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Abstract: Planting resistant cultivars is the most effective tactic to manage the thrips-transmitted
tomato spotted wilt orthotospovirus (TSWV) in peanut plants. However, molecular mechanisms
conferring resistance to TSWV in resistant cultivars are unknown. In this study, transcriptomes of
TSWV-susceptible (SunOleic 97R) and field-resistant (Tifguard) peanut cultivars with and without
TSWV infection were assembled and differentially expressed genes (DEGs) were compared. There
were 4605 and 2579 significant DEGs in SunOleic 97R and Tifguard, respectively. Despite the lower
number of DEGs in Tifguard, an increased proportion of defense-related genes were upregulated in
Tifguard than in the susceptible cultivar. Examples included disease resistance (R) proteins, leucine-
rich repeats, stilbene synthase, dicer, and calmodulin. Pathway analysis revealed the increased
downregulation of genes associated with defense and photosynthesis in the susceptible cultivar
rather than in the resistant cultivar. These results suggest that essential physiological functions were
less perturbed in the resistant cultivar than in the susceptible cultivar and that the defense response
following TSWV infection was more robust in the resistant cultivar than in the susceptible cultivar.

Keywords: tomato spotted wilt orthotospovirus; field-resistant peanut cultivars; Sunoleic 97R;
Tifguard; differential gene expression

1. Introduction

Peanut (Arachis hypogaea L.) is an important crop for oil and protein production [1].
Spotted wilt disease caused by thrips-transmitted tomato spotted wilt orthotospovirus
(TSWV) severely affects peanut production in southeastern United States [2,3]. In Georgia
alone, spotted wilt disease causes an annual loss of over USD 10 million [4–6]. Tomato spotted
wilt orthotospovirus is the species type of the genus Orthotospovirus in the family Tospoviridae.
TSWV is an ambisense RNA virus that is exclusively transmitted in a persistent and
propagative fashion by the peanut-colonizing thrips species in the family Thripidae [7–9].
Tobacco thrips, Frankliniella fusca [Hinds], and western flower thrips, Frankliniella occidentalis
[Pergande], are the predominant vectors of TSWV in southeastern United States [5,10].

The use of resistant cultivars is one of the most effective tactics used for managing
the incidence of TSWV and reducing the impact of spotted wilt in peanut production [2,3].
Intensive breeding programs since the 1990s in Georgia and Florida have led to the de-
velopment of three generations of resistant cultivars with incremental field resistance to
TSWV in each generation [3,11,12]. Under TSWV pressure, field-resistant cultivars display
less severe symptoms and produce higher yields when compared with TSWV-susceptible
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cultivars (Figure 1) [3]. Despite the extensive usage of TSWV field-resistant cultivars over
the past two decades, information on host-virus interactions at both macro and micro levels
is limited, and the mechanism of resistance is unknown.
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Figure 1. TSVW-susceptible peanut cultivar (SunOleic 97R) on the left and field-resistant peanut cultivar (Tifguard) on
the right. Both cultivars were planted at the same time. TSWV infection established naturally in the selected field. As
evident, there was increased yellowing and stunting in the TSWV-susceptible cultivar in comparison with the field-resistant
cultivar. Foliar symptoms such as chlorotic and ring spots were also more severe in the TSWV-susceptible cultivar than in
the field-resistant cultivar.

In contrast to peanut, in other crops, genes conferring resistance to TSWV have been
identified and the resistance mechanism has been characterized. For instance, dominant
genes Sw-5 and Tsw in tomato (Solanum lycopersicon L.) and pepper (Capsicum annuum
L.), respectively, have been known to confer resistance to TSWV [13–16]. Upon TSWV
inoculation, these genes induced a hypersensitive reaction in TSWV-resistant tomato and
pepper cultivars [16,17]. The hypersensitive reaction is characterized by localized cell
death, suppressed virus replication, and a lack of systemic movement of the virus [18].

Gene(s) conferring resistance to TSWV have not been identified in field-resistant
peanut cultivars, but several quantitative trait loci (QTL) believed to be involved in field
resistance have been mapped [19–23]. Unlike in tomato and pepper, TSWV-resistant peanut
cultivars do not produce a hypersensitive response upon inoculation. An earlier study
demonstrated that thrips-mediated and mechanical inoculation of TSWV field-resistant
and susceptible cultivars produced typical TSWV symptoms [24,25]. Those studies also
documented the reduced TSWV accumulation in some resistant cultivars when compared
with the susceptible cultivar. The underlying molecular basis for reduced accumulation
of TSWV in field-resistant peanut cultivars remains unknown. Earlier studies have doc-
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umented molecular changes induced by bacterial and fungal infections in peanut plants
at the transcript levels [26–28]. Moreover, a repertoire of genes in peanut plants that were
induced by various abiotic factors was identified [29–31]. Recently, affordable short-read
sequencing technology is being extensively used for elucidating interactions between plant
hosts and pathogens at genomic and transcriptomic levels. Studies have widely used RNA
sequencing to examine the expression levels of genes following pathogen infection and
to characterize genes conferring resistance to pathogens [26,27,30]. In addition, genome
assemblies of the peanut sub-genomes, derived from two diploid ancestors (Arachis dura-
nensis (Karpov and W. C. Gregory) and Arachis ipaensis (Karpov and W. C. Gregory)) [32],
and two allotetraploid genomes from a United States-based cultivar [33] and a Chinese-
based cultivar [34], have also become available. These genomic resources are critical to
annotating the transcriptional changes in peanut cultivars following TSWV infection.

In plants, the defense against pathogens such as TSWV could be constitutive and/or
induced [35–37]. The main objective of this study was to compare transcriptomes of
TSWV-field-resistant and TSWV-susceptible peanut cultivars with and without TSWV
infection. Transcriptome analysis of peanut cultivars infected with TSWV would provide
insights into virus-induced changes in plant physiology and identify differentially ex-
pressed genes that encode proteins relevant to virus resistance. For this purpose, leaf tissue
from greenhouse-grown TSWV-susceptible cultivar SunOleic 97R [38] and TSWV-resistant
cultivar Tifguard [39] was obtained, subjected to RNA sequencing, and transcriptomes
were assembled using a reference genome.

2. Materials and Methods
2.1. Maintenance of Non-Infected and TSWV-Infected Peanut Plants

Peanut cultivars SunOleic 97R and Tifguard were used for this study. Non-infected
and TSWV-infected plants of each cultivar were generated as per an already established
protocol [24]. Seeds from each cultivar were pre-germinated in moistened paper towels and
incubated in a growth chamber at 25–30 ◦C, 40–50% relative humidity (RH), and L14:D10h
photoperiod. The peanut seeds were then transplanted into 10cm wide pots (Hummert
International, St. Louis, MO, USA) filled with a commercially available potting mix (LT5
Sunshine mix, Sun Gro Horticulture Industries, Bellevue, WA, USA). The plants were
housed in thrips-proof cages (47.5 cm3) (Megaview Science Co., Taichung, Taiwan, CHN)
from 25 to 30 ◦C, 80 to 90% RH, and a photoperiod of L14:D10 h in the greenhouse.

Peanut plants of the cultivar Georgia Green infected with TSWV were initially col-
lected from the Belflower Farm, USDA, Tifton, GA, in 2009. Plants were maintained in a
greenhouse under conditions as described above. TSWV-infected leaflets were enclosed
in a Plexiglas® cage (11.43 × 8.89 × 1.77 cm3) and non-viruliferous F. fusca were released.
Following the emergence of the next generation of potentially viruliferous adults, and up
to two-day-old female adults, were transferred to a 1.5 mL microcentrifuge tube (Fisher,
Pittsburgh, PA, USA). Potentially viruliferous thrips (10 per plant) were subsequently
released on one-week-old SunOleic 97R and Tifguard plants. Each plant with thrips was
enclosed in a Mylar film (Grafix, Cleveland, PA, USA) cage with a copper mesh top. Plants
were maintained in the greenhouse for three weeks. Non-infected and TSWV-infected
plants of each cultivar were tested with ImmunoStrips® (Agdia, Elkhart, IN, USA) to assess
TSWV-infection status or lack thereof.

2.2. Total RNA Extraction, Library Preparation, and Sequencing

Total RNA was extracted from leaf samples of about four-week-old TSWV-infected
and non-infected SunOleic 97R and Tifguard plants (four treatments). For each replicate,
leaf samples were pooled from three plants and there were three replicates per treatment.
Thus, a total of 12 samples were prepared (four treatments × three replicates). Total
RNA was extracted using an RNeasy plant mini kit following the manufacturer’s protocol
(Qiagen, Valencia, CA, USA). Subsequently, cDNA libraries were constructed at the Georgia
Genomic Facility at the University of Georgia. Prior to library construction, an Agilent 2100
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Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA) was used to evaluate the RNA
quality and concentration in the samples. Illumina sequencing libraries were constructed
using TruSeq RNA sample preparation kits. Briefly, mRNA was selected, fragmented,
and first-strand cDNA was synthesized using random primers and reverse transcriptase.
Subsequently, Polymerase I and RNase H were used to make the second-strand cDNA. An
Illumina TruSeqLT adapter was ligated to the DNA fragments, and PCR amplification was
performed for a minimal number of cycles with standard Illumina primers to produce the
final cDNA libraries. Twelve libraries were constructed and sequenced in two lanes (six
libraries in each lane) of the Illumina HiSeq 2000 platform using v3 paired-end 100 cycle
sequencing settings.

2.3. Transcriptome Assembly

Prior to transcriptome assembly, the read quality was checked with fastQC v0.11.8 [40].
Adapter sequences were removed from the raw reads, and the quality of the reads was
determined using the default settings in Trimmomatic v0.39 [41]. Subsequently, reads from
TSWV-infected and non-infected SunOleic 97R and Tifguard samples were independently
aligned to a peanut reference genome [33] using a STAR v2.7.2 aligner [42] with default pa-
rameters. Trinity v2.10.0 [43] software was used to perform the reference-guided assembly
using the parameters “–genome_guided_max_intron 10,000 and –min_kmer_cov 3” follow-
ing the Bertioli, et al. protocol [33]. Over assembly issues were addressed with sra2genes
v4 (http://arthropods.eugenes.org/EvidentialGene/other/sra2genes_testdrive/, accessed
on 15 March 2021) with the default settings. The first step in this process was the removal
of all duplicated sequences using fastanrdb from Exonerate [44]. The removal of poten-
tially chimeric or misassembled transcripts was carried out using the CD-HIT-EST in the
sra2genes pipeline [45]. The final filtering steps, aimed to separate transcripts that were
isoforms, were accomplished via sequence clustering with a reciprocal BLAST search [46].
The post-assembly processing with sra2genes resolved the issue of read ambiguity by
cross-referencing the genome for potential paralogs and homeologs [47]. The completeness
of core genes in the assembly was assessed with BUSCO v4.0.6 against the Fabales Odb10
lineage [48]. The assembly pipeline provides an overview of the steps taken to process the
raw read files (Figure S1).

2.4. Differential Expression Profiling

Following the transcriptome assembly, reads from each replicate were aligned to the
assembled contigs and scaffolds using Bowtie2 v2.4.1 [49], and the relative abundance
of each contig was estimated using the RSEM program [50,51]. Subsequently, multiple
pairwise comparisons were carried out for differential expression analysis with DESeq2
v3.12 [52]. To assess the significance of gene expression differences, transcripts with a false
discovery rate (FDR) of ≤0.05, and at least a 16-fold change (FC) in expression, were used
as thresholds. The comparison of correlations was carried out using the paired.r func-
tion (https://www.rdocumentation.org/packages/psych/versions/2.1.3/topics/paired.r,
accessed on 7 April 2021), which used a correlated t-test for each comparison.

2.5. Functional Annotation

Genes were annotated by comparison with the National Center for Biotechnology
Information non-redundant (NCBI nr) database using the Blastx algorithm [46,53,54] with
an E-value cutoff of 1.0 × 10−5 and a high-scoring segment pair (HSP) length cutoff of
33. The characterized genes were assigned Gene Ontology (GO) terms under three main
categories: biological process, molecular function, and cellular component using the GO
database through Blast2GO [55]. GO terms (functional annotations) were assigned to
genes with an E-value of 1.0 × 10−6. Subsequently, the Kyoto Encyclopedia of Genes and
Genomes (KEGG) [56,57] analysis using the default parameters was performed to identify
the biochemical pathways in DEGs. All annotations were performed using OmicsBox
v1.4.11 [58,59]. Visualization of GO terms was performed using WEGO 2.0 [60,61] and a

http://arthropods.eugenes.org/EvidentialGene/other/sra2genes_testdrive/
https://www.rdocumentation.org/packages/psych/versions/2.1.3/topics/paired.r
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custom R script. For gene enrichment comparisons, the enrichment ratio was calculated us-
ing the log2 ratio of DEGs (upregulated or downregulated) within the total/non-significant
genes within the total.

3. Results
3.1. Transcriptome Assembly

The raw reads from both TSWV-infected and non-infected plants were used in the
reference-guided transcriptome assembly. The total number of raw reads were 217,620,345
and 213,498,141 from SunOleic 97R and Tifguard, respectively, regardless of infection
status. Filtering of the raw reads with Trimmomatic yielded 184,695,923 and 180,476,999
high quality paired-end reads from SunOleic 97R and Tifguard, respectively. All samples
had >90% of the reads mapped to the allotetraploid genome (Table 1). Trinity, which has
been shown to be effective for polyploid de novo assemblies [62], assembled these reads
into 397,388 contigs with an average length of 957.745 bp. Filtering of the assembly with
sra2genes reduced the assembly to 128,045 contigs with an average length of 1348.61 bp.
There were 157,016 gene models for the A. hypogaea (peanut) genome under the NCBI
GenBank assembly (GCF_003086295.2), with an average length of 1565.80 bp. The total
completeness was 4070 (76%), which included 1613 (30%) single-copy and 2457 (46%)
duplicated orthologs (Figure S2).

Table 1. Percentage of reads mapped across all TSWV-infected and non-infected samples from
TSWV-susceptible SunOleic 97R and TSWV-field-resistant Tifguard.

Sample ID Number of
Input Reads

Number of
Uniquely

Mapped Reads

Number of
Multiply

Mapped Reads

Total Percentage
Mapped to

Genome

Non-inf_Sun_5 58,031,848 33,669,316 22,372,430 96.57%
Non-inf_Sun_6 74,263,902 43,459,049 28,777,489 97.27%
Non-inf_Sun_7 73,146,084 43,046,555 28,102,807 97.27%
Non-inf_Tif_1 43,803,852 18,763,671 21,961,370 92.97%
Non-inf_Tif_4 56,785,766 33,920,234 21,250,970 97.16%
Non-inf_Tif_5 56,310,766 33,079,065 21,446,640 96.83%

Inf_Sun_4 53,110,472 29,983,015 20,227,457 94.54%
Inf_Sun_5 54,980,738 30,699,102 20,790,953 93.65%
Inf_Sun_6 55,858,802 32,665,606 20,585,822 95.33%
Inf_Tif_4 76,191,856 43,986,326 27,785,091 94.20%
Inf_Tif_5 64,818,446 37,852,846 23,687,365 94.94%
Inf_Tif_6 63,043,312 37,830,009 22,014,986 94.93%

3.2. Quantitation of Differentially Expressed Genes

Using RNA-Seq by Expectation-Maximization (RSEM) with the built-in Bowtie-2
package, an average of 75.87% of the reads for each replicate were mapped back to the
assembled contigs. Differential expression analysis was conducted on the SunOleic 97R
and Tifguard cultivars separately. The fragment per kilobase of transcript per million
mapped reads (FPKM) values for the normalized samples aligned to the transcriptome
showed comparable density across all of the samples (Figure S3). The total number of
DEGs for the SunOleic 97R cultivar was 4605 (3323 upregulated and 1282 downregulated
in TSWV-infected versus non-infected samples). The total number of DEGs for the Tifguard
cultivar was 2579 (2223 upregulated and 356 downregulated in TSWV-infected versus
non-infected samples). Clustering of the samples through principal component analysis
(PCA) showed that the samples from both cultivars were separated by TSWV infection
(Figure S4A,E). One sample, Non-inf_Tif_1, was removed at this stage due to reduced
quality (Figure S3) and unexpected clustering during the principal component analysis
(Figure S4F). Additional PCAs were performed on the SunOleic 97R as well, by selectively
removing non-infected samples to check for alterations in clustering (Figure S4B–D). The
total number of DEGs was increased with the exclusion of the reduced quality Tifguard
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sample, whereas the SunOleic 97R showed stability in total DEGs with the selective removal
of samples (Table S1). To check the relatedness between all of the samples per cultivar,
sample-to-sample distances were computed (Figure S5A,B). Samples of TSWV-infected
SunOleic 97R showed a high number of genes (4605) that were differentially expressed
compared with the samples from non-infected plants. SunOleic 97R DEG results (Figure 2
and Figure S6) revealed more genes over the log2 FC ≥ 4 compared with Tifguard (Figure 3
and Figure S7).
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3.3. Functional Annotation of Genes after TSWV Infection

To determine the functional classification of genes, annotation with Gene Ontology
(GO) terms was performed. For SunOleic 97R, a total of 2700 upregulated and 998 down-
regulated genes were annotated. There were 25,039 non-significant genes included in the
analysis to check the DEGs against the background for significant enrichment. For the
Tifguard cultivar, a total of 1889 upregulated and 289 downregulated genes were annotated.
There were 14,306 non-significant genes included in the analysis.

Within the GO annotations, significantly enriched GO terms down to level 3 terms
were chosen for presentation (Figures S8 and S9). Two lists of significantly enriched GO
terms across all levels (1–6) are included in Tables S2 and S3. Across all significant GO terms
in the SunOleic 97R cultivar, there were 35,783 upregulated and 14,168 downregulated
DEGs, respectively. Across all significant GO terms in the Tifguard cultivar, there were
23,515 upregulated and 3236 downregulated DEGs, respectively.

To understand the biological aspects of TSWV infection, Biological Process GO terms
were investigated further. There were significantly more enriched GO terms overall for
SunOleic 97R than Tifguard. The largest clusters of upregulated DEGs, with the highest
significant enrichment in SunOleic 97R, were found mainly within the following categories:
primary metabolic processes, organic substance metabolic processes, nitrogen compound
metabolic processes, metabolic processes, cellular processes, and cellular metabolic pro-
cesses (Figure 4). The largest clusters of upregulated DEGs, with the highest significant
enrichment in Tifguard, were found mainly within the following categories: cellular pro-
cesses and cellular metabolic processes (Figure 5). Upregulated DEGs with slightly lower
significance were found in the following categories: primary metabolic processes, organic
substance metabolic processes, nitrogen compound metabolic processes, and metabolic
processes (Figure 5).
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3.4. Comparisons of DEGs between Cultivars

To identify the transcriptional changes in each cultivar relating to TSWV infection,
the list of DEGs between SunOleic 97R and Tifguard were compared. The total number
of DEGs present in both cultivars (n = 8544) was investigated. There were 3902 and 2630
DEGs exclusive to SunOleic 97R and Tifguard, respectively, and 23.5% (2012/8544) of the
DEGs were shared between the two cultivars (Figure 6A). The DEGs in both cultivars were
also checked for the independent and shared directionality of regulation. With at least a
16-fold change, the total number of DEGs expressed in the same direction between both
cultivars was found to be 1987; whereas 25 DEGs were found to be regulated in different
directions between the two cultivars (Figure 6B). The top significant genes from Tifguard in
the DEGs comparison were identified as α-dioxygenase 1 and another as stilbene synthase
3-like (Table S4).

The DEGs were grouped into three major categories: defense, phytohormones, and
photosynthesis (Table 2). These categories were chosen based on studies referenced in
Table 2. Overall, the upregulation of defense-related genes was numerically higher in the
TSWV-susceptible cultivar SunOleic 97R than in the TSWV-field-resistant cultivar Tifguard.
Upregulated defense-related DEGs were higher in SunOleic 97R in 45% and higher in
Tifguard in 50% of the 20 examined categories. The upregulated defense-related DEGs
were the same in both cultivars in 5% of the 20 examined categories. Examples of DEGs
upregulated in SunOleic 97R include salicylic acid (SA), leucine-rich repeats (LRRs), lectins,
MYB, P450s, serine/threonine protein kinases, and WRKY transcription factors. Examples
of DEGs upregulated in Tifguard include dicer, heat-shock protein, mitogen-activated
protein kinase, calmodulin, and stilbenes. Despite the numerical increase in defense-related
DEGs in SunOleic 97R versus Tifguard, the proportion of defense-related DEGs in relation
to the total DEGs was 38% higher in Tifguard than in SunOleic 97R. In all but one category,
more defense-related DEGs were downregulated in SunOleic 97R in comparison with
Tifguard.
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Table 2. Counts of defense-, phytohormones-, and photosynthesis-related significant differentially expressed genes above
the |log2FC| > 4 cutoff for TSWV-susceptible and field-resistant cultivars in response to TSWV infection.

Gene Description SunOleic
Upregulated

SunOleic
Downregulated

Tifguard
Upregulated

Tifguard
Downregulated References

Relating to Defense
Argonaute 11 0 10 0 [63]

MATH domain 3 0 4 0 [64]
Dicer 12 0 16 0 [65]

Heat shock protein 3 1 6 0 [66]
Lectin 89 7 53 3 [67]

Leucine zipper 8 0 2 0 [68]
Mitogen-activated protein kinase 1 1 5 1 [69]

MYB 41 11 19 3 [70]
P450 36 16 17 4 [71]

PAMP 1 0 1 0 [72]
Disease resistance (R) protein 38 8 47 4 [73]

WRKY transcription factor 59 2 40 1 [74]
LRR 31 19 40 3 [75]

Serine/threonine 149 37 105 6 [76]
Salicylic acid 5 0 0 0 [77]
Calmodulin 28 1 37 0 [78]

TMV resistance protein N 76 4 86 2 [79,80]
Stilbene synthase 15 1 38 0 [81]

Serine Carboxypeptidase 17 4 9 1 [82]
Alpha-Dioxygenase 0 1 1 0 [83]

Total 623 113 536 28 NA
Relating to Phytohormones

Auxin 10 4 2 2 [84]
Gibberellin 3 6 1 1 [85]
Cytokinin 3 0 2 0 [84]

Abscisic acid 10 2 3 0 [84]
Ethylene 24 0 7 1 [84]

Brassinosteroid 0 0 2 0 [86]
Salicylic acid 5 0 0 0 [84]

ABC transporter 39 8 39 1 [87]
Total 94 20 56 5 NA

Relating to Photosynthesis
Chloroplastic 84 128 44 39 NA

Protochlorophyllide 0 3 0 1 [76]
Photosystem 1 6 0 6 [88]

NADP-dependent malic enzyme 1 1 1 0 [89]
Total 86 132 * 45 42 * NA

* Genes counted within multiple categories. Unclassified genes were included to compare differences in genes relating to the following
categories: defense, phytohormones, and photosynthesis.
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There was increased upregulation of phytohormone-related DEGs in SunOleic 97R (n
= 94) compared with Tifguard (n = 56). The opposite trend was found for photosynthesis/
chloroplast-related DEGs, with the majority being downregulated in SunOleic 97R (n =
132) rather than in Tifguard (n = 42).

DEGs pertaining to defense, phytohormones, and photosynthesis in relation to TSWV
infection were used to investigate the correlation of directionality and magnitude of gene
regulation between the two cultivars (Figure 7). Defense-related DEGs showed a Pearson’s
correlation coefficient of R2 = 0.69 between the two cultivars. The correlation coefficients of
phytohormone- and photosynthesis-related DEGs were R2 = 0.82 and R2 = 0.62, respectively,
between the two cultivars. The correlation coefficient of directionality for all DEGs was
R2 = 0.78 (Figure S10). A correlation comparison between defense-related genes and the
remaining uncategorized genes was statistically significant (p < 0.001). There was also
statistical significance (p < 0.001) in the correlation comparison between the photosynthesis
and uncategorized genes.
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4. Discussion

This study examined global changes induced by TSWV infection in a TSWV-susceptible
and a field-resistant cultivar at the transcript level, with the goal of gaining insights into
molecular mechanisms underlying TSWV resistance. In this study, the cultivar SunOleic
97R, known for its high oleic acid level and its susceptibility to TSWV, was included [38]. In
addition, Tifguard, a hybrid between the TSWV moderately field-resistant cultivar (C-99R)
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and the nematode-resistant but TSWV-susceptible cultivar (COAN), was included as the
TSWV field-resistant cultivar [39]. Differential expression analysis between SunOleic 97R
and Tifguard revealed that fewer DEGs were identified in Tifguard when compared with
SunOleic 97R, suggesting that TSWV infection resulted in reduced physiological pertur-
bance in Tifguard when compared with SunOleic 97R. In another study, it was observed
that the number of TSWV-N gene copies was less in Tifguard when compared with another
susceptible peanut cultivar [24]. Thus, fewer physiological and/or gene expression changes
in Tifguard observed in this study could be associated with lower TSWV loads in Tifguard
when compared with SunOleic 97R. Although Tifguard had fewer DEGs than SunOleic 97R,
the proportion of plant defense-related genes in relation to the total differentially expressed
genes was higher overall in Tifguard when compared with SunOleic 97R. Differential
expression analysis identified a greater number of defense proteins in Tifguard than in
SunOleic 97R in 10 over 20 categories. The upregulated DEGs in SunOleic 97R were only
1.2 times the number in Tifguard, but the number of downregulated DEGs in SunOleic 97R
were four times the number in Tifguard. These results suggested that plant defense against
viruses was more robust in the resistant cultivar.

Constitutive plant defense proteins, including multiple LRRs that are active against
a broad range of pathogens including viruses, were higher in Tifguard than in SunOleic
97R [67,68]. Similarly, the RNAi-associated proteins that play a vital role in limiting
virus replication and/or spread in plants were more upregulated in Tifguard than in
SunOleic 97R [65]. More DEGs associated with heat-shock protein and the calcium signaling
molecule calmodulin, known to be associated with resistance to invading pathogens such
as viruses, were upregulated in Tifguard rather than in SunOleic 97R. Moreover, DEGs
of the nucleocapsid N gene from tobacco, Nicotiana glutinosa L., that imparts resistance
to several tobamoviruses including the tobacco mosaic virus (TMV), were upregulated
in the resistant rather than the susceptible cultivar [90,91]. Following TMV infection,
the TMV nucleocapsid N protein induced a hypersensitive reaction and restricted virus
replication and movement [79]. In this study, we identified several homologs of TMV
N protein upregulated in TSWV-infected Tifguard. In addition to the TMV N protein,
we also observed the upregulation of several disease resistance (R) proteins that led to a
hypersensitive reaction in TSWV-infected Tifguard. TSWV infection is known to induce a
hypersensitive reaction in pepper and tomato [13–16]. However, in our previous studies,
we observed TSWV-induced systemic infection in TSWV-resistant peanut cultivars instead
of local cell death [24,25]. The upregulation of several hypersensitive reaction-inducing
disease-resistant proteins suggests that these resistant proteins could play some other role
in the defense against TSWV in peanut plants. One of the several known cellular functions
of lectins is that they facilitate plant defense by recognizing pathogens, and they were
more upregulated in the susceptible than the resistant cultivar [92]. DEGs associated with
induced systemic resistance pathways, such as salicylic acid, were only present and/or
upregulated in the susceptible cultivar, and not the resistant cultivar. In tomato, the disease-
resistant R gene Mi is known to confer resistance against nematodes and potato aphids [93].
Homologs of this gene were upregulated in SunOleic 97R rather than in Tifguard. Apart
from these differences in upregulated DEGs, overall, there was a significant downregulation
of defense-related DEGs in the susceptible rather than the resistant cultivar, reiterating that
the defense system against pathogens such as viruses is more robust and less impaired in
the field-resistant cultivar, Tifguard, than in the susceptible cultivar, SunOleic 97R.

The downregulation of defense pathways leading to the production of proteins such as
LRR and serine/threonine in SunOleic 97R could be attributed to, either differences in the
suppression of signaling molecules or the inhibition of transcription factors associated with
TSWV infection [94]. Impaired defense responses could, in turn, directly aid in sustained
TSWV replication in SunOleic 97R rather than in the TSWV field-resistant cultivar, Tifguard.
As well as DEGs associated with defense responses, DEGs associated with phytohormones
and photosynthesis were significantly downregulated in the susceptible cultivar SunOleic
97R as opposed to the resistant cultivar Tifguard. These results suggest that, in addition to
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having a robust defense system, the essential functions associated with plant growth and
photosynthesis were less impacted due to TSWV infection in the resistant cultivar rather
than in the susceptible cultivar. These results could, in part, explain the severely altered
plant phenotype, characterized by overall stunting, foliar ring spots, and yellowing, often
associated with susceptible cultivars.

TSWV-resistant peanut cultivars typically exhibit field resistance to TSWV character-
ized by less severe TSWV-specific symptoms despite systemic infection and reduced yield
losses than in the susceptible cultivars. Under field conditions, these host-virus interactions
could also be influenced by abiotic factors. In plants, UV light has been shown to induce
the transcription of pathogenesis-related proteins and enhance pathogen resistance [95,96].
Such a phenomenon could be true in TSWV-resistant peanut cultivars as well. In this
study changes induced by TSWV infection at the transcriptional level were evaluated in
greenhouse-grown SunOleic 97R and Tifguard cultivars, as it is difficult to control the
TSWV inoculation process by thrips under field conditions, such as the number of thrips
released per plant, thrips release timing in relation to plant age, and thrips confinement
on plants. In TSWV-infected SunOleic 97R, this study identified homologs of photorecep-
tors, such as the blue-light photoreceptor PHR2 and phototropins that could regulate gene
expression associated with plant development in response to light stimuli [97]. Greenhouse-
grown plants would have had more consistent lighting compared with field-grown plants,
which in turn, could differentially influence transcriptomic profiles and should be explored
in future studies. Temperature is also known to substantially influence the host phenotype
in peanut as well [98]. The upregulation of DEGs such as the heat-shock protein in Tifguard
in this study suggests that enhanced heat tolerance could be associated with field resistance
to TSWV.

TSWV-resistant peanut cultivars have been pivotal to reducing yield losses in south-
eastern United States, and more than 90% of the production acreage is planted with
TSWV-resistant peanut cultivars. The intensive breeding programs operating in this region
have primarily been responsible for the release of several such cultivars for the past two
decades. However, the genomic advancements in TSWV resistance in peanut plants is
relatively recent. Approximately 48 quantitative trait loci associated with TSWV resistance
have recently been mapped and were used to explain up to 30% of the phenotypic variation
in cultivars following TSWV infection [21]. This reiterated that TSWV resistance in peanut
might not be similar to the single dominant gene-conferred TSWV resistance as in the case
of solanaceous vegetables. Moreover, this study lays the foundation for providing insights
into such molecular mechanisms that confer resistance to TSWV in peanut plants. This
study used a single resistant cultivar, and the mechanisms operating in several cultivars
should not be generalized. However, all known TSWV resistance in peanut cultivars in
the United States originated from a single source–C-99R. Therefore, it is likely that there
is some consistency in differential gene expression and molecular mechanisms involved
in conferring TSWV resistance across TSWV-field-resistant cultivars. Nevertheless, this
speculation stands to be validated.

5. Conclusions

TSWV-resistant cultivars have been widely used across southeastern United States
and are pivotal for peanut production. Despite their prevalent usage, knowledge on host-
virus interactions at a micro level and the molecular mechanisms involved in conferring
resistance remain unknown. This study helps to fill that knowledge gap. Overall, based on
the number of DEGs upregulated by TSWV infection in SunOleic 97R and Tifguard, this
study suggests that TSWV infection potentially induces more biochemical changes in the
susceptible cultivar than in the resistant cultivar. This study provides insights into how
TSWV infection induces specific changes in TSWV-susceptible and field-resistant peanut
cultivars at transcript levels. The information generated in this study will serve as an
important resource for further investigation on the molecular factors underlying TSWV
resistance in TSWV-resistant peanut cultivars.
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