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Abstract The use of protonated N-heterocyclic com-

pound, i.e. 2,20-bipyridinium cation, [bpyH?], enabled

to obtain the new nitrilotriacetate oxidovanadium(IV)

salt of the stoichiometry [bpyH][VO(nta)(H2O)]H2O.

The X-ray measurements have revealed that the

compound comprises the discrete mononuclear [VO

(nta)(H2O)]- coordination ion that can be rarely found

among other known compounds containing nitrilotri-

acetate oxidovanadium(IV) moieties. The antitumor

activity of [bpyH][VO(nta)(H2O)]H2O and its phenan-

throline analogue, [phenH][VO(nta)(H2O)](H2O)0.5,

towards human osteosarcoma cell lines (MG-63 and

HOS) has been assessed (the LDH and BrdU tests) and

referred to cis-Pt(NH3)2Cl2 (used as a positive control).

The compounds exert a stronger cytotoxic effect on

MG-63 and HOS cells than in untransformed human

osteoblast cell line. Thus, the [VO(nta)(H2O)]- con-

taining coordination compounds can be considered as

possible antitumor agents in the osteosarcoma model of

bone-related cells in culture.
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Introduction

Despite numerous attempts to define the role of

vanadium in biological processes its impact on the

functioning of higher organisms remains to be eluci-

dated. During the last 10–15 years, progress in the

chemistry of vanadium, namely in the search of its

therapeutic applications has been exponential and

several reviews have been published (Rehder 2013;

Willsky et al. 2011; Pessoa and Tomaz 2010; Jakusch

et al. 2011; Gambino 2011; Pessoa et al. 2015a, b;

Kioseoglou et al. 2015; Leon et al. 2016a, b; Rehder

2017). In particular, much attention has been paid on

insulin-mimetic (-enhancing) properties (Srivastava

and Mehdi 2005; Marzban and McNeill 2003;

Thompson et al. 2009). Among the compound tested

as small molecule insulin-mimetics, or insulin-en-

hancers, VO(maltolato)2 (BMOV) (McNeill et al.

1992; Levina and Lay 2011) and VO(Etmaltolato)2
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Faculty of Chemistry, University of Gdańsk, Wita
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(BEOV) (Thompson et al. 2009) have been exten-

sively studied (Fig. 1). BMOV and BEOV may be

taken orally and both lower plasma glucose levels in

streptozotocin-induced (STZ) diabetic rats (Thomp-

son and Orvig 2006), BEOV having completed Phase I

and IIa of clinical trials.

In recent years the anticancer properties of vana-

dium(IV) compounds have been noticed (Kioseoglou

et al. 2015). The bis(cyclopentadienyl) dichloro-V(IV),

vanadocene dichloride, [VCp2Cl2], vanadocene’s sim-

plest derivative, as well as Metvan, V4?-derivative,

were found to be promising anticancer drug agents

(Fig. 2).

The vanadocene(IV) compound, [VCp2Cl2], was

extensively studied in preclinical testing against both

animal and human cancer cell lines, exhibiting a high

in vitro activity (Havelek et al. 2012; Vinklarek et al.

2004; Gleeson et al. 2009; Palackova et al. 2007).

Metvan induces apoptosis in different tumoral cell

lines of human origin such as leukemia cells, breast

cancer, ovarian, prostate and testicular cancer patients

(Evangelou 2002; D’Cruz and Uckun 2002; Dong

et al. 2000). The broad spectrum of anticancer activity

of Metvan together with favorable pharmacodynamic

features and a lack of toxicity emphasizes that this

V4?-compound has a potential to be the first vanadium

coordination compound as an alternative to the

platinum-based chemotherapy (D’Cruz and Uckun

2002).

Another interesting group of vanadium compounds

are complexes of oxidovanadium(IV) with ligands that

hold multiple donor atoms able to coordinate with

metal centers. Binary and ternary oxodiacetate (oda)

coordination compounds of VO2?, VO(oda), VO(o-

da)(bpy) and VO(oda)(phen), display important effects

in bone related cells in culture (Fig. 3) (Rivadeneira

et al. 2010).

All these compounds were tested on two osteoblast-

like cell lines in culture (MC3T3E1 derived from mouse

calvaria and UMR106 derived from rat osteosarcoma

cells). VO(oda) caused an inhibition of a cellular

proliferation in both cell lines, but the cytotoxicity was

stronger in the normal (MC3T3E1) than in the tumoral

(UMR106) osteoblasts. VO(oda)(phen) in the osteoblas-

tic model caused the inhibition of the cellular prolifer-

ation in both cell lines (MC3T3E1 and UMR106), but the

cytotoxicity was stronger in the normal than in the

tumoral osteoblasts (León et al. 2012b). On the contrary,

VO(oda)(bpy) was statistically stronger in the tumoral

cells (León et al. 2012b). A nuclease activity of the three

compounds (Fig. 3) revealed that the DNA cleavages

caused by VO(oda)(bpy) and VO(oda) were similar,

while VO(oda)(phen) showed a stronger effect. VO

(oda)(phen) presented the most potent antitumor action

in human osteosarcoma cells followed by VO(oda)(bpy)

and then by VO(oda) according to the number of

intercalating heterocyclic moieties (Yodoshi et al. 2007).

The subject of our continuous interest are polycar-

boxylate vanadium coordination compounds since it

has been found that they are able to scavenge

superoxide free radicals (O2
�-) as well as protect the

HT22 hippocampal neuronal cell line against an

oxidative damage (Tesmar et al. 2015; Wyrzykowski

et al. 2013, 2015a, b). The participation of the

oxidovanadium(IV) compounds in leveling of reactive

oxygen and nitrogen species (RONS) suggests that

vanadium compounds can be beneficial in the

Fig. 1 Schematic

molecular structures of

VO(maltolato)2 (BMOV)

and VO(Etmaltolato)2

(BEOV)

Fig. 2 Anti-tumor vanadium coordination compounds

262 Biometals (2017) 30:261–275

123



treatment of several diseases and malfunctions related

to RONS imbalances (Pessoa et al. 2015b). However,

the main concern as regards the application of

vanadium compounds as drugs is to minimalize their

adverse side effects (Shukla et al. 2006). It is the

crucial issue for the future use of vanadium-based

drugs in medicine. For these reasons the studies on

structure, physicochemical and biological properties

of the vanadium compounds with a potential pharma-

cological ability are the subject of interest to many

research groups.

Strong chelating ligands are very important in

aqueous systems since they are models for trapping,

transport and storage of different metallic species in

living organisms (Harding et al. 1993). For this reason

we have used nitrilotriacetate ions (nta) as they are

known to form fairly stable complexes with oxidovana-

dium(IV) ions (Felcman and Fraústo da Silva 1983). In

this paper, the crystal structure and physicochemical

properties of the new VO2?-compound, namely 2,20-
bipyridinium aqua-(2,20,200-nitrilotriacetato)-oxo-vana-

dium monohydrate, [bpyH][VO(nta)(H2O)]�H2O, is

presented. Additionally, anti-proliferative and cytotoxic

effects of [bpyH][VO(nta)(H2O)]H2O and its phenan-

throline analogue, [phenH][VO(nta)(H2O)](H2O)0.5 on

human osteosarcoma cell lines (MG-63 and HOS) and

untransformed human osteoblast cell line (hFOB 1.19)

have been assessed and compared with the properties

found for cisplatin.

Materials and methods

The reagents (Sigma-Aldrich) used for the chemical

studies were of analytical grade and were used without

further purification. They were as follows: VO(acac)2

(C98%), nitrilotriacetic acid (H3nta) (C99%), 2,20-
bipyridyl (bpy, C98%), NBT (nitro blue tetrazolium,

98% purity), KO2 (96% purity) and 18-Crown-6 (99%

purity), ascorbic acid (C99%), ABTS [2,20-Azino-

bis(3-ethylbenzothiazoline-6-sulfonic acid) diammo-

nium salt, C 98% (HPLC)] and Trolox (6-Hydroxy-

2,5,7,8-tetramethylchromane-2-carboxylic acid, 98%).

Synthesis of [bpyH][VO(nta)(H2O)]H2O

The synthesis was carried out by a method similar to

that previously used for the preparation of the

phenanthrolinium salt (Tesmar et al. 2015). Thus,

the mixture of VO(acac)2 (2.65 g) and H3nta (1.91 g)

in water (40 mL) was refluxed for ca. 0.5 h. The hot

solution was filtered and cooled. To this solution, the

methanolic solution of 2,20-bipyridyl (1.56 g) was

added. Then, the mixture was concentrated (in order to

eliminate Hacac by an evaporation) and left for a

crystallization at the room temperature. After 14 days

a blue precipitate of the compound fell out. The

recrystallization from hot water gave blue crystals

after 7 days. The crystals of [bpyH][VO(nta)(H2-

O)]H2O were air-dried at the room temperature. The

composition of the compound studied was established

on the basis of the elemental analysis of carbon,

hydrogen and nitrogen (Vario EL analyzer Cube

CHNS). Anal. Calcd for [bpyH][VO(nta)(H2O)]H2O:

C, 42.9%, H, 4.3%, N, 9.4%, Found: C, 42.7%, H,

4.3%, N, 9.3%. Aqueous solutions of the investigated

compounds have shown a high stability, e.g. being

resistant to the oxidation in air, i.e. remain unaltered

(UV–Vis control) for at least 3 days.

X-ray measurements

The blue hexagonal prism crystal of [bpyH][VO(nta)

(H2O)]H2O was sealed in a glass capillary filled with

helium and next it was mounted on the Bruker APEXII

automatic diffractometer equipped with the CCD

detector, and used for a data collection. X-ray intensity

data were collected with the graphite monochromated

Fig. 3 Structural formulae

of VO-oda coordination

compounds
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CuKa (k = 1.54178 Å) radiation at temperature

100.0(1) K, with the x scan mode. The 27 s exposure

time was used and reflections inside the Ewald sphere

were collected up to h = 72.4�. The unit cell param-

eters were determined from 124 strongest reflections.

Details concerning the crystal data and refinement are

given in Table 1. Examination of reflections on two

reference frames monitored after each 20 frames

measured showed no loss of the intensity during

measurements. During the data reduction the Lorentz,

polarization and empirical absorption (Sheldrick

2003) corrections were applied. The structure was

solved by the dual-space algorithm implemented in the

XT software (Sheldrick 2015a). All the non-hydrogen

atoms were refined anisotropically using the full-

matrix, least-squares technique on F2. All the hydro-

gen atoms were found from the difference Fourier

synthesis after four cycles of an anisotropic refine-

ment, and refined as ‘‘riding’’ on the adjacent atom

with a geometric idealisation after each cycle of

refinement and individual isotropic displacement

factors equal 1.2 times the value of equivalent

displacement factor of the parent methyl carbon

atoms, and 1.5 times of parent oxygen or nitrogen

atoms. The XL software (Sheldrick 2015b) was used

for the refinement of the structure model. Atomic

scattering factors were those incorporated in the

computer programs. Tables of crystal data and struc-

ture refinement, anisotropic displacement coefficients,

atomic coordinates and equivalent isotropic displace-

ment parameters for non-hydrogen atoms, H-atom

coordinates and isotropic displacement parameters,

bond lengths and interbond angles have been depos-

ited with the Cambridge Crystallographic Data Centre

under No. CCDC1483068.

IR spectra

The IR spectra were recorded on the BRUKER IFS 66

spectrophotometer in a KBr pellet over the 4400–650 cm-1

range.

TG analysis

Thermogravimetric (TG) analyses in argon (Ar 5.0)

were run on the Netzsch TG 209 apparatus (range

298–973 K, Al2O3 crucible, empty crucible as a

reference, a sample mass 8–10 mg, a heating rate 10

K min-1, a flow rate of the carrier gas 20 mL min-1).

Table 1 Crystal and

structure refinement data of

[bpyH][VO(nta)(H2O)]H2O

Compound [bpyH][VO(nta)(H2O)]H2O

Empirical formula C16H19N3O9V

Formula weight 448.28

Crystal system, space group Monoclinic, P21/n (No.14)

Unit cell dimensions (Å, �) a = 7.3532(6)

b = 9.6573(13)

c = 25.403(3)

b = 90.678(9)

Volume (Å3) 1803.8(4)

Z, Calculated density (Mg/m3) 4, 1.651

F(000) 924

Crystal size (mm) 0.120, 0.116, 0.109

h range for data collection (�) 3.480 to 72.401

Index ranges -7 B h B 9, -11 B k B 11, -31 B 1 B 31

Reflections collected/unique 19203/3547 (R(int) = 0.0241)

Completeness (%) 99.9 (to h = 67�)
Data/restraints/parameters 3547/0/263

Goodness-of-fit on F2 1.064

Final R indices [I[ 2r(I)] R1 = 0.0255, wR2 = 0.0674

R indices (all data) R1 = 0.0255, wR2 = 0.0674

Largest diff. peak and hole (e�Å-3) 0.394, -0.419
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Potentiometric titrations

Potentiometric titrations were performed at 298.15 K by

using Cerko Lab System microtitration unit fitted with

5-mL Hamilton’s syringe and pH-combined electrode

(Schott-BlueLine 16 pH type) All details for the measur-

ing devices and the experimental setup were described in

(Wyrzykowski et al. 2014). The ionic strength was

maintained at 0.1 M using NaClO4. The 6 mM

[bpyH][VO(nta)(H2O)]H2O and [phenH][VO(nta)(H2-

O)](H2O)0.5 solutions (Vo = 5.0 mL) were potentiomet-

rically titrated with a standardized NaOH solution

(0.098 M). The concentration distribution of various

complex species existing in the solution as a function of

pH was obtained using the HySS program (Alderighi et al.

1999).

Cell culturing (hFOB, MG-63, HOS)

The cell lines: two human osteosarcoma cell lines

(MG-63 and HOS) and untransformed hFOB were

used to assess an anti-proliferative and cytotoxic

effect, respectively. hFOB cells were grown in a

mixture of Dulbecco’s Modified Eagle’s Medium and

Ham F12 medium (1:1 ratio), MG-63 and HOS in

Eagle’s Minimum Essential Medium also containing

sodium pyruvate 110 mg/L and supplemented with

10% fetal bovine serum, 6 lg/mL penicillin-G, and

10 lg/mL streptomycin.

Cell treatment (hFOB, MG-63, HOS)

Cultured cancer cells with 80–90% confluence were

used for plating. The adherent cells were trypsinized to

detach cells. 100 lL of cells were seeded into each

well of the 96-wells plates (1–5 9 104 cells per well).

The plate was maintained at 37 �C in a incubator for

48 h until 80–90% confluence. Then, old media were

discarded and the cells were treated with tested

compounds and cisplatin as positive control. The

concentrations of investigated compounds used in

experiments were carefully selected according to the

results obtained from a preliminary concentration–

response study (data not shown). A stock solution of

cisplatin was prepared by dissolving solid cisplatin in

phosphate buffered saline (PBS; water solubility:

0.253 g/100 mL at 25 �C). Fresh solutions of cisplatin

were made up for each experiment owing to its

instability in water. The concentrations of cisplatin

were selected based on published data found in the

literature (Baharuddin et al. 2016; Křikavová et al.

2014). Both tested compounds and cisplatin were

suspended in the SF cell culture and diluted to

appropriate concentrations ex tempore every time

before adding the cells. The dilutions of investigated

compounds and cisplatin were filtered through a

0.22 lm membrane filter. Controls (negative) were

treated with the serum free (SF) cell-culture medium.

Results and discussion

Chemical studies

The crystal structure description

A perspective view of the [bpyH][VO(nta)(H2O)]H2O

structure together with the atom numbering scheme is

shown in Fig. 4. All atoms of the compound lie in general

positions and the asymmetric unit contains one 2,20-
bipyridinium cation, [bpyH]?, one [VO(nta)(H2O)]-

anion and one water molecule. The vanadium(IV) cation

is six coordinated by three oxygen atoms and one

nitrogen atom of the nta ligand, one oxygen atom of

water molecule and one oxide ion. The coordination

sphere of V(IV) adopts the geometry of distorted

tetragonal bipyramid with the oxide and water oxygen

atoms arranged in the cis geometry. The oxo ligand is

located in the trans position to the nta nitrogen atom. The

[V=O]2? bond length (Table 2) agrees well with the

average value of 1.600(1) Å resulting from the over 1000

corresponding structures deposited with the CCDC (Del

Rio et al. 2003). The C–O bond lengths of nta (Table 2)

confirm a one-and-a-half character of the bonds, caused

by the delocalization of thep electrons of the carboxylate

groups involved in the coordination of V(IV). The other

vanadium–oxygen bond distances in the investigated

compound are comparable with those found for its

phenanthroline analogue, [phenH][VO(nta)(H2O)]

(H2O)0.5 (Tesmar et al. 2015).

The discrete mononuclear [VO(nta)(H2O)]- coor-

dination unit is unique among other known com-

pounds containing nitrilotriacetate oxidovanadium-

(IV) moieties, namely tris(ammonium) l-oxo-bis(ni-

trilotriacetato-oxo-vanadium) trihydrate (Nishizawa

et al. 1979), catena-(bis(ammonium) bis(l2-nitrilotri-

acetato)-(l2-oxo)-tetra-aqua-dioxo-manganese-di-vana-

dium(IV) dihydrate), catena-(bis(ammonium) bis(l2-
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nitrilotriacetato)-(l2-oxo)-tetra-aqua-dioxo-di-vanadi

um(IV)-zinc dihydrate), nona-aqua-lanthanum ammo-

nium (l2-oxo)-bis(nitrilotriacetato)-dioxo-di-vana-

dium(IV), nona-aqua-neodymium ammonium (l2-

oxo)-bis(nitrilotriacetato)-dioxo-di-vanadium(IV) (Zh

ang et al. 2004), tripotassium (l2-oxo)-bis((nitrilotri-

acetato)-oxo-vanadium(IV,V)) trihydrate (Shi et al.

2001) and ammonium non-aaqua-europium(III) (l2-

oxo)-bis(nitrilotriacetato)-dioxo-di-vanadium(IV) (Zh

ang et al. 2005), as typically these units are assembled

to dimers via an oxide bridge. The dinuclear oxi-

dovanadium(IV) coordination entities of the

[(VO)2(l2-O)(nta)2]4- and [(VO)2(l2-O)(nta)2M(H2-

O)4]2- (M=Mn, Zn) types are formed with the

inorganic cations (NH4
?, La3?, Eu3?, Nd3?) acting

as counter-ions. Recently, it has been proven in one

specific case that the cation formed by a protonation of

N-heterocyclic compound (i.e. phenH) is able to

stabilize mononuclear [VO(nta)(H2O)]- species (Tes-

mar et al. 2015). In this paper this finding is also

confirmed for other protonated N-heterocyclic com-

pound, i.e. 2,20-bipyridinium cation, also as a counter-

ion for the mononuclear oxidovanadium(IV) nitrilo-

triacetate anion. The vanadium–nitrogen bond dis-

tance in [bpyH][VO(nta)(H2O)]H2O (Table 2) is

slightly longer than that found for the dinuclear

[(VO)2(l2-O)(nta)2]4- coordination units (V–N

2.297(5) Å) (Zhang et al. 2004) as a result of presence

of the water molecule in the inner coordination sphere

of [VO(nta)(H2O)]- instead of the bridging oxide ion.

All 2,20-bipyridinium cation intramolecular dis-

tances and angles of the compound can be considered

as normal for such cations. The elongation (and

consequently weakening) of the C–N bonds (Table 2)

Fig. 4 The molecular structure of [bpyH][VO(nta)(H2O)]H2O.

Displacement ellipsoids are drawn at the 50% probability level,

hydrogen atoms are drawn as spheres of arbitrary radii

Table 2 Selected structural data of

[bpyH][VO(nta)(H2O)]H2O

Distance/angle Å, �

V1—O8 1.5991 (10)

V1—O5 1.9927 (10)

V1—O1 1.9930 (10)

V1—O7 2.0181(10)

V1—O3 2.0250 (10)

V1—N1 2.3416 (11)

N11—C11 1.3415 (19)

N11—C15 1.3477 (18)

N12—C16 1.3463 (18)

N12—C20 1.3363 (19)

O1—C1 1.2876 (16)

O2—C1 1.2355 (17)

O3—C3 1.2804 (16)

O4—C3 1.2386 (17)

O5—C5 1.2792 (16)

O6—C5 1.2408 (17)

O8—V1—O5 104.02 (5)

O8—V1—O1 104.02 (5)

O5—V1—O1 150.45 (4)

O8—V1—O7 100.92 (5)

O5—V1—O7 85.47 (4)

O1—V1—O7 87.40 (4)

O8—V1—O3 94.47 (5)

O5—V1—O3 89.31 (4)

O1—V1—O3 90.03 (4)

O7—V1—O3 164.54 (4)

O8—V1—N1 171.60 (5)

O5—V1—N1 75.02 (4)

O1—V1—N1 76.04 (4)

O7—V1—N1 87.37 (4)

O3—V1—N1 77.22 (4)

C11—N11—C15 123.65 (12)

C20—N12—C16 117.27 (12)
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formed by the protonated nitrogen atom (in comparison

to non-protonated one) originates from transferring the

electron density from the C-N bonds on the N–H bond.

This phenomenon also affects the C–N–C angle, which

is larger for the protonated nitrogen atom (Table 1). The

pyridine rings of the [bpyH]? cation are inclined at a

dihedral angle of 9.37o. The V���V distance between

neighbouring [VO(nta)(H2O)]- (6.474 Å) is slightly

shorter than that found for [phenH][VO(nta)(H2O)]

(H2O)0.5 (6.587 Å) as a result of the smaller volume of

bpyH? in comparison to phenH?. The [VO(nta)

(H2O)]- ions are linked through O–H���O hydrogen

bonds (formed between the inner coordination sphere of

water molecules and the oxygen atoms of the carboxy-

late groups, Table 3) to the folded ribbons extending

along the crystallographic (010) axis and characterised

by N1C(6)C(6)[N2R2
2(12)] motifs of the graphs sets of a

lowest degree.

The outer coordination sphere of water molecules

and [bpy(H)]? cations is packed between the planes

formed by parallel, above mentioned, folded ribbons

(extending along crystallographic (010) plane). The

O–H���O and N–H���O intermolecular hydrogen bonds

link the outer coordination sphere species to the

complex [VO(nta)(H2O)]- anions (Table 3). All

abovementioned interactions form the two-dimen-

sional network extending along the crystallographic

(101) plane. The neighbouring planes are expanded to

the three-dimensional network via the weak C–H���O
hydrogen bonds (Desiraju and Steiner 1999).

Additionally the neighbouring bpyH? cations are

linked by p���p stacking interactions (Table 4) (Krus-

zyński and Sieranski 2016) to the dimers.

The IR spectroscopic characterization

The characteristic for the oxidovanadium(IV) compounds

band at 981 cm-1 can be assigned to the V=O stretching

mode (Pranczk et al. 2016; Banik et al. 2014). Two bands at

1586 and 1402 cm-1 correspond to the antisymmetric and

symmetric vibrations of the ionized COO- groups, respec-

tively. This finding confirms the contribution of the

carboxylate groups in the coordination of V(IV) in a

monomeric [VO(nta)(H2O)]- coordination entity. The

difference, Dm, between the frequencies of asymmetrical

[mas(OCO-)] and symmetrical [ms(OCO-)] vibrations for

carboxylate group in the compound (Dm = 1586–

1402 = 184 cm-1) and in the nitrilotriacetate sodium salt,

Na3nta, Dm = 1598–1406 = 192 cm-1) suggests the ionic

character of the VO-nta interactions (Nakamoto 2009). The

band at 488 cm-1 corresponds to the stretching vibration

m(V–N) and agrees with the X-ray results showing that nta

acts as a tetradentate ligand. The band at 1095 cm-1 that can

be assigned to the stretching vibration m(C–N) of the nta

ligand (Tomita and Ueno 1963) is shifted ca. 100 cm-1 in

relation tom(C–N) in the free H3nta (1200 cm-1). It indicates

that the Natomof thenta ligand coordinates to Vatom.Most

relevant infrared bands of bpyH? are: 1474 cm-1 bpy -

mring, 1456 cm-1 bpy - mring ? dring-H, 1274 cm-1,

1224 cm-1 and 1040 cm-1 bpy - d(CH)in plane. The

Table 3 The hydrogen

bonds geometry of

[bpyH][VO(nta)(H2O)]H2O

[Å, �]

Symmetry transformations

used to generate equivalent

atoms: (i) -x ? 1/2, y -

1/2, -z ? 3/2; (ii) -x ? 3/

2, y - 1/2, -z ? 3/2; (iii)

-x ? 2, -y ? 1, -z ? 1;

(iv) x, y - 1, z; (v) -

x ? 1, - y ? 2, -z ? 1;

(vi) -x ? 1/2, y ? 1/2, -

z ? 3/2; (vii) x ? 1, y - 1,

z

D—H���A d(D-H) d(H���A) d(D���A) \(DHA)

O7—H7O���O2i 0.87 1.78 2.6492 (14) 172.2

O7—H7P���O6vi 0.84 1.75 2.5855 (14) 170.0

N11—H11 N���O4 0.92 2.00 2.7980 (15) 144.1

N11—H11 N���N12 0.92 2.23 2.6349 (17) 105.8

O99—H99O���O3v 0.91 2.02 2.9257 (14) 176.0

O99—H99P���O4 0.92 1.92 2.8253 (14) 167.9

C4—H4A���N12 0.99 2.67 3.5466 (18) 148.4

C6—H6A���O1i 0.99 2.66 3.3954 (16) 131.6

C6—H6B���O2i 0.99 2.61 3.3442 (16) 131.3

C14—H14���O99iii 0.95 2.60 3.5308 (19) 166.8

C17—H17���O99iii 0.95 2.57 3.4289 (18) 150.9

C18—H18���O8vii 0.95 2.33 3.1162 (18) 139.5

C19—H19���O1iv 0.95 2.57 3.4800 (17) 161.3

C20—H20���O6 0.95 2.41 3.2251 (17) 144.1
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presence of the stretching vibration band at 3464 cm-1

indicates the attachment of a proton to the nitrogen atom of

bpy. This is in line with the results obtained from the X-ray

measurements. Moreover, the IR spectrum of the compound

showsbandsat3300–3100and1660–1610 cm-1 thatcanbe

assigned to antisymmetric and symmetric OH stretching and

HOH bending bands of the lattice and coordination water,

respectively.

The thermal analysis

The thermal decomposition of [bpyH][VO(nta)(H2-

O)]H2O proceeds in five main steps. The first two steps

(115–160 and 160–185 �C, respectively) correspond to

the loss of the lattice water (mass loss: found 3.9%,

calcd. for H2O 4%) and one molecule of the coordi-

nation water (mass loss: found 4.3%, calcd. for H2O

4%). On further heating (above 185 �C) the compound

undergoes a pyrolysis, which leads to the decomposi-

tion of the nta ligand in two overlapping steps. The last

step (400–600 �C) is due to the loss of the remaining

organic fragments (mainly bpy). In view of the

overlapping processes which occur during the thermal

decomposition of [bpyH][VO(nta)(H2O)]H2O it is

difficult to suggest definite equations describing the

process. The residual mass at 650 �C (ca 19%) can be

assigned to the reduced, non-stoichiometric vanadium–

oxygen phases. Under experimental conditions (the

inert atmosphere, Ar) V(IV) can be reduced to V(III)

and/or V(II) by an elemental carbon resulting as the

product of the pyrolysis of the compound. The nitrogen

atom of nta or bpy constitutes another factor that can

participate in the inter- or/and intramolecular redox

processes. Reducing properties of a nitrogen-contain-

ing ligands were also observed during thermal trans-

formations of other coordination compounds (Ingier-

Stocka and Bogacz 1989; Jacewicz et al. 2014).

Solution studies

The potentiometric titration method has been applied

for studying the stability of [bpyH][VO(nta)(H2O)]H2O

and [phenH][VO(nta)(H2O)](H2O)0.5 in aqueous solu-

tions. The equilibrium model that has given the best fit

of the calculated data to the experimental ones is

presented in Table 5. The logarithm of the overall

equilibrium constants of the complex species (Table 5)

were refined by least-squares calculations using the

Hyperquad2008 (ver. 5.2.19) computer program (Gans

et al. 1996). The representative species distribution

diagram for [bpyH][VO(nta)(H2O)]H2O is displayed in

Fig. 5.

Due to the presence of an aqua ligand in the

coordination sphere of VO2? the competition of the

[VO(nta)(H2O)]- ion with the organic cation (bpyH? or

phenH?) for hydroxide takes place. The aqua complex is

stable to the pH of 5. At a higher pH range it undergoes a

hydrolysis and the resulting hydroxo complex species

([VO(nta)(OH)]2-) reach the highest concentration at

around pH 9.8. The ability of [VO(nta)(H2O)]- to

hydrolysis is a very important feature that has an impact

on the susceptibility and a rate of the oxidation of (IV) to

V(V) (Nishizawa et al. 1985). At the high concentration

of the [VO(nta)(OH)]2- ions the dinuclear species of the

[(VO)2(l2-O)(nta)2]
4- type are formed (Fig. 5). These

type of oxidovanadium(IV) coordination entities have

previously been reported in solid (Zhang et al. 2005).

Thus, the similar coordination mode of the VO2? cations

can be expected in solutions. The oxo-bridged dioxi-

dovanadium(IV) complexes ([(VO)2(l2-O)(nta)2]
4-)

exist at equilibrium with the mononuclear [VO(nta)

(OH)]2- ions in aqueous solutions at pH above 10. Thus,

physicochemical and biological properties of the nitrilo-

triacetate oxidovanadium(IV) ions are affected by the pH

of the system under study.

Table 4 Stacking interactions [Å, �]

R (I)���R (J) Cg���Cg a b dp

Cg (1)���Cg (1)iii 4.7663 (10) 0 45.05 -3.3672 (5)

Cg (1)���Cg (2)iii 3.7910 (9) 9.46 (7) 29.70 -3.5246 (5)

Cg (2)���Cg (1)iii 3.7909 (9) 9.46 (7) 21.61 -3.2928 (6)

Cg(1), Cg(2) indicates the centroids of six-membered aromatic rings (R) containing N11, N22 atoms respectively, a is a dihedral

angle between planes I and J, b is an angle between Cg(I) and Cg(J) vector and normal to plane I and dp is a perpendicular distance of

Cg(I) on ring J plane

Symmetry transformations as in Table 3
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The cytotoxicity of oxidovanadium(IV)

compounds in human osteoblast and osteosarcoma

cell lines

The cytotoxicity of the compounds

The concentration-dependent effects of investigated

compounds on the normal, hFOB (hFOB 1.10) and

human osteosarcoma cell line (MG-63) were tested at

the plasma membrane level (the LDH leakage) after

48 h of an incubation (Figs. 6, 7). The results were

referred to the aqueous soluble inorganic derivative of

bi-valent platinum, i.e. cisplatin (cis-Pt(NH3)2Cl2)

(Florea and Busselberg 2011; Prylutskyy et al. 2015).

Cisplatin is currently one of the most extensively used

chemotherapeutic drugs for the cancer treatment

(Leon et al. 2014a, b). In osteosarcoma cells cis-

Pt(NH3)2Cl2 induces a selective inhibition of DNA

synthesis and, as a consequence, a cell proliferation

and reproduction.

In the concentration range of 10–50 lM no

significant cytotoxic effects of the compounds on

the untransformed hFOB (hFOB 1.19) were

observed. The highest concentration of the com-

pounds (100–500 lM) triggers a decrease in the

viability of the hFOB 1.19 cells to about 20%. As

far as the human osteosarcoma cell line (MG-63) is

concerned, the concentration-dependent cytotoxic

effect of the compounds was observed. It is

interesting to note that both compounds exhibited

a stronger cytotoxicity than cisplatin used as a

positive control. The study has revealed that the

compounds, in the low concentration range

(10–50 lM), have a significant selectivity for malig-

nant cells. These results point to the fact that the

investigated compounds show promising properties

to be further investigated as possible antitumor

agents in this model of bone-related cells.

Table 5 Logarithms of equilibrium constants of complex species at 298.15 K (standard deviation values in parentheses)

No. Reaction (bpyH)

[VO(nta)(H2O)]

(phenH)

[VO(nta)(H2O)]

1 A ? H3O?
� AH? ? H2O

AH? denotes the 2,20-bipyridinium (bpyH?) or 1,10–phenanthrolinium (phenH?) cation

4.47 (0.03)a 5.00 (0.04)a

2 7.80 (0.06) 7.93 (0.07)

3 -19.94 (0.06) -19.91 (0.08)

a Literature data: the values of pKa of bpyH? and phenH? are 4.52 (Jakusch et al. 2002) and 4.93 (Duma and Hancock 1994),

respectively

Fig. 5 Species distribution curves of the VO(IV) species as a

function of pH calculated based on the equilibrium constants for

[bpyH][VO(nta)(H2O)] listed in Table 5
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The antiproliferative activity of the compounds

Many attempts have been taken to determine the

putative mechanisms of an action involved in the

antitumoral effects of the oxidovanadium(IV) com-

pounds (Rivadeneira et al. 2010; Leon et al.

2013, 2014a, 2015, 2016a, b; Ferrer et al. 2006). It

has been reported that these compounds, depending
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Fig. 6 The viability of the human osteoblast cell line (hFOB

1.10) detected by the LDH test after 48 h of an exposure to

investigated compounds and cisplatin (as a positive control).

Data are expressed as mean values ± SD from three experi-

ments. ***p\ 0.001 versus control
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Fig. 7 The viability of the human osteosarcoma cell line (MG-

63) assessed by the LDH test after 48 h of an exposure to

investigated compounds and cisplatin (as a positive control).

Data are expressed as mean values ± SD from three experi-

ments. **p\ 0.01; ***p\ 0.001 versus control

270 Biometals (2017) 30:261–275

123



on the cellular line, may promote the generation of

the reactive oxygen species (ROS) mainly in the

mitochondria (Leon et al. 2012a, 2014b; Rivadeneira

et al. 2009; Di Virgilio et al. 2011) leading to a

decrease of glutathione (GSH) concentration. GSH is

one of the mayor reducing agents responsible for

maintaining the cellular redox status through the

balance of the couple glutathione/glutathione disul-

phide (GSH/GSSG). The depletion of GSH concen-

tration alters the intracellular redox balance (GSH/

GSSG) on an account of the accumulation of GSSG

inside the cells. Furthermore, the oxidative stress

causes a dissipation of the mitochondria membrane

potential (MMP) that can lead the cells into apoptosis

and necrosis (Mayer and Oberbauer 2003). The

concentration-dependent (in the concentration range

of 1–100 lM) effect of the compounds on the two

human MG-63 and HOS osteosarcoma cell lines was

investigated by the measurement of the BrdU (5-

bromo-20-deoxyuridine) incorporation by actively

dividing cells after 48 h of culture in the presence

of different concentrations of compounds (Figs. 8, 9).

It has been found that all investigated compounds

induce a significant reduction of the BrdU incorpo-

ration into cellular DNA indicating a concentration-

dependent anti-proliferative effect. Importantly, the

cytotoxic effect of the compounds against cancer cell

line was already found at the concentrations which

are non-toxic for untransformed hFOB. Based on the

obtained results it has been found that [phenH]

[VO(nta)(H2O)](H2O)0.5 exhibit the most effective

anti-proliferative activity towards MG-63 and HOS

cell lines. It is interesting to note that its anti-

proliferative activity is significantly higher than that

found for cis-Pt(NH3)2Cl2. The high anti-prolifera-

tive activity of [phenH][VO(nta)(H2O)](H2O)0.5 can

be assigned to the intercalating properties of the phen

derivative that interacts more strongly with DNA

than the bpy derivative. A similar relationship in the

reactivity towards DNA has also been found for other
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Fig. 8 The inhibition of the human osteosarcoma cell (MG-63)

proliferation after an incubation with investigated compounds

assessed with the BrdU-test. Cells were incubated with

increasing concentrations of the tested compounds and cisplatin

(as a positive control) for 48 h. Data are expressed as mean

values ± SD from three experiments. ***p\ 0.001 versus

control
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phen and bpy metal coordination compounds (Yo-

doshi et al. 2007; Chakravarty 2006).

Conclusions

When the inorganic cations (NH4
?, La3?, Eu3?, Nd3?)

are present as the counter-ions, mononuclear [VO

(nta)(H2O)]- coordination units easily undergo a

dimerization via an oxide bridge. We have previously

reported that the use of the cation formed by protonation

of N-heterocyclic compound (i.e. 1,10–phenanthrolin-

ium cation, phenH?) enabled to obtain discrete

mononuclear [VO(nta)(H2O)]- coordination ions. This

finding has been confirmed in the present study for other

protonated N-heterocyclic compound, i.e. 2,20-bipyri-

dinium cation, [bpyH?]. The X-ray measurements have

revealed that [bpyH][VO(nta)(H2O)]H2O comprises

the discrete mononuclear [VO(nta)(H2O)]- coordina-

tion ions linked through O–H���O hydrogen bonds

formed between the inner coordination sphere of water

molecules and the oxygen atoms of the carboxylate

groups. IR spectra as well as thermal analysis have

confirmed the results obtained from the X-ray

measurements.

The potentiometric titration method has success-

fully been applied to assess the stability of the

complexes in aqueous solutions. The [VO(nta)(H2-

O)]- ion undergoes a hydrolysis. At a higher pH range

(above pH 10) the resulting hydroxo complexes form

the oxo-bridged dioxidovanadium(IV) species of the

[(VO)2(l2-O)(nta)2]4- type. Thus, the physicochem-

ical properties and biological activities of the com-

plexes depend on the pH of the investigated system.

Biological studies (the MTT and LDH tests) have

proven that [bpyH][VO(nta)(H2O)]H2O and [phenH]

[VO(nta)(H2O)](H2O)0.5 show promising antitumor

activity towards human osteosarcoma cell lines (MG-

63 and HOS). In the low concentration range they

exert a stronger cytotoxic effect on osteosarcoma cells

than in the untransformed human osteoblast cells.

[phenH][VO(nta)(H2O)](H2O)0.5 exhibit a higher

anti-proliferative activity towards MG-63 and HOS

than [bpyH][VO(nta)(H2O)]H2O and cis-Pt(NH3)2Cl2
(as a positive control). A significant selectivity of the

compounds under study for malignant cells suggest
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Fig. 9 The inhibition of the human osteosarcoma cell (HOS)

proliferation after an incubation with investigated compounds

assessed with the BrdU-test. Cells were incubated with

increasing concentrations of the tested compounds and cisplatin

(as a positive control) for 48 h. Data are expressed as mean

values ± SD from three experiments. ***p\ 0.001 versus

control
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that the [VO(nta)(H2O)]- containing compounds

constitute an important group of compounds which

are worth to consider as possible antitumor agents in

the osteosarcoma model of bone-related cells in

culture.
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