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Simple Summary: By the virtue of targeting multiple genes, a microRNA (miRNA) can infer variable
consequences on tumorigenesis by appearing as both a tumour suppressor and oncogene. miRNAs
can regulate gene expression by modulating genome-wide epigenetic status of genes that are involved
in various cancers. These miRNAs perform direct inhibition of key mediators of the epigenetic
machinery, such as DNA methyltransferases (DNMTs) and histone deacetylases (HDACs) genes.
Along with miRNAs gene expression, similar to other protein-coding genes, miRNAs are also
controlled by epigenetic mechanisms. Overall, this reciprocal interaction between the miRNAs and
the epigenetic architecture is significantly implicated in the aberrant expression of miRNAs detected
in various human cancers. Comprehensive knowledge of the miRNA-epigenetic dynamics in cancer
is essential for the discovery of novel anticancer therapeutics.

Abstract: Initiation and progression of cancer are under both genetic and epigenetic regulation.
Epigenetic modifications including alterations in DNA methylation, RNA and histone modifications
can lead to microRNA (miRNA) gene dysregulation and malignant cellular transformation and are
hereditary and reversible. miRNAs are small non-coding RNAs which regulate the expression
of specific target genes through degradation or inhibition of translation of the target mRNA.
miRNAs can target epigenetic modifier enzymes involved in epigenetic modulation, establishing
a trilateral regulatory “epi–miR–epi” feedback circuit. The intricate association between miRNAs
and the epigenetic architecture is an important feature through which to monitor gene expression
profiles in cancer. This review summarises the involvement of epigenetically regulated miRNAs
and miRNA-mediated epigenetic modulations in various cancers. In addition, the application of
bioinformatics tools to study these networks and the use of therapeutic miRNAs for the treatment of
cancer are also reviewed. A comprehensive interpretation of these mechanisms and the interwoven
bond between miRNAs and epigenetics is crucial for understanding how the human epigenome is
maintained, how aberrant miRNA expression can contribute to tumorigenesis and how knowledge of
these factors can be translated into diagnostic and therapeutic tool development.
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1. Introduction

microRNAs (miRNAs) consist of short sequences of non-coding RNA which regulate translation
and expression of specific target genes. Currently, there are over 2500 miRNAs referenced on the
global micro RNA database, miRbase [1]. The role of miRNAs is to negatively regulate gene expression
through binding to the target mRNA to cause transcriptional repression and/or mRNA degradation
without modifying the gene sequence. This occurs through a miRNA recognising their target mRNA
using either 2–7 nucleotides (partially complementary) or 6–8 nucleotides at the 5′ end of the miRNA
annotated as the “seed region”. The exact manner in which protein translation is downregulated by
miRNAs is still not clear and may be due to either mRNA degradation and translation inhibition or a
combination of these events [2]. miRNA expression is regulated during hematopoietic cell development
and differentiation, with these miRNAs playing a direct regulatory role in processes such as cellular
proliferation, differentiation, migration and apoptosis [3,4].

Biogenesis and expression of miRNAs are known to be regulated by epigenetic modifications
such as DNA methylation, RNA alterations, and histone modifications, with dysregulation of
miRNAs being a hallmark of cancer initiation and metastasis [5]. It has also been established
that miRNAs control the expression of epigenetic regulators, including DNA methyltransferases and
histone deacetylases [6]. miRNAs are involved in complex double-negative feedback loops where
miRNA inhibition of an epigenetic regulator is then controlled at the epigenetic level by the same
regulator. This miRNA–epigenetic feedback loop has a significant influence on gene expression levels,
and dysregulation of the feedback loop can disrupt normal physiological processes, resulting in
disease [7]. It is clear that miRNA–gene associations are not linear, hence, functional heterogeneity
of a single miRNA across cell types, tissues and disease stages, increases the degree of difficulty in
discerning the direct functional pathways regulated by any miRNA [8]. Aberrant miRNA profiling
showing altered regulating factors such as cellular proliferation, and migration has been described
in many cancers with the majority showing decreased miRNA expression levels in tumour cells in
comparison to normal tissue [9].

The first miRNAs to be correlated with cancer were miR-15 and miR-16 in B-cell leukaemia [10].
Since then, the biogenesis of miRNA and target genes such as tumour suppressor and oncogenes
has been well established [3,4,9,11,12] with the aid of both experimental and computational analyses;
however, further validation using experimental analyses is required if we are to accurately understand
the role of miRNA in the multiple functional pathways mediating cancers [3,5,7,9,13–15]. Identifying
master regulatory miRNAs which regulate both the target mRNA as well as other miRNAs in either the
same or a different pathway could provide early prognostic disease biomarkers for both solid tumours
and haematological malignancies [9,16,17]. The degree of protein repression by one miRNA can range
from mild (2-fold) to significant repression, highlighting the need for better experimental validation.
RNase III Drosha is the core RNA-specific nuclease that executes the initiation step of miRNA processing
in the nucleus. The resulting miRNAs then regulate the degree of gene repression by the association of
enhanced processing of ribosomal RNA precursors by a nuclear dsRNA ribonuclease called Drosha to
produce efficient RNA-induced silencing complex (RISC)-induced cleavage of complementary mRNA,
resulting in enhanced mRNA repression [18]. Recent studies have shown that a large number of mature
miRNAs are methylated at cytosines and adenines in cancer cell lines, as well as human tissues and
serum, potentially providing a more accurate cancer diagnostic tool than miRNA expression [19].

The epigenome (the collection of chemical compounds that interact with and regulate the genome)
consists of chemical compounds and proteins which regulate gene expression and protein production
within cells. It can also be subjected to miRNA-mediated and other posttranscriptional alterations
which result in dysregulated miRNA signatures relating to enhanced oncogene expression and
downregulation of tumour suppressor genes, leading to tumorigenesis and cancer progression [20].
The epigenome is normally reversible; therefore, miRNA dysregulation might be predictive of cancer
development when miRNA alterations become irreversible [21]. Epigenetic markers can also relate
to clinical prognosis and may provide a tool for early detection and cancer treatment. By directly
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targeting miRNAs or epigenetic machinery, malignancy could potentially be treated using therapeutic
agents [11,21–23] such as those discussed in this review. A considerable number of studies have
demonstrated the orchestrated role of epigenetics and miRNA in diverse cellular processes and
complex diseases like cancer. Unfortunately, such evidence is dispersed in the huge body of literature,
making it difficult for researchers to investigate their reciprocal regulations. One way to achieve this
is thorough computational data processing applications of the experimentally proven interactions
between epigenetic modifications and miRNAs that can be stored as a searchable database [24,25].
Such information can provide invaluable information to better understand the molecular mechanisms
of “epi–miR–epi” in cancer and encourage targeted research toward epigenetics- or miRNA-related
drug development.

2. Epigenetic Regulators of Cancer

2.1. DNA Methylation and miRNA Regulation

Aberrant expression of miRNAs significantly affects the gene regulatory mechanisms implicated
in cancer development with miRNAs having the intricate ability to act as both oncogenes (oncomiRs)
and suppressors [26]. It is an important fact to consider that one miRNA can regulate numerous
genes, and can be targeted by several miRNAs [27]. Increasing evidence has indicated that miRNAs
expression is under the control of epigenetic regulation, similar to DNA methylation (hyper and hypo),
RNA modification, and post-translational modification of histones [28–33]. Interestingly, miRNAs
contribute to epigenetic modulation by targeting epigenetic modifiers [34,35]. We have summarised
the epigenetic regulation of miRNAs in haem-malignancies and solid tumours (Tables S1 and S2),
as well as the miRNAs that affect epigenetic regulation and have been reported in various cancers
(Table 1).
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Table 1. miRNAs regulate epigenetic modifications in cancer.

Cancer miRNA Expression Epi Regulator Epi Modification Epi Target Ref

Acquired resistance of
breast cancer

miR-29a
miR-29b-3p High DNMT-3a DNA Methylation global DNA methylation

[36]
miR-132 High MeCP2 DNA Methylation global DNA methylation

Acute myeloid
leukaemia miR-29b-3p High DNMT-3a/DNMT-3b/DNMT-1 DNA Methylation ESR1/cyclin-dependent kinase

inhibitor 2B [37]

Bladder transitional
cell carcinoma miR-101-3p Low EZH2 H3K27me3 - [38]

Breast cancer

miR-10a Low - H3K27me3/DNA
Methylation HOXD4 [39]

miR-29c
miR-26b

miR-148b
High DNMT-3b DNA Methylation CEACAM6/CST6/SCNN1A [40]

miR-148a High DNMT-1 DNA Methylation miR-148a
[41]miR-152 High DNMT-1 DNA Methylation miR-152

Breast/Prostate miR-101-3p High EZH2 H3K27me3 miR-101 [42]

Colorectal cancer
miR-143 Low DNMT-3a DNA Methylation - [43]

miR-342 High DNMT-1 DNA Methylation ADAM23/Hint1/RASSF1A/RECK [44]

Cutaneous melanoma miR-29a-3p High DNMT-3a/DNMT-3b DNA Methylation RASSF1A/TFPI-2/RAR-/SOCS/GATA4 [45]

Endometrial cancer miR-152 Low DNMT-1 DNA Methylation - [46]

Gastric cancer miR-148a High DNMT-1 DNA Methylation miR-148a [47]

Glioblastoma
miR-101-3p Low EZH2 H3K27me3 - [48]

miR-152 High DNMT-1 DNA Methylation miR-152 [49]

Glioma miR-185 High DNMT-1 DNA Methylation ANKDD1A/GAD1/HIST1H3E/
PCDHA8/PCDHA13/PHOX2B/SIX3/SST [50]

Hepatitis B virus
(HBV)-related
hepatocellular

carcinoma

miR-101-3p High DNMT-3a DNA Methylation RASSF1/PRDM2/GSTP1/RUNX3 [51]
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Table 1. Cont.

Cancer miRNA Expression Epi Regulator Epi Modification Epi Target Ref

Hepatocellular
carcinoma

miR-200a High HDAC4 H3ac miR-200a [52]

miR-125b-5p High SUV39H1 H3K9me3 Ki67 [53]

miR-152 High DNMT-1 DNA Methylation GSTP1/CDH1 [54]

Hilar
cholangiocarcinoma miR-373

High MBD2 DNA Methylation MBD2 regulate RASSF1A [55]

High MBD2 DNA Methylation miR-373 [56]

Human malignant
cholangiocytes

miR-148a
miR-152 High DNMT-1 DNA Methylation Rassf1a/p16INK4a [57]

Leukaemia and
lymphoma cells

miR-19a
miR-25
miR-32

miR-92b
miR-96

High PRMT5 DNA Methylation H3R8/H4R3 [58]

Lung cancer miR-101-1 High EZH2 H3K27me3 CDH1 [59]

Melanoma miR-31 High EZH2 DNA Methylation miR-31 [60]

Multiple myeloma miR-29b-3p Low DNMT-3a/DNMT-3b DNA Methylation - [61]

Non-small-cell lung
cancer

miR-29a
miR-29b-3p

miR-29c
High DNMT-3a/DNMT-3b DNA Methylation FHIT/WWOX [62]

miR-29b-3p High DNMT-1/DNMT-3a/DNMT-3b DNA Methylation PTEN [63]

miR-29b-3p High DNMT-3b DNA Methylation CADM1/RASSF1/FHIT [64]

Ovarian cancer miR-185
miR-152 Low DNMT-1 DNA Methylation - [65]

Prostate cancer

miR-34b High HDAC1/HDAC2/HDAC4 H3K4me3
miR-34b [66]DNMT-1 DNA Methylation

miR-449a Low HDAC1 Histone Acetylation - [67]

miR-101-3p Low EZH2 H3K27me3 - [68]

Squamous cell
carcinoma miR-138-5p High EZH2 H3K27me3 E-cad [69]

T-cell leukaemia miR-101-3p
miR-128 Low EZH2 H3K27me3 - [70]
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Disrupted DNA methylation in miRNA loci often leads to downregulation of the miRNA and a
greater likelihood of displaying a malignant phenotype. This is seen when miRNAs are more highly
expressed and have greater sequence conservation when flanking regions surrounding the miRNA
coding sequence are highly methylated [4,9,11]. miRNA target gene promoters are often negatively
correlated with DNA hypomethylation, and DNA methylation is regulated by three catalytically active
DNA methyltransferases (DNMTs): DNMT1, DNMT3a, and DNMT3b [71]. The majority of studies
on DNMT3a/b and miRNAs have primarily focused to date on the regulation of DNMT3a/b targets.
However, more recently direct miRNA targeting of DNMT3a/b has shown the potential for both
oncogenic [72] and tumour suppressor activities in the progression of cancer such as breast cancer [73].

A well-known miRNA which is often epigenetically regulated is miR-9. Its expression has been
shown to be associated with hypermethylation of a cytosine and guanine separated by a phosphate
(CpG) island in the miR-9 loci [74–76]. miR-9 hypermethylation is seen in many cancers including
solid tumours such as breast, colon, and pancreas along with haematological malignancies like acute
lymphoblastic leukaemia [75,77–79]. It has been suggested that epigenetic silencing of the miR-9 loci
as a result of hypermethylation is often an early disease-associated event in breast carcinogenesis [75].
Other commonly hypermethylated miRNAs include miR-92 and miR-29b which target the TET gene
family and act as oncogenic miRNAs (oncomiRs) causing reactivation of silenced oncogenes [80–83].

A number of miRNAs aberrantly silenced are involved in DNA methylation, histone acetylation,
H3K4me3 and H3ac modifications and have been identified in haem-malignancies (Table S1) and
bladder, cervical, colorectal, gastric, hepatocellular, lung, melanoma, pancreatic and prostate cancers
(Table S2). Some of these miRNAs, including let-7a, miR-9, miR-34b-c, miR-124a, miR-127, miR-129,
miR-137, miR-148a, miR-152, miR-203, miR-205, the miR-200 family and miR-375, have been frequently
reported in several cancers (Table S2) [40,42,46,47,68,69,84–99]. Among these, miR-9, miR-34b-c and
miR-148a are frequently hypermethylated in aggressive tumours, with this feature proposed as a
possible DNA methylation signature for metastasis [66,100–103]. In breast cancer, epigenetic regulators
like DNMTs (1/3), HDAC, JARID1B (histone H3 lysine 4 demethylase) and sp1 (Sp1 Transcription
Factor) cause both higher and lower expression of several miRNAs including miR-124.3, miR148a,
miR-375, miR-152, members of miR-200, let-7 and miR-34 families [5,36,85,87,104–109]. This may be
important clinically, with lower expression levels of miR-29c, miR-148a, miR-148b, miR-26a, miR-26b,
and miR-203 demonstrated to contribute to DNMT3b overexpression in hypermethylated breast cancer
cell lines (Hs578T, HCC1937 and SUM185). In contrast, knockdown of miR-148b, miR-26b, or miR-29c
in non-hypermethylated breast cancer cell lines (MDA-MB-468, MDA-MB-415, and BT20) showed
increased DNMT3b mRNA levels [40].

These “oncomiRs” may be switched on by abnormal CpG hypomethylation, an indicator of
oncogene activation [110]. As discussed earlier, several studies using a range of cell lines have
indicated overexpression of numerous miRNAs following treatment with epigenetic drugs [111–113].
The let-7a-3 locus is hypermethylated in normal human lung tissue, but in some lung adenocarcinomas,
it becomes hypomethylated and overexpressed [114]. miRNA-mediated deregulation of DNMTs has
been observed in several cancers. In lung cancer, the miR-29 family that targets DNMT3a-b was shown
to be downregulated [30]. In addition, in hepatocellular carcinoma, miR-29a regulates both the DNA
DNMT1 and DNMT3b [40]. miR-148 has also been identified to regulate a DNMT3b splice variant
through binding to the coding region in gastric cancers [47]. miR-449a was found to be involved
in cell growth and viability regulation through repressing the expression of HDAC-1 in prostate
cancer cells [67]. Another miRNA frequently reported in a number of cancers is miR-101 [48,49,68].
The histone methyltransferase EZH2 has been shown to be a direct post-transcriptional target of
miR-101, with miR-101 downregulation by VEGF resulting in overexpression of EZH2 in angiogenic
endothelial cells [49].
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2.2. Histone Acetylation and Deacetylation

The chromatin structure is comprised of DNA and histones made up of a chain of 147 nucleotides
wrapped around a histone octamer consisting of two copies of each of four histones: H2A, H2B, H3,
and H4. Chromatin features are involved in both activation and repression of transcription [115–117].
A relationship between miRNA biogenesis and chromatin features around pre-miRNA genomic regions
has also been previously reported in which genes located within active chromatin regions have a
higher probability of being targeted by miRNAs [118]. The promoters of miRNA target genes have
also been shown to be preferentially located in chromatin domains [119]. Additional to the influence
of chromatin on miRNA target gene regulation are the impacts of posttranslational modifications
of histones through events such as phosphorylation of serine or threonine residues, acetylation and
deacetylation of lysine and methylation of lysine or arginine. Histone modifications that regulate
epigenetics include methylation (HDM) and acetylation (HDA) which affect DNA accessibility typically
modulated by histone acetyltransferase (HAT) and histone deacetylase (HDAC). HDAC causes
condensation of the chromatin structure, which prevents binding of transcription factors or proteins to
the DNA strand, resulting in gene silencing [120,121]. HDAC inhibits differentiation pathways critical
to cellular development and differentiation, as well as the maturation of antibody response [122].
In cancer, demethylation of genes by HDMs often results in upregulation of genes involved in cellular
proliferation, migration, and invasion. This provides an opportunity for miRNA-based agents which
could regulate proteins in these pathways, thereby inhibiting malignant cellular proliferation [123].

3. Epigenetic Regulation by miRNAs in Cancer

miRNAs can also directly alter epigenetic regulation by post-transcriptionally suppressing
the mRNAs of genes involved in the deposition of epigenetic marks (Table 1). Fabbri et al.
demonstrated that the miR-29 family targets DNMT3a and DNMT3b, which indirectly controls
genome-wide de novo DNA methylation [62]. Soon after, it was validated that miR-29b induces
DNA hypomethylation universally in acute myeloid leukaemia (AML) by direct downregulation of
DNMT3a and DNMT3b and indirect repression of DNMT1 [37]. DNMT3a is also a direct target of
miR-143 [43]. The epigenetic-cally modulated miR-148a suppresses particular isoforms of DNMT3b
by targeting the coding sequence [41,47]. Furthermore, DNMT1 has been confirmed as a target of
miR-148a and miR-152 [41]. Such a direct effect on the DNA methylation machinery by epigenetically
regulated miRNAs could be an indication of an important feedback regulatory mechanism. Several
reports have demonstrated that DNMT3a and DNMT3b are fre-quently overexpressed in cancers with
poor prognosis, and targets of the miR-29 family, miR-101, miR-143, mir-148a and miR-152 have been
reported in various forms of cancer [37,41,43,45–47,51,59,61,62,65,66]. Therefore, it appears that all
DNMTs are a direct or indirect target of a subset of miRNAs and perform specific functions in the
refinement of the expression levels of these crucial epigenetic regulators. As such, dysregulated miRNA
expression may contribute to the widespread and often inconsistent changes in DNA methylation
patterns detected in cancers, causing both hypo- and hyper-methylation of certain genes and/or regions
of the genome [124].

miRNAs can also directly alter epigenetic regulation by post-transcriptionally suppressing
the mRNAs of genes involved in the deposition of epigenetic marks (Table 1). Fabbri et al.
demonstrated that the miR-29 family targets DNMT3a and DNMT3b, which indirectly controls
genome-wide de novo DNA methylation [62]. Soon after, it was validated that miR-29b induces
DNA hypomethylation universally in acute myeloid leukaemia (AML) by direct downregulation of
DNMT3a and DNMT3b and indirect repression of DNMT1 [37]. DNMT3a is also a direct target of
miR-143 [43]. The epigenetic-cally modulated miR-148a suppresses particular isoforms of DNMT3b
by targeting the coding sequence [41,47]. Furthermore, DNMT1 has been confirmed as a target of
miR-148a and miR-152 [41]. Such a direct effect on the DNA methylation machinery by epigenetically
regulated miR NAs could be an indication of an important feedback regulatory mechanism. Several
reports have demonstrated that DNMT3a and DNMT3b are fre-quently overexpressed in cancers with
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poor prognosis, and targets of the miR-29 family, miR-101, miR-143, mir-148a and miR-152 have been
reported in various forms of cancer [37,41,43,45–47,51,59,61,62,65,66]. Therefore, it appears that all
DNMTs are a direct or indirect target of a subset of miRNAs and perform specific functions in the
refinement of the expression levels of these crucial epigenetic regulators. As such, dysregulated miRNA
expression may contribute to the widespread and often inconsistent changes in DNA methylation
patterns detected in cancers, causing both hypo- and hyper-methylation of certain genes and/or regions
of the genome [124].

As identified earlier, miR-101 has been reported in a number of cancers, exhibiting direct effects on
the epigenetic machinery. Several studies have shown that miR-101 targets EZH2, the catalytic subunit
of PRC2, which implies the repressive H3K27me3 signature [38,48,49,59,68]. There is also evidence
that miR-128 (downregulated in T-cell leukaemia) [70], miR-138-5p (overexpressed in squamous cell
carcinoma) [69], miR-31 (overexpressed in melanoma) [60] also target EZH2. Other important direct
epigenetic targets of miRNAs involve HDAC1 and HDAC4 [125,126]. In prostate cancer, HDAC1 is
targeted by miR-34b (overexpressed, rendering H3Krme3 modification, also targets HDAC4) [66] and
miR-449a (downregulated) [67]. Higher expression of miR-19a, miR-25, miR-32, miR-92b and miR-96
were found to target protein arginine methyltransferase 5 (PRMT5) in leukaemia and lymphoma
cells [58]. Nevertheless, it is obvious that an increasing subset of miRNAs is implicated in the regulation
of DNA and histone-modifying enzymes (Figure 1), thus highlighting the reputation of these miRNAs
in the establishment and maintenance of genomic sustainability and epigenetic architecture.Cancers 2020, 12, x 8 of 25 
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Figure 1. miRNA epigenetic crosstalk. Association of miRNAs with epigenetic regulators involved
in the processes of DNA methylation and histone modification. miRNA-mediated alteration of these
regulators causes aberrant DNA methylation and chromatin modification. These distorted conditions
modify the expression of genes that are involved in modulating the epigenetic machinery and can also
affect miRNA expression.

4. In Silico Analysis of Epi-miRNA Associations

To date, only a small subclass of miRNA–mRNA pairs predicted in silico has been experimentally
confirmed [127]. The miRNA–mRNA interfaces are based on sequence complementarity (seed match)
and have provided opportunities for in silico prediction of target genes for miRNAs of interest [128].
Although there are several diverse factors affecting the ability of miRNAs to recognise and bind their
target, when considering general prediction strategies, these features can commonly be categorised into
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five groups: (i) attributes of the “seed” pairing; (ii) evolutionary conservation; (iii) abundance of the
target site; (iv) accessibility of the target sites; and (v) thermodynamic stability of the miRNA–mRNA
duplex [127,129,130]. Typically, a combination of these strategies is utilised by most of the currently
available prediction algorithms, with some depending heavily on a particular combination, with others
serving to balance the prediction mechanism [131]. Future studies in epigenetic regulation of miRNA
expression and miRNA mediated epigenetic regulation linked to downstream signalling pathways are
likely to lead to the development of novel drug targets in cancer therapy.

A handful of in silico tools are available and provide information of the regulatory relationship
of epi-miRNA with cancer. Functions and link information to the web-application of five selective
tools (EpimiR, HMDD, miRCancer, MethyCancer and miRNet) are presented in Table 2. Using these
tools, we extracted epi-miRNAs reported in different cancers from EpimiR and HMDD, validated their
status using miRCancer and MethyCancer, and finally conducted a network analysis in the miRNet
suite (555 miRNAs against 48 epigenetic regulators). The network analysis (Figure 2) identified a list of
101 miRNAs (Table 3; hypergeometric test) to be differentially associated with at least with 1 network
(28 miRNAs) and a maximum of 58 networks (miR-515, adj. p = 2.55 × 1011).

Table 2. Epi-miRNA databases and networking tools.

Database Functions Link Reference

EpimiR

Contains 1974 regulatory relationships between
19 different epigenetic modifications and 617
miRNAs across Homo sapiens and 6 more
species. The records are divided into two
sections: Epi2miR and miR2Epi.

http://www.jianglab.cn/EpimiR/ [24]

HMDD

The Human microRNA Disease Database
(HMDD) collects curated
experiment-supported evidence for
disease-associated human miRNAs classified
into 6 evidence classes (genetics, epigenetics,
target, circulation, tissue and other) and 20
evidence codes. It also provides a
disease-associated miRNA-target network
visualisation function.

https://www.cuilab.cn/hmdd [132]

miRCancer

The database presently records 878 interactions
between 236 miRNAs and 79 human cancers
through the processing of more than 26,000
published articles.

http:
//mircancer.ecu.edu/browse.jsp [133]

MethyCancer

MethyCancer introduces highly integrated
DNA methylation data, cancer-related gene,
mutation and cancer evidence from numerous
resources, and the CpG island (CGI) clones
derived from large-scale sequencing.

http://methycancer.psych.ac.cn/ [134]

miRNet

miRNet enables statistical analysis and
functional interpretation of a variety of data
produced from existing miRNA studies. The
key features include: (i) integration of
high-quality miRNA-target interaction data
from 11 databases; (ii) differential expression
analysis of data from microarray, RNA-seq and
quantitative PCR; (iii) flexible options for data
filtering, refinement and customisation during
network creation; and (iv) a network
visualisation system coupled with
enrichment analysis.

https://www.mirnet.ca/miRNet/
home.xhtml [25]

http://www.jianglab.cn/EpimiR/
https://www.cuilab.cn/hmdd
http://mircancer.ecu.edu/browse.jsp
http://mircancer.ecu.edu/browse.jsp
http://methycancer.psych.ac.cn/
https://www.mirnet.ca/miRNet/home.xhtml
https://www.mirnet.ca/miRNet/home.xhtml
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Figure 2. A miRNA-epigenetic network analysis. The diagram represents a network analysis outcome
conducted in miRNet suite among 555 miRNAs with 48 epigenetic modifiers hosted by the tool
itself. Among those modifiers, DNA methyltransferases (DNMTs) and histone deacetylases (HDACs)
showed a strong connection with miRNAs and other modifiers. The enlisted 48 modifiers used
were as follows: AML1-ETO oncoprotein/HDAC1/DNMTs/MeCP2, AML1/ETO protein, CARM1, CBP,
DNMT-1, DNMT-1/DNMT-3a/DNMT-3b, DNMT-1/DNMT-3b, DNMT-1/DNMT-3B, DNMT-1/MeCP2,
DNMT-1/MLL, DNMT-3a, DNMT-3a/DNMT-3b, DNMT-3a/DNMT-3b/DNMT-1, DNMT-3b, DNMTs,
Egr2/Jardi1b, EVI1/DNMT-3b, EZH2, EZH2/G9a/HDAC, HDAC1, HDAC1/AP-1, HDAC1/HDAC2,
HDAC1/HDAC2/HDAC4, HDAC1/HDAC3/EP300, HDAC3/Myc, HDAC4, HDAC4/HDAC5,
HDAC4/SP1, HDACs, HER2, IL-6, JARID1B, Kindlin 2/DNMT-3, MBD1, MBD2, MeCP2, SUZ12/BMI1,
Mel-18/DNMT-1, MLL fusion proteins, MYC/HDAC3/EZH2, MYST3, p50 p53, PRC2, PRMT5, RNAPII,
sp1, and SUV39H1.

Table 3. miRNet epi-miRNA network analysis outcome.

miRNA Hits p-Value Adj p-Value

mir-29 14 0 0
mir-515 58 1.275 × 10−9 2.55 × 10−11

mir-17 20 1.786667 × 10−8 5.36 × 10−10

mir-26 9 0.00004275 0.00000171
mir-30 13 0.00024 0.000012
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Table 3. Cont.

miRNA Hits p-Value Adj p-Value

mir-25 10 0.00027 0.0000162
mir-19 8 0.0007728571 0.0000541
mir-193 6 0.0018125 0.000145
mir-290 7 0.006945455 0.000764

mir-9 7 0.006945455 0.000764
mir-34 7 0.006945455 0.000764
mir-196 6 0.02191667 0.00263
mir-664 5 0.02207143 0.00309
mir-129 5 0.02207143 0.00309
mir-10 12 0.02226667 0.00334
mir-15 8 0.03558824 0.0101
mir-101 4 0.03558824 0.0113

mir-1228 3 0.03558824 0.0121
mir-454 3 0.03558824 0.0121
mir-432 3 0.03558824 0.0121
mir-483 3 0.03558824 0.0121
mir-425 3 0.03558824 0.0121
mir-322 3 0.03558824 0.0121
mir-373 3 0.03558824 0.0121
mir-127 3 0.03558824 0.0121
mir-126 3 0.03558824 0.0121
mir-191 3 0.03558824 0.0121
mir-142 3 0.03558824 0.0121
mir-140 3 0.03558824 0.0121
mir-183 3 0.03558824 0.0121
mir-139 3 0.03558824 0.0121
mir-31 3 0.03558824 0.0121
mir-22 3 0.03558824 0.0121
mir-21 3 0.03558824 0.0121
mir-28 5 0.05428571 0.019
mir-365 4 0.06642857 0.0279
mir-146 4 0.06642857 0.0279
mir-221 4 0.06642857 0.0279
mir-218 4 0.06642857 0.0279
mir-132 4 0.06642857 0.0279
mir-27 4 0.06642857 0.0279
mir-24 4 0.06642857 0.0279
mir-124 5 0.08069767 0.0347
mir-663 3 0.09136364 0.0402

let-7 13 0.1133333 0.051
mir-1260a 2 0.1147826 0.0528

mir-135 4 0.1865957 0.0877
mir-130 5 0.2350877 0.119
mir-199 4 0.2350877 0.13
mir-876 2 0.2350877 0.134
mir-542 2 0.2350877 0.134
mir-574 2 0.2350877 0.134
mir-202 2 0.2350877 0.134
mir-324 2 0.2350877 0.134
mir-342 2 0.2350877 0.134
mir-330 2 0.2350877 0.134
mir-361 2 0.2350877 0.134

mir-8 5 0.3482759 0.202
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Table 3. Cont.

miRNA Hits p-Value Adj p-Value

mir-544 2 0.38 0.228
mir-147 2 0.38 0.228
mir-103 4 0.3819672 0.233

mir-7 3 0.4163265 0.272
mir-500 4 0.4163265 0.29
mir-368 4 0.4163265 0.29
mir-194 2 0.4163265 0.325
mir-190 2 0.4163265 0.325
mir-153 2 0.4163265 0.325
mir-219 3 0.4163265 0.343
mir-148 3 0.4163265 0.343
mir-1256 1 0.4163265 0.407
mir-1205 1 0.4163265 0.407
mir-1204 1 0.4163265 0.407
mir-1203 1 0.4163265 0.407
mir-1202 1 0.4163265 0.407
mir-944 1 0.4163265 0.407
mir-943 1 0.4163265 0.407
mir-935 1 0.4163265 0.407
mir-760 1 0.4163265 0.407
mir-765 1 0.4163265 0.407
mir-1323 1 0.4163265 0.407
mir-641 1 0.4163265 0.407
mir-638 1 0.4163265 0.407
mir-636 1 0.4163265 0.407
mir-630 1 0.4163265 0.407
mir-602 1 0.4163265 0.407
mir-601 1 0.4163265 0.407
mir-596 1 0.4163265 0.407
mir-572 1 0.4163265 0.407
mir-568 1 0.4163265 0.407
mir-564 1 0.4163265 0.407
mir-559 1 0.4163265 0.407
mir-498 1 0.4163265 0.407
mir-448 1 0.4163265 0.407
mir-326 1 0.4163265 0.407
mir-375 1 0.4163265 0.407
mir-184 1 0.4163265 0.407
mir-137 1 0.4163265 0.407
mir-302 4 0.4163265 0.408
mir-941 3 0.418 0.414
mir-642 2 0.418 0.418

5. Epigenetic Strategies for Cancer Therapy

Epigenetic biomarkers may provide a tool for early disease detection, prognostic indicators and/or
cancer prevention through the detection of different or aberrant methylation, histone and expression
profiles. Previous studies have identified miRNA signatures of well-established epigenetic miRNAs
(epi-miRs) which correlate with overall cancer risk, disease staging and survival [17]. For example,
expression signatures of miRNAs have been shown to differentiate between acute lymphoblastic
leukaemia (ALL) from acute myeloid leukaemia (AML), subgroups [135–137], highlighting their
utility as a potential clinical biomarker. Through identification of aberrant hypermethylation of
miRNAs, particularly in ALL, promising biomarkers for the prediction of clinical significance have
been identified [138].
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Synthetic oligonucleotides were developed for use as therapeutic agents via in vivo delivery
due to their more robust nature against degradation when compared to RNA [139,140]. The five
current most common applications used in the regulation of miRNA target gene expression in cancer
are reviewed below and include miRNA mimic, anti-miRNA oligonucleotides (anti-miRs), miRNA
sponges, miRNA masking and epigenetic inhibitory molecules (Figure 3). These incorporate either
the use of oligonucleotide- or virus-based constructs to inhibit oncogenic miRNA or to reactivate a
repressed miRNA or tumour suppressor miRNA [22,139,140].Cancers 2020, 12, x 13 of 25 
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Figure 3. An overview of the therapeutic application of miRNA-based agents used in the prevention
of tumour progression. These agents target and regulate the miRNA of interest, resulting in either
inhibition of an OncomiR or upregulation of a tumour suppressor gene. Five commonly utilised
therapeutic miRNA agents are displayed above showing (A) anti-miRs, miRNA sponges and miRNA
masks used to suppress oncomiRs by inhibiting miRNA binding to mRNA. miRNA mimics and
molecule inhibitor drugs can be used to inhibit DNMT enzymatic activity and trigger its degradation,
thereby reducing oncomiR expression and development of malignancy. Similarly, histone deacetylase
inhibitors (HDACis) can be used to block tumorigenesis. (B) miRNA mimics can also be utilised to
mimic the activity of tumour suppressor miRNA in malignancies to reduce or suppress tumorigenesis.

5.1. miRNA Mimics and Inhibitors

The use of miRNAs as a potential epigenetic treatment for specific malignancies is an evolving
area of research. Several miRNA-based therapeutics (Figure 3) have been studied as potential cancer
therapies for both solid tumours and haematological malignancies in specific tumour environments
which display different miRNA expression profiles [11,141–143]. As epigenetic silencing of miRNAs
is involved in the regulation of key pathways such as leukemogenesis, it may provide a target
for epigenetic drugs and provide an avenue for inducing re-expression of key regulatory miRNAs.
Two main applications used to inhibit tumour development are miRNA mimics and anti-miRs,
also known as anti-miRNA oligonucleotides (AMO) [139,140,143,144]. miRNA mimics are made
up of synthetic double-stranded RNA which mimic endogenous miRNAs to bind to target gene
mRNAs and result in posttranscriptional gene repression of oncogenes as well as to re-express silenced
tumour-suppressive miRNAs (tsmiR) or tumour suppressor genes, thereby inhibiting cancer cell
proliferation and cell cycle progression [140,145]. As an example, successful application of a miR-218
mimic was used against acute promyelocytic leukaemia cells and showed reduced cell viability and
promoted apoptosis [146]. Conversely, tsmiR-497 was found to inhibit breast cancer cell proliferation
and disease progression [145]. miRNA mimics have also provided great insight into the functional
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impact of specific miRNAs in signalling pathways such as JAK/STAT and demethylation, which are
commonly implicated in malignant phenotypes [142].

Anti-miRs can also alter miRNA-related pathways by binding and blocking oncogenic miRNA
access to the mRNA transcript, thereby resulting in either slowed or repressed tumour development,
as in the case of anti-miR-126 which resulted in successful inhibition of leukemic cells [147]. miRNA
mimics and anti-miRs have the potential to offer personalised miRNA expression therapeutics [141].
The main advantage of epigenetic miRNA (epi-miR) therapeutics would be the ability to regulate
multiple pathways through the modification of a single miRNA [5] to provide an adjunct therapeutic
agent in the management of specific cancers. Current limitations of this epi-miR technology include
the difficulties in ascertaining master regulatory miRNA to prevent unwanted impacts on off-target
genes and pathways, along with the low efficiency of these applications due to the variability in tissue
and staging-specific miRNA expression [148].

5.2. miRNA Sponges

An alternative miRNA inhibitor which can be expressed in cells is termed an miRNA sponge.
These inhibitors are transcripts derived from promoter regions which contain multiple common
binding sites to the target oncomiR of interest [22]. Vectors encoding these sponges are transiently
transfected into cells and allow the sponge to bind to the target oncomiR to inhibit mRNA binding [22].
Sponges are 2–7 nucleotides long and inhibit miRNAs through a complementary heptameric sequence.
This allows a single sponge to inhibit an entire miRNA family [22] and has been successfully applied
to the repression of oncogenes (Figure 3) in various types of cancers such as leukaemia, sarcoma,
breast cancer, renal cancer, lung cancer and melanoma [74,149]. In addition to this, some researchers
have successfully used a multi-potent miRNA sponge to simultaneously target and repress multiple
oncogenic miRNAs such as miR-155, miR-21 and miR-221/222 in breast and pancreatic cancer cell lines:
MDA-MB-436, MCF-7, MIA-Paca-2, Panc-1 and BxPC3 [150].

5.3. miRNA Masking

miRNA-masking (miR-mask) applications contain AMO which have been commonly modified
with single-chain 2′-O-methyl to increase binding and nuclease activity. miR masks form a 22 nucleotide
antisense to an mRNA target of an endogenous miRNA of interest [23], and rather than interacting
with the miRNA, they complement and bind to the 3′-UTR site of the target mRNA. This action
allows the miR mask to block the endogenous miRNA binding site on the target mRNA disrupting
the miRNA inhibitory function. A recent study established that targeting miR-522 led to reduced
proliferation of non-small cell lung cancer [151]. Rather than being gene-specific, the effect of miR
masks is sequence-specific with potential for adverse side effects and toxicity (Figure 3) [152]. To date,
miR-masking efficiency, accuracy, and toxicity still remain inconsistent, making them less suitable for
therapeutic use in the treatment of cancers.

5.4. Epigenetic Inhibitory Molecules

Epigenetic drug therapies contain inhibitory molecules which target epigenetic machinery such
as DNA methyltransferase inhibitors (DNMTi) and histone deacetylase inhibitors (HDACi) [153–155].
DNMTi drugs are used to irreversibly inhibit DNMT enzymatic activity and trigger its degradation
This application is well established as an epigenetic regulatory agent for the inhibition of epigenetic
mutations and oncogene expression [153,154] (Figure 3). A therapeutic application for DNMTis,
for example, is to inhibit abnormal tumour gene expression by disrupting key tumour initiation and
progression pathways [156]. HDACi alters the acetylation and deacetylation of histone lysines, in which
deacetylation is a known contributor to abnormal gene expression in malignancy. Therefore, HDACis
can be used to block cell proliferation, promote differentiation and induce apoptosis to reverse cancer
initiation and progression [155]. Both DNMTi and HDACi applications have been successfully used in
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repression of various types of haematological malignancies, however, this application showed variable
and limited success in solid tumours [157,158].

6. Epigenetic Therapeutics in Cancer Clinical Trials

As we have seen by the successful clinical introduction of epigenetic inhibitors like DNMTi and
HDACi [153] in the treatment of haematological malignancies [157], epigenetic-based applications are
powerful therapeutic agents used in cancer care. To date, several clinical studies have been completed,
while others are currently underway investigating the use of miRNA biomarkers in various types of
cancer. A phase 1 trial using miR-16 mimic incorporated with epidermal growth factor receptor (EGFR)
targeting antibody called TargomiR, was used for patients with either recurrent malignant pleural
mesothelioma or non-small cell lung cancer [159,160]. The findings were promising and showed that
the miR-16 mimic is beneficial for patients with terminal mesothelioma patients with less than a 10%
chance of 5-year survival [161]. A less successful 2013 phase 1 clinical trial investigated the miRNA-34
drug mimic MRX34 in patients with either primary liver cancer, solid tumours, or hematologic
malignancy. The study was terminated after some patients experienced serious adverse reactions to
the investigational drug [162].

7. Overcoming Limitations of miRNA Biomarkers and Therapeutic Agents

A major limitation to the utility of miRNAs as biomarkers for the diagnosis and monitoring of
disease progression in malignancy is the natural variability in miRNA expression levels across tissue
types and disease stages [163–165]. This issue alone makes standardising sample collection methods
for use in clinical correlations more challenging. Further to this, once a miRNA biomarker or target
gene has been established, a significant limitation to the use of a therapeutic miRNA or epigenetic
inhibitory drug is the risk of a serious adverse event due to toxicities like those seen in studies with
the miRNA mimic MRX34 and HDAC-based inhibitor drugs [155,162]. As discussed above, this is
where the role of rigorous clinical trials has greatly contributed to the recent advancements of miRNA
therapeutics. Other significant limitations which are yet to be overcome in some specific miR-malignant
cell applications include inefficient delivery, inefficient cellular uptake, short half-life, low intracellular
release and low in vivo stability [23,166]. In a clinical setting, non-viral based therapeutic miRNAs may
be favoured due to their stable composition, lower immunogenicity and ease of manufacturing [23].
Delivery mechanisms utilising nanoparticles, polymers and liposomes for mediated drug delivery
have also been favoured in recent studies [167,168]. However, these applications require further
optimisation before miRNAs can become embedded in standard cancer therapeutic development [169].
A possible solution to overcoming these inefficiencies may be direct intra-tumoral injections of miRNA
drugs to enhance target efficacy and reduce adverse reactions [144,149,170]. As research continues to
advance in this area, several new clinical trials are likely to be conducted to assess the efficiency and
reliability of these miRNA therapeutics [11].

In addition, one puzzling phenomenon in cancer treatment is recurrence of cancer cells in a more
aggressive manner and avoidance of apoptosis with higher metastatic potential [171]. The reversal of
apoptosis is seen in some cancer cells and often results in more aggressive tumours and metastasis.
The exact mechanism behind this event is still unknown; however, this reversal process is known to
trigger a transition from non-stem cancer cells (NSCCs) to CSCs, which potentially could be suppressed
through the use of DNA methylation or demethylation inhibitors before apoptosis induction [171].
A particular state of the tumour cells termed as polyploid giant cancer cells (PGCCs) has been
suggested to be responsible for facilitating the escape from therapeutic-induced senescence [172,173].
Tumours can originate from a stem cell via dedifferentiation, therefore, the use of DNMT inhibitors
may reactivate tumour suppressor genes, which could disrupt PGCC-mediated dedifferentiation and
the development and progression of tumours [174,175]. The level of PGCC increases after exposure
to chemotherapeutic drugs like 5-fluorouracil (5-FU) [175]. 5-fluorouracil is used to treat colorectal
cancer (CRC), and, interestingly, resistance of CRC to 5-FU has been reported to be associated with the
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upregulation of nuclear factor-erythroid 2-related factor 2 (Nrf2) via DNA demethylase ten-eleven
translocation (TET)-dependent DNA methylation [176]. Therefore, epi-miR based therapeutic strategies
should consider the aftermath of any targeted treatment.

8. Conclusions

In this review, we have detailed the relationship between epigenetic alteration of miRNAs
and miRNA-mediated epigenetic modifications in cancer. Aberrant DNA methylation generally
causes miRNA dysregulation in cancer, and methylation of specific miRNA genes may be a valuable
biomarker for cancer diagnosis and prognosis. Variation in the histone architecture also disrupts
miRNA expression. Such dysregulation in miRNA expression leads to genome-wide epigenetic
abnormalities. It is to be expected that further study of the association between epigenetic regulation
of and by miRNAs will lead to the innovative identification and use of new biomarkers as well as
therapeutic targets against cancer. The evaluation of the efficiency and reproducibility of miRNA
biomarkers across cancer classifications, disease stages and tissues types are also likely to advance in
the near future. Reactivation of epigenetic mechanisms of miRNA expression could be an encouraging
novel approach of cancer therapy by targeting epigenetically regulated miRNA genes using drugs
that inhibit methylation and/or histone modification. Computational analysis of gene regulation is a
complex but reliable platform with which to study the epi-miRNA relationship with numerous cellular
processes and cancer. These platforms have been successful in identifying epigenetically regulated
miRNAs in many malignancies which have paved the way for the use of miRNA-based therapeutics
for the treatment of both haematological and solid tumour malignancies. A strategic combination of
laboratory-based experimental data, clinical resources and high-throughput computational applications
will provide a significant body of knowledge on “epi–miR–epi” regulation for further development of
diagnostic and therapeutic suitable for cancer treatments. Further optimisation of delivery applications
such as nanoparticle and liposome-mediated delivery, along with additional clinical research trials are
required before miRNAs therapeutics can become established as a standard of care therapy in common
cancers. With this area of cancer research rapidly evolving, clinical validation of miRNA-based
therapeutics may become established following the successful completion of further clinical trials.
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