

3.5. Potential Candidate HRGPs for the WT Phenotype Reversion 

EXT3 has unique structural features and functions in Arabidopsis root cell wall by self-assembling 

into a scaffold that is further rigidified by peroxidase cross-linking [27]. This scaffold formed by EXT3 

was proposed [26,27] to serve as a template for the correct deposition of wall polysaccharides that 

contribute to the cell wall integrity. Structural features of EXT3 include (1) an extended poly-proline II 

confirmation that ensures maximum contact area between EXT3 molecules during self-assembly and it 

is contributed by the Ser-(Hyp)4 motif along with the arabinosylation on the Hyp residues [65]; (2) the 

Idt motifs and free Tyr residues ensures the correct alignment of EXT3 molecules in self-assembly and 

later cross-linking process [27]; (3) a rich content of His and Lys residues enables the ionic interaction 

between EXT3 and cell wall pectic polysaccharides under physiological conditions [66,67]. Thus to 

compensate the loss of EXT3 and revise the EXT3 knockout to wild-type phenotype, the ANPs require 

an HRGP or a group of HRGPs that possess structural characteristics resemble that of EXT3. 

Among the candidate ANP HRGPs for the auto-rescuing of ext3 knockout phenotype (see Section 2.7), 

the two LRX proteins (LRX1 and LRX2) both have a C-terminal extensin domain that is similar to EXT3 

in protein size and in content of the Ser-(Hyp)4 glycomotifs (Figure S1). Both extensin domains also 

have abundant Tyr-based cross-linking components (elaborated in the previous section). Thus LRX1 
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and LRX2 could potentially serve as EXT3 substitutes to form a well cross-linked network despite the 

relative low Lys and His contents in their extensin domains. 

PRP4, on the other hand, has a protein size similar to that of EXT3 and its high Lys and His content 

will enable the ionic interaction with wall polysaccharides (Figure S1). PRP4 also has abundant cross-linking 

sites to form a covalent protein network (Figure S1). However, PRP4 lacks the Ser-(Hyp)4 motifs that 

reinforce the protein shape (Figure S1). Instead, it contains many repeats of XPPP motif (X = K, H, V, I, 

Figure S1). The XPPP motifs are sufficient to form a poly-Proine II confirmation with contiguous trans 

polyproline [68] and thus stabilize the protein structure of PRP4. Combining all the structural features, 

PRP4 also has the potential to replace EXT3 in the cell wall to reverse the WT phenotype. 

3.6. Gene Expression vs. Protein Identification by Proteomics 

Our results serve as a general survey of the HRGPs from WT and ext3 knockout lines. However, our 

findings of the wall HRGP members in ANP and MT walls via proteomics approach showed poor 

correspondence with the members proposed in the self-rescuing model of ANPs by microarray and  

qRT-PCR [28], with only one HRGP, PRP4, common to both studies. Both approaches should be 

considered in determining the molecular composition of the cell walls as each has its limitations: HRGPs 

are structural proteins that stably remain bound in the network after their production, however, not all of 

them are equally accessible during protein extraction procedures, and the most abundant of them are 

likely to be the best represented, while the less abundant may be providing a vital wall function, but not 

detectable. In the case of taking gene expression as an indication of HRGP presence in the wall, it must 

be considered that the technology is measuring a snap shot of the messages at a particular time, and not 

necessarily all of that message will be translated or modified to become stable networked HRGPs. 

Meanwhile, the uncoupling of gene expression and RNA translation, for instance regulated by 

endogenous double-stranded RNA interference [69] or microRNA [70], could also be responsible for 

the difference in gene expression and protein abundance. 

4. Experimental Section 

4.1. Arabidopsis Seedling Culture 

Seeds of wild-type Arabidopsis Landsberg erecta (WT, purchased from Lehle Seeds, Brushy Creek, 

TX, USA), ANP lines #4 and #10 (ANP4 and ANP10), and heterozygote RSH/rsh were surface sterilized 

before being planted on solid ½ MS medium plates (pH 5.8) containing 8 g/L agar. Seeds of WT and 

ANP lines were planted along a line 3 cm from the top of the plates and the plates were positioned 

vertically and cultured for a total of 14 days. RSH/rsh heterozygote seeds were scattered onto plates and 

placed horizontally for 21 days. To synchronize seed germination, the plated seeds were first incubated 

at 4 °C for two days before maintained at room temperature. All seeded plates were kept under constant 

fluorescent light. 

4.2. Root Cell Wall Isolation 

Root cell walls were prepared using a protocol by York et al. [71]. The roots were homogenized by 

grinding in liquid N2 to a fine powder followed by sonication in 35 mL 0.5 M K-P (K2HPO4: KH2PO4 = 2:1 
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molar ratio) buffer. Cell breakage was evaluated by optical microscopy. The wall fragments were pelleted 

by centrifugation at 11,000 g for 15 min, washed three times with 45 mL 0.5 M K-P buffer followed by 

four washes with 0.1 M K-P buffer and four washes with cold water to remove cellular contents. The 

wall pellets were then extracted four times with an extraction solution (chloroform: methanol = 1:1, v/v) 

to remove membrane components and collected by centrifugation at 20,000 g for 15 min after each 

extraction. The wall pellets were washed with 95% ethanol and water to remove extraction mixture and 

then lyophilized. 

4.3. Wall Deglycosylation with HF 

Cell wall from WT, ANP, and MT were deglycosylated with anhydrous hydrogen fluoride (HF) using 

methods described previously [2]. The HF insoluble pellets (HFI) were dialyzed against distilled water 

to remove excessive HF then collected by centrifugation. The HFIs were re-suspended in water and 

washed four times before lyophilization. 

4.4. Trypsin Digestion of HFI 

WT and ANP HFI were resuspended in 500 µL of water and incubated at 110 °C for 10 min. The 

suspensions were cooled and the following reagents were added: 1280 µL water, 100 µLof 1 M NH4HCO3 

(final [NH4HCO3] = 0.05 M, pH 8.0), 100 µL of 1 mg/mL trypsin (pellet: trypsin = 100:1, w/w) and 20 µL 

of 1 M CaCl2 (final [Ca2+] = 10 mM) to make a 2 mL reaction mixture with a HFI concentration at 5 mg/mL. 

The reactions were incubated at room temperature with constant stirring (200 rpm) for 24 h and another 

100 µL of trypsin solution was added for another 24-h incubation. The trypsin insoluble HFI (TI HFI) 

was collected by centrifugation, washed four times with water and then lyophilized. The supernatant 

from each digestion and the water washes were pooled, lyophilized and used for peptide isolation. 

MT HFI was re-suspended in 100 µL water with 2 µL Tris(2-carboxyethyl) phosphine hydrochloride 

and incubated at 95 °C for 10 min. The suspension was cooled and pre-treated with 2 µL 0.75 M 

Iodoacetamide in dark for 1 h and 2 µL 0.25 M DL-Dithiothreitol for 10 min. After pretreatment, the 

solution was mixed with 47 µL H2O, 20 µL 0.5M NH4HCO3, 20 µL acetonitrile and 7 µL of 1 mg/mL 

trypsin (Trypsin Gold, Promega) to make a total volume of 200 µL with a HFI concentration at 5 mg/mL 

and kept at 37 °C with shaking (200 rpm) for 24 h. Seven microliters of trypsin was added after the first 

24-h incubation period for another 24-h incubation. The TI HFI was washed and collected as mentioned 

earlier and the supernatant was lyophilized and sent for proteomic analysis. 

4.5. Pronase Degradation 

TI HFI from WT and ANP were digested with pronase using the trypsin digestions protocol described 

above. After digestion, the pronase insoluble HFI (PI HFI) were collected by centrifugation, washed four 

times with water and lyophilized. 

4.6. Tryptic Peptide Isolation 

Typtic peptides were isolated from HFI following the workflow shown in Figure 1. Lyophilized 

supernatants from trypsin digested WT and ANP HFI were dissolved at 2 mg/mL in 50 mM formic acid 
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and fractionated by a PolyHYDROXYETHYL A column in size exclusion (SEC) mode. The column 

was eluted isocratically at a flow rate of 0.2 mL/min with the eluate monitored at 220 nm. One-minute 

fractions were collected and combined into three groups: (1) fractions 7 to 10; (2) fractions 11 and 12; 

and (3) fractions 13 to 15. Fraction groups were lyophilized, dissolved in loading buffer (10 mM KH2PO4 

with 20% acetonitrile, pH 2.8), and further fractionated on a strong cation exchange (SCX) 

PolySULFOETHYL A column. The column was eluted at 0.2 mL/min using a 60 min gradient of 0 to 

100% wash buffer (10 mM KH2PO4 with 0.8 M KCl, pH 2.8) followed by 15 min elution with 100% 

wash buffer. The eluate was monitored at 220 nm and two-minute fractions were collected. 

Fractions from SCX were combined in groups (Figure 1), lyophilized, and dissolved in Buffer A 

(0.1% TFA, v/v) for further fractionation on a reverse-phase PRP-1 column using a 100 min gradient of 

0 to 50% Buffer B (0.1% TFA, 80% acetonitrile, v/v) at a flow rate of 0.5 mL/min for WT and ANP10 

peptides and a 100-min gradient of 0 to 70% Buffer B for ANP4 peptides. The eluate absorbance was 

monitored at 220 nm and the eluted peaks were collected and lyophilized before sequencing by MS/MS. 

4.7. Peptide Sequencing by Mass Spectrometry 

Peptide sequencing of isolated peptide peaks (WT and ANP) and the unfractionated MT tryptic digest 

were performed at the Proteomic Facility at Michigan State University (E. Lansing, MI, USA). Detailed 

protocols were listed under supplementary material. 

5. Conclusions 

Here we reveal unique HRGP networks in wild-type Arabidopsis and ext3 knockout lines using 

peptide isolation and sequencing approaches. Our methodology released wall HRGP components for 

identification. EXT3 is a major HRGP component in the WT cell wall and our approach did not find 

EXT3 in any of the ANP walls, confirming that the auto phenotypic auto-revertant ANPs can assemble 

functional walls by an alternative mechanism to that involving EXT3. Furthermore we found indications 

of a difference between the walls of WT and ANPs, thereby providing an opportunity to compare the 

molecular structure and related functional mechanisms of two different cell wall types of apparently 

similar function. 
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