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Towards fully automated 
segmentation of rat cardiac MRI 
by leveraging deep learning 
frameworks
Daniel Fernández‑Llaneza1,3*, Andrea Gondová1,3, Harris Vince1, Arijit Patra1, 
Magdalena Zurek1, Peter Konings2, Patrik Kagelid1 & Leif Hultin1

Automated segmentation of human cardiac magnetic resonance datasets has been steadily improving 
during recent years. Similar applications would be highly useful to improve and speed up the studies 
of cardiac function in rodents in the preclinical context. However, the transfer of such segmentation 
methods to the preclinical research is compounded by the limited number of datasets and lower 
image resolution. In this paper we present a successful application of deep architectures 3D cardiac 
segmentation for rats in preclinical contexts which to our knowledge has not yet been reported. We 
developed segmentation models that expand on the standard U-Net architecture and evaluated 
models separately trained for systole and diastole phases (2MSA) and a single model trained for 
all phases (1MSA). Furthermore, we calibrated model outputs using a Gaussian process (GP)-based 
prior to improve phase selection. The resulting models approach human performance in terms of 
left ventricular segmentation quality and ejection fraction (EF) estimation in both 1MSA and 2MSA 
settings (Sørensen-Dice score 0.91 ± 0.072 and 0.93 ± 0.032, respectively). 2MSA achieved a mean 
absolute difference between estimated and reference EF of 3.5 ± 2.5%, while 1MSA resulted in 
4.1 ± 3.0%. Applying GPs to 1MSA enabled automating systole and diastole phase selection. Both 
segmentation approaches (1MSA and 2MSA) were statistically equivalent. Combined with a proposed 
cardiac phase selection strategy, our work presents an important first step towards a fully automated 
segmentation pipeline in the context of rat cardiac analysis.
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ROI	� Region of interest
SNR	� Signal to noise ratio

Preclinical assessment of novel cardiovascular therapeutics relies on the use of rodent models. Cardiac magnetic 
resonance (CMR) imaging is important to this assessment due to its ability to differentiate tissue types with good 
contrast. Moreover, the non-invasive nature of CMR makes it well suited for a longitudinal follow-up of the same 
animal during the treatment1,2. Changes in volumes of left ventricle (LV) and the ejection fraction (EF) over time 
are commonly assessed in response to treatment as a proxy estimate of rodent cardiac function.

Currently, the assessment of LV function mainly relies on the manual selection and slice-by-slice segmenta-
tion of the ventricle at end-diastole (ED) and end-systole (ES) phases of the cardiac cycle to estimate EF. As the 
number of animals in a preclinical study can be very large and are followed-up in multiple timepoints, this task 
can add hours of laborious analysis. Furthermore, the quality of the resulting segmentations depends on experts’ 
experience and often suffers from intra- and interoperator variability3–5. Thus, fully automated segmentation 
tools to standardise and speed up the segmentation of rodent CMR datasets are highly desirable for in vivo 
cardiac efficacy studies.

The quality of semi- and fully automated methods for cardiac segmentation of difficult human CMR datasets 
has been improving thanks to the uptake of convolutional neural networks (CNN)6–10. However, there is limited 
research applied in the preclinical cardiac 3D MRI segmentation sphere in smaller rodent datasets with only two 
recent examples in mice6–8. To our knowledge, this work presents the first statistically robust study into automat-
ing the estimation of EF in rats and expands on the well-established 3D U-Net9,11 and its derived architectures 
(i.e., Attention U-Net12, U-Net++13,14 and V-Net15).

Supported by our preliminary work and observations from other teams12, LV segmentation of the ES achieves 
consistently lower performance compared to the ED when attempted by the same model, namely, 1-model seg-
mentation approach (1MSA). As this can lead to undesirable downstream effects on EF estimation, we trained 
two independent models to segment diastole and systole separately, 2-model segmentation approach (2MSA). 
Both 1MSA and 2MSA were benchmarked in terms of segmentation quality, robustness against noise and agree-
ment for EF estimates compared to human-derived gold standards. Our results suggest that the presented 2MSA 
and 1MSA approaches are equivalent in terms of EF estimation and achieve close to human performance which 
highlights that both 1MSA and 2MSA methods are valid for use depending on the context.

In a similar vein to previous research in the UK Biobank data16, the 1MSA approach has been able to segment 
all cardiac phases captured during the recording of the cardiac cycle. This has allowed us to evaluate the potential 
of the method for full automation, that is, automated phase selection and EF estimation. Upon probing different 
metrics derived from LV segmentations along the cardiac cycle (LV volume, LV surface area or mid-slice area), 
we implemented a GP which identified systole and diastole phases and subsequently estimated EF. This was 
compared against a conventional fourth-polynomial degree fitting strategy and human selection of systole and 
diastole. In the light of this evidence, 1MSA emerged as a method with the potential to inspire similar work in 
other biological systems and organs in the preclinical setting.

Methods
Data acquisition.  Table 1 summarises the six segmentation datasets used in this study consisting of short-
axis 3D CMR images (multi-2D acquisition) from sham-operated rats or rats with induced myocardial infarcts 
(EF ranging from 41% to 67%). Eleven to thirteen short-axis CINE time series (temporal resolution 8 ms) cover-
ing the LV and two perpendicular long-axis slices were acquired per animal. We use the term image stack to refer 
to the collection of 2D slices which make up a 3D CMR image of the rat LV with a resolution of 0.5 × 0.5 × 1.5 mm. 
All MRI scanning was performed using a 200 MHz (BioSpec 4.7 T/40 USR; Bruker BioSpin, Karlsruhe, Ger-
many) equipped with a 400 mT/m actively shielded gradient system and ParaVision software (PV6.0). A 72-mm 
i.d. quadrature resonator (Bruker, Ettlingen, Germany) was used. All experiments were performed in compli-
ance with EU Directive 2010/63/EU and the Animal Research: Reporting of In Vivo Experiments (ARRIVE) 
guidelines. The protocols were approved by the local ethics committee (Göteborgs djurförsöksetisk nämnd).

Pre‑processing.  LV volumes were manually segmented using the software Segment version 2.2 R6289 
(Medviso, http://​segme​nt.​heibe​rg.​se)17 by an experienced operator (Op1) who was considered as the gold stand-
ard. Additionally, the dataset Study 5 was segmented by another trained operator (Op2). The operators first 

Table 1.   Summary of rat heart longitudinal study image segmentation datasets used in the experiments. 
*Number of follow-ups within the longitudinal study. In presented studies the timepoints were separated by a 
3-month timeframe.

Study name Number of image stacks Number of timepoints* Set

Study 1 126 3 Train

Study 2 73 2 Train

Study 3 43 3 Train

Study 4 92 2 Train

Study 5 116 3 Test

Study 6 94 3 Train(40%)/Test(60%)

http://segment.heiberg.se
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cropped the image stack to ease the manual segmentation. All training image stacks and the corresponding 
masks were resized by interpolation to a standard size of 12 × 86 × 98 voxels and then normalised.

For training, the whole Study 1, Study 2, Study 3 and Study 4 sets were used. Additionally, 38 image stacks 
from Study 6 were introduced in the training set to increase representativeness of the training set, as this dataset 
differed from the rest in the extent of cardiac injury of the animal subjects. After training, the model performance 
was evaluated against the Study 5 and Study 6 test image stacks.

Implementation details for automated segmentation.  In order to achieve automated segmentation, 
U-Net-derived architectures were leveraged using the manually segmented image stacks described in the previ-
ous section.

Segmentation Approaches Definitions. Two segmentation approaches for the rat heart cycle were pursued: 
1MSA and 2MSA. For 1MSA, one model was trained both on systole and diastole phases and used for segmen-
tation of all phases in the cardiac cycle. In contrast, for 2MSA two independent models were trained separately, 
namely, one systole and another one for diastole. Thus, this yielded specialised models for systole and diastole 
segmentation respectively. 2MSA models were not used for segmentation of all phases in the cardiac cycle.

Model Architectures. A range of encoder-decoder architectures using CNNs have been implemented, namely, 
U-Net9, Attention U-Net12, U-Net++13 and V-Net15. All the architectures share the common U-Net skeleton, but 
have added components which aim to increase coherence between the encoding and decoding paths to improve 
overall pattern recognition. For instance, it was hoped that the attention gates with which Attention U-Nets 
are equipped would improve the focus of the network on the contours. U-Net++ was used to scope whether 
an increased connectivity between encoding and decoding pathways through dense skips would lead to better 
performance. Finally, the use of V-Net was motivated by the fact that this network was specifically designed to 
process 3D volumes. Further details on the specific characteristics of these architectures can be found in Sup-
plementary Information.

In all architectures, 3D convolutions were applied and the downsampling steps were performed using a 
volumetric kernel of 2 × 2 × 2 voxels and a stride of 2 × 2 × 2 or 1 × 2 × 2 voxels (depending on the downsampling 
dimensions). Additionally, 3D padding was applied at the original image to avoid cropping the skip pathways. 
The padding was set to ‘same’ and the dilation rate was set to 1 × 1 × 1 voxels for the decoding path. The sigmoid 
was used as the last activation function. Batch normalisation was used after each layer and the dimensions of the 
tensors were passed as (N, D, H, W, C), where N is the number of sequences (mini batch), D is the number of 
images in a sequence, H is the height of one image in the sequence, W is the width of one image in the sequence 
and C is the number of channels (set to 1).

Training. A random sample of 10% of the image stacks available for training was separated for validation. Each 
model was trained for 100 epochs and patience was set to 5 epochs on the validation set. Hyperparameter tuning 
was performed in a stage-wise fashion: (1) selection of loss function and number of downsampling dimensions, 
(2) number of blocks and layers, (3) other relevant hyperparameters. Grid search strategy was used for the first 
stage and random search19 for the last two stages. The hyperparameters explored are detailed in Table 2.

The soft Dice loss is formulated as:

(1)LDSC = 1−

∑N
i=1 tipi + ε

∑N
i=1 ti + pi + ε

−

∑N
i=1(1− ti)(1− pi)+ ε
∑N

i=1 2− ti − pi + ε

Table 2.   Hyperparameters for model tuning.

Hyperparameter Value

Loss function Soft Dice loss15, weighted soft Dice loss, binary cross-entropy and hybrid loss (binary cross-entropy + soft 
Dice loss)

Downsampling dimensions 2 (x and y axes), 3 (x, y and z axes)

Number of blocks 2,3,4

Number of layers 2,4,6,8

Kernel size 2 × 2 × 2 voxels, 3 × 3 × 3 voxels, 5 × 5 × 5 voxels

Number of filters 8, 16, 32

Batch renormalisation20 False, True

Activation function Exponential Linear Unit (ELU), Gaussian Error Linear Unit (GELU), Scaled Exponential Linear Unit (SELU), 
swish

Dropout 0.0, 0.2, 0.4

Batch size 8, 16, 32, 64

Optimiser Adam, RMSProp

Learning rate 0.0001, 0.001

Kernel initialiser Glorot uniform, Glorot normal, random normal

Pooling MaxPooling3D (max), AveragePooling3D (average)

Deconvolution Conv3DTranspose (True), UpSampling3D (False)
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where T is the true foreground segmentation with voxel values ti and P the predicted probabilistic segmentation 
for the mask over i image elements pi. The background class probability is 1 − P. ϵ was set to 1. As a trivial exten-
sion, the weighted Dice loss function was designed to penalise misclassification at the borders of the region of 
interest (ROI). This objective function is given by:

The weight map wmap(ti) was implemented as described in Ronneberger et al.9:

setting w0 = 2 and σ = 1. wc is the weight map to balance the class frequencies, d1 denotes the distance to the border 
of the nearest cell and d2 the distance to the border of the second nearest cell.

Data Augmentation. One or more of the following augmentation strategies were implemented at random on 
the original images to improve models’ performance: elastic deformations, random shifts (across the x-axis and 
the y-axis), rotation (−20° to 20°), scaling (contraction or expansion), blurring (Gaussian filter with σ ϵ [0.5, 1.5]) 
and gamma correction (γ ~ N (1,0.1) ). The training dataset was finally inflated by a factor of ten.

Segmentation Approach Model Optimisation and Selection. Both for 2MSA and 1MSA we trained four differ-
ent architectures (i.e., U-Net, U-Net++, Attention U-Net and V-Net) and performed hyperparameter tuning for 
each of them. For each segmentation approach, the top three best performing architectures were selected based 
on the Sørensen-Dice score (DSC) on the validation set21. Ensembling strategies were also assessed.

Finally, judging the DSC distribution and convergence times, the best performing model for 1MSA was 
selected. The optimal models for systole and diastole segmentation were selected for 2MSA. Both segmentation 
approaches were then benchmarked.

Postprocessing.  The results of the segmentation were subjected to thresholding. Subsequently, morpho-
logical operations were carried out eroding thin protrusions and closing potential holes within the LV cavity18.

Segmentation approach benchmarking.  To substantiate the decision on which segmentation approach 
would be more suitable for the reliable and robust LV segmentation, 1MSA and 2MSA were benchmarked from 
three different perspectives: linear mixed models and hypothesis tests, robustness against noise and agreement 
analysis.

Statistical Assessment of Segmentation Approaches. A linear mixed model (LMM) accounting for 1MSA and 
2MSA and the two operators using Maximum Likelihood with Satterthwaite degrees of freedom was fit as per 
Eq. (4)22.

where I denotes an indicator function. Ioperator and animal ID are random effects and Isegmentation approach and 
Itreatment arm are the model approach and treatment arms fixed effects (see Supplementary Information). Addition-
ally, contrasts were constructed to perform an equivalence test comparing both approaches with an equivalence 
margin of 2% EF23.

Noise Robustness Analysis. Previously selected optimal models for 1MSA and 2MSA were then tested in 
scenarios with increased noise to assess the robustness of their segmentation capabilities. Three test sets were 
artificially generated based on the images from the Study 5 by introducing Gaussian, Rician24 and Rayleigh25 
distributed noise with a signal to noise ratio (SNR) of 30. Additionally, an extra mixed noise scenario set was 
generated, where SNR was set to 20 and any of the aforementioned noise distributions was applied to the image 
at random. DSC was reported, alongside with EF mean absolute differences (MD) both for 1MSA and 2MSA 
as per Eq. (5):

Agreement Analysis. The main endpoint of preclinical studies is to estimate the EF of a cardiac cycle. Thus, 
1MSA and 2MSA models were benchmarked in terms of agreement. Firstly, volumes were thus estimated by 
calculating the sum of masks for each slice output by each model from 1 and 2MSA. MD and Bland–Altman 
plots26 were used to analyse agreement between reference EF calculated from manual segmentations and the EF 
estimated from both for 1MSA and 2MSA segmentations.

Interoperator agreement.  We also assessed interoperator variability (Op1 vs Op2) with a Bland–Altman 
plot for the Study 5 test set. This allowed to evaluate how the proposed automated segmentations compare to the 
existing interoperator variability.

Automating 1MSA phase selection for EF estimation.  The availability of eleven to thirteen image 
stacks ordered along the temporal dimension allowed to represent full cardiac rat cycles. We decided to employ 
the 1MSA model for segmenting all the cardiac phases in each cycle.

First, for a given a cardiac cycle, we explored the optimal way for selecting systole and diastole, as this 
would impact the final EF estimate. Cardiac volume, slice area and surface area were calculated for each phase 
to describe the cardiac cycle. The slice area was defined as the 2D slice whose area had the highest variance 

(2)LwDSC =

N
∑

i=1

wmap(ti)L

DSC

(3)wmap(ti) = wc(ti)+ w0e

(

−
(d1(ti)+d2(ti))

2σ2

)

(4)EFpredicted = EFactual + animal ID+ Isegmentation approach + Itreatment arm + Ioperator

(5)MD := E[|�EF|] = E
[∣

∣EFestimated − EFreference
∣

∣

]
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throughout the cardiac cycle. The surface area was the 2D surface mesh and was calculated using the Lewiner 
marching cubes algorithm28. The temporal ordering of each phase resulted in the cardiac cycle curve which 
was fit for identifying the systole (local minimum) and the diastole (local maximum). For fitting the curve, two 
algorithms were compared: a fourth-degree polynomial and a GP model27. The prior to fit the GP model to the 
data was a composite kernel consisting of a constant kernel multiplied by the radial-basis function (RBF) kernel 
(see Supplementary Information).

The selection of the best metric for selecting systole and diastole was assessed by comparing it with the ground 
truth. In this case, the ground truth were the systole and diastole phases identified by an experienced operator. 
To quantify this over all the image stacks, MD and Bland–Altman plots were analysed. Once the optimal metric 
was identified, the advantages of GP and polynomial fits were discussed to settle which one had the best proper-
ties for this use case.

Software.  We implemented the networks in Python v3.7.6, using the Keras library v2.0.829 and TensorFlow 
v1.14.0 backend30. Models were trained on a Tesla K80 using 75 GB of RAM. GPs were fitted using the scikit-
learn v0.23.2 and the Lewiner marching cubes used scikit-image v0.17.2. R v3.6.3 was used to calculate intraclass 
coefficient ICC using irr v0.1.1 and the lme4 v1.1-26 and emmeans v.1.5.2-1 packages for LMM and equivalence 
testing31–33.

Ethics approval and consent to participate.  All experiments were performed in compliance with EU 
Directive 2010/63/EU. The protocols were approved by the local ethics committee (Göteborgs djurförsöksetisk 
nämnd).

Results
Model optimisation.  We assessed the impact of different hyperparameters on the performance of the pro-
posed architectures. The Dice loss is the optimal training loss reaching satisfactory scores in the range between 
0.89 and 0.90. Notably, persisting numerical instability issues prevented progress in studying further loss func-
tions (i.e., hybrid loss functions).

Table 3.   Final Models for Diastole Phase Model for: (a) diastole phase model for 2MSA, (b) systole phase 
model for 2MSA, (c) 1MSA.

(a) 
Architecture

Downsampling 
dimensions Blocks Layers

Kernel 
size

Number of 
filters Renormalisation

Activation 
function Pooling

Kernel 
initialiser Deconvolution Dropout

Batch 
size

Learning 
rate Optimiser DSC

Attention 
U-Net 3 4 6 (3,3,3) 16 True ELU average Glorot normal True 0.0 8 10–3 Adam 0.960

U-Net ++  2 3 8 (3,3,3) 16 True ELU max Glorot normal True 0.0 8 10–2 Adam 0.965

V-Net 2 3 4 (3,3,3) 16 True ELU max Glorot normal True 0.0 8 10–2 Adam 0.959

(b) 
Architecture

Downsampling 
dimensions Blocks Layers

Kernel 
size

Number of 
filters Renormalisation

Activation 
function Pooling

Kernel 
initialiser Deconvolution Dropout

Batch 
size

Learning 
rate Optimiser DSC

Attention 
U-Net 3 2 3 (5,5,5) 8 True Swish average Glorot normal False 0.0 8 10–2 Adam 0.929

U-Net 2 5 2 (3,3,3) 16 False Swish max Glorot normal False 0.2 8 10–3 Adam 0.938

V-Net 3 4 6 (3,3,3) 16 True ELU max Glorot normal True 0.0 8 10–2 Adam 0.934

(c) 
Architecture

Downsampling 
dimensions Blocks Layers

Kernel 
size

Number of 
filters Renormalisation

Activation 
function Pooling

Kernel 
initialiser Deconvolution Dropout

Batch 
size

Learning 
rate Optimiser DSC

Attention 
U-Net 3 2 3 (3,3,3) 16 True ELU max Glorot normal True 0.0 8 10–2 Adam 0.949

U-Net 2 3 4 (3,3,3) 16 True ELU max Glorot normal True 0.0 8 10–2 Adam 0.948

V-Net 3 3 2 (3,3,3) 16 True ELU max Glorot normal True 0.0 8 10–2 Adam 0.950

Table 4.   Model table for fixed effects in a linear mixed model.

Term Estimate Standard error Statistic Degrees of freedom p-value

(Intercept) 8.37 1.96 4.27 3.33 0.019

Human operator 0.87 0.02 47.79 389.54  < 0.0001

Treatment 2.54 0.60 4.20 274.93  < 0.0001

Model − 1.23 0.22 − 5.48 382.15  < 0.0001

Table 5.   Ejection fraction mean absolute difference for pooled Study 5 and Study 6a. a Represented as 
MD ± standard deviation.

ΔEF MD

2MSA 1MSA

3.5 ± 2.5 4.1 ± 3.0
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The hyperparameters for both the systole and diastole final models from the 2MSA are shown in Tables 3a 
and 3b, respectively. Table 3c shows the final models from the 1MSA. Further details are provided in Supple-
mentary Information.

The number of downsampling dimensions, blocks and layers have a greater impact on DSC performance than 
the rest of the hyperparameters. Dropout levels > 0.2 were detrimental across the board and neither GELU nor 
SELU activation functions contribute to increasing performances compared to ELU. The rest of the hyperparam-
eters (i.e., kernel initialiser, kernel size, number of filters, optimiser, etc.) only cause a marginal improvement in 
terms of DSC performance and with all of the models converging on the same values.

During the training process, our V-Net implementation converged up to two times faster (33 h for diastole 
2MSA) than the rest of the CNN encoder-decoder architectures. In contrast, U-Net++ is the slowest network 
to train (56 h).

Model selection.  Once the top 3 best-performing models for each segmentation approach were identified, 
we proceeded to select the optimal one.

For the 2MSA, all models exhibit a mean DSC > 0.90 and right-skewed distributions (see Fig. 1). Exploratory 
attempts on ensemble models provided similar if not inferior segmentation statistics.

A comparison between systolic and diastolic segmentation tasks reveals that for 2MSA models, the quality of 
diastole segmentation was higher for all tested architectures. Given that there was a substantial overlap between 
DSC distributions for the tested architectures regardless of the phase (see Fig. 1), V-Net was taken as the final 
segmentation model for systole segmentation thanks to its lower convergence times. Attention U-Net was selected 
as the optimal model for diastolic segmentation.

With regards to 1MSA, performance for base models and ensembles was also comparable. U-Net was selected 
as the final model on grounds of parsimony (see Fig. 2). Over 75% of the segmented hearts had a DSC > 0.90 
regardless of the phase both for 1MSA and 2MSA (see Supplementary Information).

Figure 1.   Sørensen-Dice score absolute frequency distribution for 2MSA models for pooled Study 5 and Study 
6. (a) Diastole models (V-Net: 0.91 ± 0.072, Attention U-Net: 0.91 ± 0.080, U-Net +  + : 0.90 ± 0.069). (b) Systole 
models (V-Net: 0.91 ± 0.072, Attention U-Net: 0.87 ± 0.065, U-Net: 0.87 ± 0.064).

Figure 2.   Sørensen-Dice score absolute frequency distribution for 1MSA models for pooled Study 5 and Study 
6 where diastole and systole phases were separated manually for the sake of analysing different behaviours. 
(a) Diastole segmentation (V-Net: 0.93 ± 0.032, Attention U-Net: 0.93 ± 0.032, U-Net: 0.93 ± 0.030). (b) Systole 
segmentation (V-Net: 0.93 ± 0.033, Attention U-Net: 0.93 ± 0.031, U-Net: 0.92 ± 0.029).
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Segmentation quality analysis.  Representative examples of CNN image stack segmentations from both 
1MSA and 2MSA final models are displayed in Fig. 3. From visual inspection of the segmented image stacks, dif-
ferent segmentation methods do not result in substantial differences in segmentation quality. However, systolic 
contours are consistently more irregular than diastolic contours. Additionally, basal and apical slices suffered 
from lower segmentation quality compared to midslices (see Supplementary Information).

Statistical assessment of segmentation approaches.  Lastly, the final models both for 1MSA (U-Net) 
and 2MSA (V-Net for systole and Attention U-Net for diastole) were benchmarked to examine whether signifi-
cant differences exist between the two approaches.

First, a LMM was fit with the data adjusting for operator and treatment arm (see Table 4). A locally esti-
mated scatterplot smoothing (LOESS) fit was used to aid the interpretation of these differences (see Supple-
mentary Information for diagnostics confirming normality and results). The segmentation of sham-operated 
and myocardial infarction treatment arms was statistically significantly different and the operator effect (both 
p-values < 0.0001).

Additionally, we contrasted both approaches based on the LMM with an equivalence test23. Results indicate 
that the null hypothesis of the two approaches not being the same with an equivalence margin of 2% EF could 
be rejected (p-value < 0.001).

Regarding ΔEF MDs, neither segmentation approach was shown superior, given that the absolute differences 
were in the same order of magnitude (see Table 5).

Noise robustness analysis.  In terms of segmentation quality, 2MSA benefits from data augmentation, 
whereas it does not elicit major improvements for 1MSA (see Fig. 4). The effect of data augmentation on statistics 
for both segmentation approaches is reported in Supplementary Information.

Agreement analysis.  The agreement between automated and manual segmentation was evaluated to assess 
whether 1MSA and 2MSA methods were interchangeable. Bland–Altman plots are displayed in Fig. 5 for 1MSA 
vs Operator 1 and 2MSA vs Operator 2 approaches, respectively. Table 6 contains the main statistics for these 
plots.

Figure 3.   Best, worst and average examples of 1MSA segmented rat hearts with U-Net (systole and 
diastole) (a). Best, worst and average exmaples of 2MSA segmented rat hearts with V-Net (systole), Attention 
U-Net (diastole) (b). In red the predicted mask and in yellow the ground truth (manual mask).
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Regardless of the segmentation approach, there was a significant negative bias (p-value < 0.05). Nevertheless, 
both 1MSA and 2MSA afforded comparable biases and variability. There was no clear trend upon increasing the 
magnitude of EF, thereby suggesting that the risk of proportional bias could be rejected.

Interoperator agreement analysis.  Interoperator agreement analysis allowed us to set a reference to 
compare our automation vs manual segmentation level of agreement. The Bland–Altman plot for interoperator 
agreement is displayed in Fig. 6. The difference between operators is significant, as the equality line is not within 
the 95% confidence interval (CI) of the mean. The average discrepancy between the two operators is −5.6 ± 3.8%. 
Interoperator agreement in systole and diastole volume estimation is provided in the Supplementary Informa-
tion.

1MSA phase selection automation for EF estimation feasibility study.  The full capabilities of 
1MSA could be exploited thanks to the collection of image stacks along the cardiac cycle during the MRI scan-
ning process. Table 7 shows the MD between the EF determined from manually segmented masks and the EF 

Figure 4.   EF mean absolute difference in different noise scenarios between non-augmented (original) and 
augmented model for one-model segmentation approach (a) and two-model segmentation approach (b). The 
bars represent the standard deviation.

Figure 5.   Bland–Altman plots for agreement analysis for pooled Study 5 and Study 6 using the 1MSA 
(bias =  − 3.7 ± 3.5) (a) and 2MSA (bias =  − 2.9 ± 3.2) (b). The bias is marked with a solid blue line (─) and its 
95% CI shaded in blue. The equality line is marked with a solid black line (──). The upper and lower 95% CI are 
marked with discontinuous red lines (--) and are shaded with their respective 95% CI in red.

Table 6.   Bland–Altman plots statistics by segmentation approach for pooled study 5 and study 6a. 
a Represented as MD ± standard deviation.

Segmentation approach Bias 95% CI upper bound 95% CI lower bound

1MSA −3.7 ± 3.5 3.1 −10.5

2MSA −2.9 ± 3.2 3.4 −9.2
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from automatic phase selection for the different selection metrics. Notably, the slice area emerged as the best 
metric to perform phase selection, as it had the lowest ΔEF MD both for polynomial and GP. In contrast, taking 
the surface area as the metric for phase selection yields the highest MDs.

Agreement both for polynomial and GP using the three selection metrics was also analysed with Bland–Alt-
man plots (see Supplementary Information) and their statistics are summarised in Table 8.

A significant bias (p-value < 0.05) was observed in all cases. Interestingly, both the volume and the slice area 
display negative biases, while surface area overestimates the EF. The lowest bias is observed when using the slice 
area as the phase selection metric and the highest using volume. However, the used fitting method does not 
substantially impact the bias for any of the metrics.

The difference in absolute terms between the upper and the lower agreement bounds always ranges between 
15 and 20. The slice area displays the broader agreement bounds, while the surface area provides the narrowest. 
No proportional bias is observed and the datapoints are normally distributed.

Taking into account Bland–Altman plot statistics and MD, the slice area is the best metric for selecting systole 
and diastole phases.

The cardiac cycle graphs were visually inspected to determine which method would be better placed to resolve 
challenging tasks. GP fitting followed the tendency marked by datapoints, whereas the polynomials adopted a 
generic form which oftentimes ignored finer experimental trends. An archetypical example is depicted in Fig. 7.

Figure 6.   Bland–Altman plot for agreement analysis between operators for Study 5 (bias = -5.6 ± 3.8). The bias 
is marked with a solid blue line (─) and its 95% CI shaded in blue. The equality line is marked with a solid black 
line (─). The upper and lower 95% CI are marked with discontinuous red lines (--) and are shaded with their 
respective 95% CI.

Table 7.   Ejection fraction mean absolute difference comparison for polynomial and GP fittinga. a Represented 
as MD ± standard deviation. In bold, the best performing selection metric.

Fitting method

Selection parameter

Volume Surface area Slice area

Polynomial 8.3 ± 4.7 10.5 ± 3.9 4.4 ± 4.1

GP 7.9 ± 4.9 11.3 ± 4.0 4.7 ± 4.3

Table 8.   Bland–Altman plots statistics for phase selection metrica. a Represented as mean bias ± standard 
deviation. In bold, the best performing phase selection metric.

Metric Method Bias Upper bound Lower bound

Volume
Polynomial −11.5 ± 4.3 −3.1 −19.9

GP −11.2 ± 4.3 −2.4 −20.0

Surface area
Polynomial 6.7 ± 4.1 14.8 −1.3

GP 7.4 ± 4.3 15.2 −0.7

Slice area
Polynomial −2.5 ± 4.9 7.1 −12.1

GP −2.5 ± 5.2 7.3 −12.3
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Discussion
U-Net and its derived architectures demonstrated very good performances for rat LV cardiac segmentation. 
However, the extension of U-Net with attention gates12, deep supervision13 or residual connections15 did not lead 
to improved performances in our particular context. Our results suggest that simpler U-Nets perform well even 
in the absence of architectural fine-tuning and extensive skip connections and they remain a highly competitive 
option for the rat cardiac segmentation. Moreover, U-Nets are capable  to successfully extract relevant infor-
mation even with 2 downsampling dimensions. Against initial expectations17, ensembles did not significantly 
improve performance, possibly due to the correlated nature of their constituent models. This motivated the 
rationale that model selection should be based on grounds of parsimony, which in its turn reduced convergence 
speed as more complex architectures (i.e., U-Net++) required longer training times.

As expected, a factor that influenced the quality of the segmentation is the cardiac phase. The lower segmen-
tation quality in systole could be caused by class imbalance and a higher variability of systole phases compared 
to diastolic ones (see Fig. 8)34,35. This might also be the reason why basal and apical slices suffered from poorer 
segmentation quality. Increased interslice coherence could play a role in improving segmentation, as it was 
seen that using 3 downsampling dimensions did not elicit performance improvements. In effect, strategies like 
leveraging recurrent neural networks have been tried in similar settings36 and it could be a potential avenue for 
future exploration.

Figure 7.   Cardiac cycle plot showing the evolution of the automatically selected slice area vs. the cycle phase. 
 indicates the selected diastolic phase and  the selected systolic phase. Their volumes are subsequently used 

to estimate the EF. Fourth-degree polynomial (a) and GP (kernel = Constant * RBF) (b) fitting methods. The 
polynomial fit considerably overestimates the end-diastolic volume and does not select an actual datapoint for 
the end-systolic volume, while the GP fits the datapoints more closely and affords a better estimation of the EF.
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The hyperparameter tuning showed moderate performance improvement. Nonetheless, a few trends can be 
identified. For instance, direct regularisation techniques proved to be detrimental for on our models’ perfor-
mance. In this respect, it is hypothesised that the application of dropout at random could deprive the model of its 
most critical training parameters and cause a performance erosion. Our models display consistent performance 
across two studies and demonstrate robustness against noise. Thus, current evidence does not suggest extensive 
overfitting. Indeed, these models will be further validated as new studies become available in the future. Inter-
estingly, a substantial drop in DSC was observed whenever renormalisation was not implemented. Finally, the 
supposed superiority of activation functions with self-normalising properties (i.e., GELU and SELU)37,38 was 
not observed in our context.

Data augmentation has the potential to improve performance7, but this was not the case for 1MSA, which 
could be due to the lack of capacity to incorporate instance variance. Further ablation studies could help to bet-
ter understand this phenomenon.

In principle, it was expected that the 2MSA would lead to significantly better segmentations than 1MSA. 
Nevertheless, the LMM fit, the equivalence test and MD analysis revealed that they were equivalent. Both 1MSA 
and 2MSA demonstrated to model appropriately EFs in the range between 50 and 70%, whilst higher variability 
was observed outside this region. This likely stems from the natural limitation that the number of available 
training examples is lower.

The segmentation capability of these models was acceptable when compared to humans, as the bias and limits 
of agreement in the Bland–Altman plots were satisfactory (detecting an EF change of 5% translates to clinically 
meaningful results on cardiac performance). Additionally, further agreement analysis revealed that these models 
held a promise in remediating inter- and intraoperator variability, as well as dramatically reducing the time of 
analysis. In line with previous efforts39, both 1MSA and 2MSA segmentation approaches had a lower bias than 
between operators and the limits of agreement were comparable. Certainly, these models were substantially 
quicker (~ 12 s with automated segmentation vs. ~ 20 min with manual segmentation based on in-house experi-
ence). A shortcoming of this study is the limited number of operators available. The addition of more operators 
for the assessment of the intraoperator agreement should be explored in the future.

Comparable levels of agreement between 1 and 2MSA prompted further investigation into the benefits of 
the former approach. Its applicability for automated phase selection leveraging the temporal dimension of each 
image stack along the cardiac cycle was explored. This approach expands on previous research carried out with 
2D human images40. Amongst the phase selection metrics, the slice area afforded the lowest bias, potentially 
due to its sensitivity to small changes. The presence of bias in the selection metrics can be attributed to potential 
computational artifacts, biases in the data or in the annotation process. The surface area yielded the narrowest 
limits of agreement, which translates into better precision, as it has lower susceptibility to the noise potentially 
present in some slices. Thus far, no indication of a selection metric providing both an optimal precision and 
accuracy has been found. The addition of more rats into the study could help alleviate the bias which the surface 
area metric suffers from, whilst improving a high variability scenario would be more challenging. Therefore, 
using the surface area provides more reliable EF estimates than the slice area.

Next, we evaluate which fitting method was best suited to model the cardiac cycle. Visual inspection of the 
GP and polynomial fits revealed that the GP ability to learn the distribution of datapoints provides the necessary 
flexibility needed to model the cardiac cycle. Additionally, GPs offer the possibility to develop more advanced 
approaches such as sparse and variational GP41 which can improve further the representation of the cardiac cycle.

The 1MSA provides a seamless phase selection which, coupled with estimation of the EF, allows for a full-
automated process. This reduces the segmentation time dramatically and has potential to substantially accelerate 
pharmacological studies. Whilst 1MSA is beneficial in some contexts, 2MSA can be used in a context where 

Figure 8.   Class imbalance (foreground/background) vs Sørensen-Dice coefficient for systole and diastole 
phases for pooled Study 5 and Study 6 images with trained V-Net and Attention U-Net from 2MSA (a) and 
U-Net from 1MSA (b).
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sporadic human intervention is a possibility. It is a simpler approach which can prevent potential errors that 
might arise from the phase selection process. Thus, the suitability of using either 1MSA or 2MSA would be very 
much dependant on the specific requirements from the end-user.

Future work will focus around generalising these frameworks for new clinical studies and subsequently 
improving the predictive capabilities of the existing models by exploring continual learning42,43. Another avenue 
of exploration in the future may be to use the longitudinal data and assess whether this translates into an improve-
ment the segmentation quality. This methodology might inspire further similar applications to other organs and 
animals of preclinical interest. Indeed, transfer learning can be effectively leveraged for these tasks44,45. In this 
regard, preliminary work indicates that it could be applied successfully in studies with mice hearts.

Our work deals with a fundamental issues of image segmentation in preclinical settings and the success of our 
models trained on a relatively small preclinical dataset highlights the potential of this technique to be applied to 
automated cardiac segmentation in preclinical settings.

Conclusions
We present a successful application of CNNs for the segmentation of rat LV from CMR datasets. Estimates of 
derived clinical parameters, such as systolic left-ventricular volume, diastolic left-ventricular volume and EF, 
demonstrate close to human performance in both 2MSA and 1MSA settings. Combined with a novel phase selec-
tion strategy based on GPs modelled on the changes of the mid-slice are along the segmented cardiac cycle, our 
work presents an encouraging first step towards a fully automated rat LV segmentation pipeline. In the future, 
due to their potential to significantly speed up reporting of results to analysis teams, we hope that such tools 
will be useful when assessing pharmacological interventions designed to improve cardiac function. As such, we 
believe that the deep learning based automated segmentation pipeline presented here would inspire research 
into similar assistive technologies in the preclinical image analysis space in the years to come.
Data availability
The datasets generated and/or analysed during the current study are not publicly available due to company 
restrictions but are available from the corresponding author on reasonable request. Code will be made available 
on request from the corresponding author.
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