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Abstract

To measure the strength of natural selection that acts upon single nucleotide variants (SNVs) in a set of human genes, we
calculate the ratio between nonsynonymous SNVs (nsSNVs) per nonsynonymous site and synonymous SNVs (sSNVs) per
synonymous site. We transform this ratio with a respective factor f that corrects for the bias of synonymous sites towards
transitions in the genetic code and different mutation rates for transitions and transversions. This method approximates the
relative density of nsSNVs (rdnsv) in comparison with the neutral expectation as inferred from the density of sSNVs. Using
SNVs from a diploid genome and 200 exomes, we apply our method to immune system genes (ISGs), nervous system genes
(NSGs), randomly sampled genes (RSGs), and gene ontology annotated genes. The estimate of rdnsv in an individual exome
is around 20% for NSGs and 30–40% for ISGs and RSGs. This smaller rdnsv of NSGs indicates overall stronger purifying
selection. To quantify the relative shift of nsSNVs towards rare variants, we next fit a linear regression model to the estimates
of rdnsv over different SNV allele frequency bins. The obtained regression models show a negative slope for NSGs, ISGs and
RSGs, supporting an influence of purifying selection on the frequency spectrum of segregating nsSNVs. The y-intercept of
the model predicts rdnsv for an allele frequency close to 0. This parameter can be interpreted as the proportion of
nonsynonymous sites where mutations are tolerated to segregate with an allele frequency notably greater than 0 in the
population, given the performed normalization of the observed nsSNV to sSNV ratio. A smaller y-intercept is displayed by
NSGs, indicating more nonsynonymous sites under strong negative selection. This predicts more monogenically inherited or
de-novo mutation diseases that affect the nervous system.
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Introduction

A thorough understanding of sequence variation of human

genes is important to understand the molecular basis of human

disease. Many earlier studies had analyzed single nucleotide

variants (SNVs) in coding regions of human genes and demon-

strated a signature of purifying selection on nonsynonymous SNVs

(nsSNVs) by comparing their frequencies to synonymous SNVs

(sSNVs) [1–9]. Since then, the size of SNV datasets has increased

tremendously [10,11]. In the present manuscript, we quantify the

level of nsSNVs in different sets of genes as normalized by the

levels of sSNVs, using coding SNVs from two published whole

exome datasets [12,13]. We specifically focus on genes with

molecular roles in the immune and nervous system. On the

phenotype level, functional variants in these genes are most likely

to impact immune and nervous system traits. Insights into the

patterns of genetic variation in these genes therefore sheds light on

the genetic architecture of immune and nervous system pheno-

types.

Both the immune and the nervous system consist of a large

number of specialized cell types that function in strong interaction

with the environment. Comparative genomic studies show that

both human immune and nervous system genes are outliers in

terms of their sequence evolution. While immune system genes are

generally fast evolving genes [14,15] in mammals, nervous system

genes are highly conserved, but show accelerated evolution in

hominids [15,16]. The phylogenetic distribution of the respective

genes shows major genetic innovations in early vertebrates.

Nervous system gene families typically exist in invertebrates [17],

but overproportionally expanded in early vertebrates [18–20]. In

contrast, gene families underlying innate immunity arose before

the vertebrate-invertebrate split [21], whereas families underlying

adaptive immunity arose after this split [22]. With respect to more

recent human evolution, immune and nervous system genes are

known to display the least linkage disequilibrium and the highest

recombination rates in the human genome [23–25].

Taken together, these earlier results indicate that both human

immune and nervous system genes are particularly exposed to
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various evolutionary forces. Accordingly, it is interesting to

specifically ask how immune and nervous system genes compare

to each other and to other genes with respect to their levels of

functional variation in the human genome. To address this question

we obtain two sets of nervous system genes (NSGs) and immune

system genes (ISGs) based on expression data [26] and keyword

database search [27].We further compare these broadly defined sets

of NSGs and ISGs with randomly sampled genes (RSGs) and with

gene ontology (GO) annotated genes. To quantify the level of single

nucleotide variation in a set of genes, we define the relative density of

nonsynonymous variants (rdnsv) as compared with the neutral

expectation that is inferred from the density of synonymous variants.

We find that rdnsv varies among gene sets as well as among individual

exomes and over SNVallele frequencies. Based on the on the change

of rdnsv over the allele frequency of underlying SNVs, we predict

greater proportions of strongly deleterious sites for NSGs, which can

explain more monogenic phenotype manifestations for the nervous

system as well as a greater importance of de-novo mutations. Our

analysis further supports widespread purifying selection on segre-

gating nsSNVs for nearly all groups of genes, including both NSGs

and ISGs. Thus, mildly deleterious nsSNVs are likely to play

a causative role in both groups of disease phenotypes. However,

certain sets of ISGs display a greater rdnsv estimate than the genomic

background, which supports the idea of an enhanced influence of

positive selection on their frequency spectrum of functional nsSNVs

andputative disease variants.This observation can explain apossible

presence of more common disease variants for the immune system.

Methods

Analysis of Coding Sequence Variation
If natural selection would equally act on nonsynonymous as on

synonymous mutations, the value of rdnsv for a set of genes were

expected to equal 1. Vice versa, rdnsv were expected to equal 0, if

selection would not tolerate any nonsynonymous mutations to

segregate in the population at all. In reality, for most sets of gene

the value of rdnsv is likely to be between 0 and 1 and expected to be

shaped by natural selection in two ways: 1) by the proportion of

nsSites where any nsSNV with a frequency notably greater than

0 are not tolerated to segregate, and 2) by the effect of weak

selection on segregating nsSNVs at any of the remaining nsSites.

In the following we describe our approach to disentangle these two

factors based on an approximate estimate of rdnsv for a set of

human genes and chromosomes.

In order to derive a simple estimate of rdnsv, we view

synonymous sites (sSites) and nonsynonymous sites (nsSites) as

mutational opportunities. We calculate the number sSites and

nsSites in a set of genes as the sum over all possible single basepair

changes in the reference sequence based on the standard genetic

code. The total number of sites in a coding sequence is the sum

over all its sSites and nsSites. We use the coding regions from the

human genome assembly as reference sequence for each gene.

Nucleotides at partially degenerate sites with two synonymous and

one nonsynonymous mutational opportunities are counted as 2/3

sSite and 1/3 nsSite, whereas nucleotides with one synonymous

and two nonsynonymous mutational opportunities are counted as

1/3 sSite and 2/3 nsSite. Nucleotides at fourfold degenerate

positions are counted as 3/3 sSite, whereas nucleotides at non-

degenerate positions are counted as 3/3 nsSite. We normalize the

observed numbers of nsSNVs and sSNVs by calculating the rate of

nsSNVs per nsSite (Rn) and the rate of sSNVs per sSite (Rs), e.g.

Rn= nsSNV/nsSite and Rs= sSNV/sSite. However, the genetic code

is enriched for transitions among synonymous changes and

transition mutations are more likely to occur than transversion

mutations. To estimate the relative density of nsSNVs as

compared with the neutral expectation (rdnsv) as inferred from

the density of sSNVs, we therefore need to correct the Rn/Rs ratio

for the influence of the genetic code on synonymous and

nonsynonymous mutation rates.

Here we approach this task by deriving a respective correction

factor f from the observed numbers of transition and transversion

sites that are synonymous or nonsynonymous sites as compared

with the respective numbers of sites that were expected for

a random genetic code. Based on our definition of sites as

mutational opportunities, we can view each basepair as 1/3

transition site and 2/3 transversion site, because it allows for one

transition and two transversion mutations. The number of

transition sSites (sSitets) can then be calculated by summing up

all opportunities for single basepair mutations in the reference

sequence that are both synonymous and transitions. Analogously,

we can calculate the numbers of transition nsSites (nsSitets),

transversion sSites (sSitetv) and transversion nsSites (nsSitetv). One

may now assume that at any specific basepair a transition

mutation is 4 times more likely to occur than a transversion

mutation during an arbitrary time unit, based on a 2-fold higher

rate per basepair for transition mutations (i.e. a transition/

transversion mutation rate ratio of 2) and each basepair allowing

for only 1 transition, but 2 transversion mutational opportunities.

We can then adjust the Rs values based on the ratio between

observed and expected proportions of transitions among sSites.

More formally we can write:

fs~
sSitets

sSite
|4rtvz

sSitetv

sSite
|rtv

� ��
1

3
|4rtvz

2

3
|rtv

� �
ð1Þ

where rtv denotes the rate of transversion mutations (with 4 rtv= rts),

and sSitets/sSite and sSitetv/sSite denote the proportions of sSites that

are transition or transversion sites.

In the reference genome sequence, we observe (in all evaluated

gene categories) that transition sites constitute close to 1/2 of all

sSites (i.e. sSitets/sSite , 0.5 instead of a ratio of sSitets/sSite=1/3

that were expected for randomly distributed transition and

transversion sites) (Table S1). Based on these observed counts of

sites, this leads to fs=1.25, which indicates a 25% increase of the

synonymous mutation rate that is attributable to the structure of

the genetic code. Thus, the rate of sSNVs per sSite that would be

expected with a random genetic code can be obtained by dividing

the observed Rs value by fs. The fraction of sSites that are

transition and transversion sites is very similar across our sets of

candidate genes (Table S1).

To compensate for the increased proportion of transition sites

among sSites a corresponding decreased proportion must exist

among nsSites. Accordingly, we further observe in the human

genome reference sequence a proportion of 4/14 of nsSites being

transition sites (i.e. nsSitets/nsSite,0.285) instead of the expected 1/3.

(Table S1). When applying now the analog reasoning for nsSites as

above for sSites, this leads to an estimated overall reduction of the

nonsynonymous mutation rate by 7.5% due to the structure of the

genetic code. Thus, the observedRn values need to be divided by the

factor fns=0.925 to estimate the rate of nsSNVs per nsSite that

would be expectedwith a randomgenetic code. In combinationwith

the above correction factor fs, one may therefore estimate that the

structure of the genetic code reduces the nonsynonymous mutation

rate relative to the synonymous mutation rate by the factor:

f~fs=fns~1:35 ð2Þ

A Simple Method to Analyze Nonsynonymous Variation
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Thus, multiplication of an observed Rn/Rs ratio by f allows for

a correction for the biased structure of the genetic code.

Accordingly, we can now estimate the relative density of

nonsynonymous variants:

rdnsv~f|
Rn

Rs
ð3Þ

Based on the above definition of Rn and Rs this is furthermore

equivalent to:

rdnsv~f|
sSite

nsSite
|

nsSNV

sSNV
ð4Þ

Because the ratio sSite/nsSite is,0.3 for the gene sets analyzed here

(Table S1), a simple rule of thumb to approximate rdnsv for large

gene sets is given by multiplying the ratio of nsSNV/sSNV by

f ’ = 0.4 (> 0.3 f ).

rdnsv%f|0:3|
nsSNV

sSNV
ð5Þ

To analyze the dependency of rdnsv on the allele frequency of

SNVs, we calculate rdnsv separately for different allele frequency bins

of SNVs (frequency below 2%, 5%, 10%, 20%, 40%, 80% and

95%).We then fit a linear regressionmodel to the values of rdnsv over

the allele frequency. We logarithmically transform the allele

frequency variable, because the frequency spectrum of human

SNVs is known to be strongly shifted towards rare variants [12,28].

In the fitted regression model, two predicted values of rdnsv deserve

particular attention: First, the y-intercept (rdnsv0), which gives the

relative density of nsSNVs for an allele frequency near 0. The

estimate of rdnsv0 thus approximates the proportion of nonsynon-

ymous mutations that are not immediately rejected by selection out

of all nonsynonymous mutations, assuming that sSNVs evolve

neutrally and the normalization of the ratio nsSNV/sSNV for

different underlying nonsynonymous and synonymous mutation

rates. This proportion equals the proportion of nonsynonymous

mutations that occur on neutral nsSites or weakly deleterious

nsSites, which is the proportion of nsSites where nsSNVs are

tolerated to segregate in the population. Vice versa, 1- rdnsv0 (the

difference between the expected intercept under the absence of

selection and the observed intercept) approximates the proportion of

nsSites (out of all nsSites), where nsSNVs are not tolerated to

segregate even at very low frequency. The second predicted value of

interest (rdnsv1) is the relative density of nsSNVs near the allele

frequency 1. This value rdnsv1 approximates the proportion of

nsSites where purifying selection does not prevent nsSNVs from

reaching fixation. Thus, estimating rdnsv0 and rdnsv1 for a set of genes

may help to separate the influence of selection at strongly deleterious

versus mildly deleterious and neutral sites. Both factors contribute to

the overall value of rdnsv in a sample of chromosomes, but only the

latter influences the allele frequency spectrum of nsSNVs.

We first apply our method to SNVs from a diploid European

genome sequence as produced by traditional Sanger sequencing,

which are obtained from the annotation track pgVenter in the

UCSC genome database [13,29]. We then apply the method to

whole exome SNV data from 200 Danish individuals that are

downloaded from the Beijing Genomics Institute (BGI) website

[12]. We calculate the derived allele frequency based on the status

of chimp alleles, which we obtain from the human-chimp BlastZ

alignment in the UCSC database. If no chimp allele was available,

the minor allele was taken as the most likely derived allele (which

applies to 2.6% of the SNVs). Those SNVs from the exome dataset

that cannot be lifted to the NCBI37 assembly with the UCSC

liftOver tool are excluded. In both SNV datasets, sSNVs and

nsSNVs are defined based on the positions of SNVs in the UCSC

gene models. Both missense and nonsense SNVs are counted as

nsSNVs.

Definition of Candidate Genes
Transcripts for human autosomal genes are obtained from the

‘knownGenes’ and ‘knownCanonical’ annotation tracks of the

University of California Santa Cruz (UCSC) genome database

[29]. Genes with specific roles in the immune system (in the

following referred to as ISGs) and the nervous system (in the

following referred to as NSGs) are obtained based on the GNF2

expression dataset [26]. The 1500 genes specifically expressed in

the greatest number of immune tissues and the 1500 genes

specifically expressed in the greatest number of nervous system

tissues, respectively, are taken as candidate genes. Because these

sets of candidate genes are defined by the specific expression in

disjunctive sets of tissues, no great overlap would be expected.

Consistently, only four genes (EVI2A, DOCK10, C9orf103, PTK2B)

belong to both sets and are removed from the subsequent analysis.

Expression analyses for 16185 autosomal human genes are based

on 62 out of the 79 tissues from the GNF2 dataset represented in

UCSC database (table gnfHumanAtlas2Median), excluding dis-

ease, compound and fetal tissues [26]. Raw expression values are

log2 transformed and for each gene subsequently normalized by

a Z-score transformation across all included tissues. Genes with Z-

scores greater 1.0 are considered as specifically expressed in

a tissue. Nervous system tissues are defined by the labels temporal

lobe, parietal lobe, occipital lobe, prefrontal cortex, cingulated

cortex, cerebellum, cerebellum peduncles, amygdala, hypothala-

mus, thalamus, subthalamic nucleus, caudate nucleus, globus

pallidus, olfactory bulb, pons, medulla oblongata, spinal cord,

ciliary ganglion, trigeminal ganglion, superior cervical ganglion,

dorsal root ganglion. Immune tissues are defined by the labels

thymus, tonsil, lymph node, BM CD33pos myeloid, PB BDCA4-

pos dentritic cells, PB CD14pos monocytes, PB CD56pos

NKCells, PB CD4pos Tcells, PB CD8pos Tcells, PB CD19pos

Bcells. We find nervous system candidates specifically expressed in

an average of 10.5 out the 21 nervous system tissues, 0.27 immune

system tissues and 1.7 out of the remaining 31 other tissues.

Immune system candidates are specifically expressed in an average

of 7 out of the ten immune tissues, 0.6 nervous system tissues and

3.6 other tissues. Thus, both groups of candidate genes show

roughly the same level of overall expression specificity, making

a confounding effect of this variable unlikely. We additionally

compare these functional candidate genes to a disjoint and equally

sized set of random ‘non-candidate genes’, which all have GNF2

expression annotations.

A second set of functional candidate genes is obtained by

keyword search with the term ‘(neuronal* or glial* or neural* or

neurite or axon) and not olfactory’ and the term ‘immune* or

immunological*’from Entrez Gene [27] (version 09/10). The

retrieved genes are linked to known UCSC genes by their official

gene names. This keyword search of gene annotations provides us

with a list of 1334 ISGs and a list of 1817 NSGs. Of these genes,

294 genes are contained in both lists of keyword-based candidates

and therefore removed from the analysis. A total of 367 genes from

the remaining 1523 keyword-based NSGs is also included in the

above list of expression-based NSGs, whereas a total of 181 from

the remaining 1040 keyword-based ISGs is also included in the

above expression-based ISGs.

A Simple Method to Analyze Nonsynonymous Variation
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The statistical comparison of gene categories is based on 10.000

permutations of the category status and counting how often

a greater difference of the test statistic (e.g. Rn, Rs or Rn/Rs) is

observed in the permuted than the observed data. The expected

background values are calculated as the 2.5% and 97.5% quantiles

from 10.000 sets of 1500 randomly sampled genes.

Monogenic disease gene annotation are obtained from the

‘morbidmap’ file of the Online Mendelian Inheritance in Men

(OMIM) database (version 03/10). Complex disease locus

annotations come from the file ‘GWASCatalog’ from the National

Human Genome Research Institute (NHGRI) Genome Wide

Association Study (GWAS) catalog website (version 03/10). The

morbidmap and GWASCatalog files are manually searched for

entries linked to immune or nervous system phenotypes. All

complex disease loci from OMIM are discarded. Also GWASCa-

talog loci with P.5*1028 are discarded. Nervous system

phenotypes are defined as those affecting the nervous system,

including both psychiatric and neurological disorders. Immune

phenotypes are defined as those that relate to dysfunction of the

immune system, including autoimmune disease and susceptibility

to infection. Gene ontology (GO) annotations of human genes are

obtained from the GO- database. [30].

Results

Relative Density of nsSNVs in Individual Exomes
We start by looking at SNVs in nervous system genes (NSGs)

and immune system genes (ISGs) from the exome of an individual

diploid genome sequence [13], with NSGs and ISGs being defined

by their specific expression in the respective tissues. These

expression-based candidates are further compared with an equally

sized set of randomly sampled genes (in the following referred to as

RSGs), which do not overlap with ISGs and NSGs. To evaluate

the level of SNVs in these candidate genes, their different coding

sequence length needs to be considered (Figure S1a). Therefore,

we calculate the rate of nsSNVs per nsSite (Rn) and the rate of

sSNVs per sSite (Rs) for each set of genes (Table S2a). We further

normalize Rn by Rs and find that NSGs have a significantly

reduced Rn/Rs ratio as compared with ISGs and RSGs (P,1025).

The Rn/Rs ratio accounts for possible differences read coverage,

SNV call rates or mutation rate between gene categories, because

these factors would equally affect the density of nsSNVs and

sSNVs as measured by Rn and Rs in a gene category.

However, to additionally relate the Rn/Rs ratio to the neutral

expectation, it is important to consider that transition mutations

occur with higher likelihood than transversion mutations and that

transitions are enriched among synonymous changes in the genetic

code [31]. Here we correct for this nonsynonymous to synony-

mous mutation rate bias by multiplying the observed Rn/Rs ratio

with a respective factor f that is defined by equation (2) in the

Materials and Methods. This strategy is designed to estimate the

relative density of nonsynonymous variants as compared with

neutral expectation (rdnsv) as defined above by equation (3). We

estimate rdnsv to be around 20% in NSGs, around 31% in ISGs

and around 38% in RSGs with the SNVs from the diploid genome

(Figure 1a, Table 1a). We next retrieve a second set of candidate

genes through keyword search of the EntrezGene database [27].

These keyword-based candidates may differ from the expression-

based candidates in the sense that they are more likely to have

been experimentally studied in detail. When analyzing the SNVs

from the diploid genome in these keyword-based candidates, the

estimates of rdnsv are ,21% in NSGs and ,41% in ISGs

(Figure 1c, Table 1a). Thus, also keyword-based NSGs again

display a significantly (P,1025) smaller level of nonsynonymous

variation than ISGs (Table S2b).

To further expand these observation into a larger SNV dataset,

we use a published dataset of 200 human exomes [12]. We first

separately calculate rdnsv for each of the individual exomes, which

shows rdnsv to be roughly normally distributed. The estimates of

rdnsv are consistently smaller for NSGs than ISGs (Figure 2). The

Figure 1. Relative density of nsSNVs (rdnsv) in different gene sets as estimated with different SNV datasets. Nervous system genes
(NSG, light grey) show a smaller rdnsv than immune system genes (ISG, medium grey) or randomly sampled genes (RSG, dark grey) in a European
diploid genome sequence (A, C) and a pooled set of 200 European exome sequences (B, D). The greater rdnsv in the pooled 200 exomes than the
individual genome indicates an enrichment of nsSNVs among rare SNVs.
doi:10.1371/journal.pone.0038087.g001

A Simple Method to Analyze Nonsynonymous Variation
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mean values of the distributions of rdnsv over the 200 individual

exomes (20.1% and 29.0% for expression-based NSGs and ISGs

and 19.8% and 39.3% for keyword-based NSGs and ISGs) are

close to the corresponding rdnsv values from the diploid genome

above, despite the fact the diploid genome was obtained under

a rather different experimental protocol. Consistent with the

diploid genome, we see a greater heterogeneity between expres-

sion- and keyword-based ISGs than the two types of NSGs.

It is important to note that the sampling of 400 instead of 2

chromosomes at each site causes an ascertainment of more rare

SNVs. Because nsSNVs are enriched among rare SNVs, the

estimates of rdnsv in the pooled 200 exomes are greater than those for

the diploid genome in all three gene categories (Figure 1). Across the

pooled dataset of 200 exomes, we estimate for expression-based

candidates that rdnsv is,33% in NSGs,,39% in expression-based

ISGs and,42% in RSGs, whereas for expression-based candidates

it is 31% for NSGs and 47% for ISGs (Table 1a). Nevertheless, we

again see that rdnsv is significantly smaller in NSGs than ISGs or

RSGs (P,1023), which applies to both expression-based and

keyword-based candidates (Tables S2c, S2d).

To define the range of expected values of rdnsv for arbitrary sets

of genes, we further randomly draw 10.000 sets of 1500 autosomal

genes. This shows that both expression-based and keyword-based

NSGs are at the low end of the range of rdnsv estimates (Table 1a).

When comparing expression-based and keyword-based ISGs to

each other, we see that the former tend to fall at the lower end of

the range of rdnsv estimates, whereas the latter tend to fall on the

upper end. Consistent with this greater heterogeneity of the two

sets of ISGs than the two sets of NSGs, we see greater difference of

the coding sequence length between the former than the latter two

sets of genes (Figure S1b).

Relative Density of nsSNVs as Stratified by Population
Allele Frequency
When rdnsv is estimated in a diploid genome or a pooled set of

chromosomes, its value reflects the level of nonsynonymous

variation on a mixture of SNVs that range from rare to common

in their population frequency. To additionally exploit the in-

formation that is contained in the change of rdnsv with allele

frequency, we next group SNVs into disjoint frequency bins and

separately estimate for each bin its rdnsv value in the pooled set of

200 exomes. This shows that expression-based NSGs display

a reduced rdnsv value across all frequency bins (Figure 3a). When

we further estimate rdnsv for our keyword-based candidate genes,

we again see smaller rdnsv values for NSGs across all bins

(Figure 3b). Additionally, rdnsv tends to decrease with SNV allele

frequency in all sets of candidate genes.

To further capture this influence of allele frequency on rdnsv,

we next fit a regression model to the estimates of rdnsv over the

allele frequency of underlying SNVs in the 200 exome data. The

y-intercept parameter (rdnsv0) of the model might be best

interpreted as the proportion of nsSites where variants are

tolerated to segregate with frequency greater 0 and thus do not

cause any highly detrimental consequences. Analogously, we

might interpret the predicted value for a derived allele frequency

near 1 (rdnsv1) as the proportion of nsSites where mutations are

not prevented from reaching fixation. In our candidate genes, we

see that rdnsv0 and rdnsv1 equal 45% and 17% for expression-

based NSGs, whereas they equal 58% and 21% for expression-

based ISGs (Table 1b). For keyword-based NSGs we find that

rdnsv0 and rdnsv1 equal 43% and 15%, whereas they equal 58%

and 37% for keyword-based ISGs. Thus, both rdnsv0 and rdnsv1
are highly similar between expression- and keyword-based NSGs.

In contrast, the two sets of ISGs display only similar estimates of

rdnsv0, but quite different estimates of rdnsv1. The inspection of

the fitted models shows that the y-intercept is significantly

different from its theoretically expected value of 1 (P,0.001) and

that the slope is significantly different from 0 (P,0.01) in all

candidate sets. The coefficient of determination R2 varies from

0.61 (expression-based NSGs) over 0.70 (keyword-based ISGs)

and 0.78 (expression-based ISGs) to 0.85 (keyword-based NSGs),

indicating that the models capture the dependency of rdnsv on

SNV allele frequency. However, it can also be seen that the

residual deviation from the fitted models consistently attains

a relatively large value for the lowest frequency bin, which might

indicate some non-linearity.

To relate the observed rdnsv0 and rdnsv1 of our candidate genes

to their expected values, we further compare them with 10.000

draws of random genes sets (Table 1b). For expression-based and

keyword-based NSGs we see that rdnsv0 and as a consequence also

rdnsv1 fall at the low end of values. On the other hand, rdnsv1 of

expression-based ISGs tends to fall towards the lower end, whereas

rdnsv1 of keyword-based ISGs falls towards the upper end of values.

Notably, both these sets of ISGs display rdnsv0 similar to random

gene sets. Thus, NSGs consistently stand out by their small rdnsv0,

whereas the noted heterogeneity between expression-based and

keyword-based ISGs becomes visible in a different slope, but not

a different intercept of the two regression models.

Table 1. Relative density of nonsynonymous variants (rdnsv).

RSG expression ISG expression NSG keyword ISG keyword NSG

#genes 1496 1496 1496 1040 1523

A)

rdnsv (diploid genome) 0.38 [0.31–0.39] 0.31 0.20 0.41 0.21

rdnsv (200 exomes) 0.42 [0.39–0.45] 0.39 0.33 0.47 0.31

B)

rdnsv0 (200 exomes) 0.58 [0.53–0.65] 0.58 0.45 0.58 0.43

rdnsv1 (200 exomes) 0.25 [0.21–0.29] 0.21 0.17 0.37 0.15

Candidate genes for the nervous system (NSG) and the immune system (ISG) are defined by tissue specific expression or keyword search and further compared with a set
of randomly sampled genes (RSG). A) Overall rdnsv estimates for a diploid genome and 200 exome sequences, which reflect the density of nonsynonymous variants on
a mixture of SNVs that range from rare to common in their population frequency. B) SNVs from the 200 exome dataset are additionally stratified by their derived allele
frequency and a regression model is fitted to the values of rdnsv. The predicted value for the allele frequency of 0 is referred to as rdnsv0, whereas the predicted value
for the allele frequency of 1 is referred to as rdnsv1. The interval in brackets shows the 2.5% and 97.5% quantiles from 10.000 random draws of genes.
doi:10.1371/journal.pone.0038087.t001
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We finally sought to find out how rdnsv estimates of our broadly

defined candidate genes compare to the rdnsv of gene sets with more

specific molecular annotations. To address this question we

retrieved all sets of gene ontology (GO) annotated genes that harbor

at least 1000 coding SNVs in the 200 exome dataset. We then

estimate for eachGO-category its mean value of rdnsv across the 200

exomes as well as its values of rdnsv0 and rdnsv1 from the respective

regression models over the allele frequency strata (Table S3). This

shows several GO-categories for nervous system functions (e.g.

GO:0048812, GO:0007409, GO:0045202) to belong to those with

the smallest level of nonsynonymous variation (Table 2a). Consistent

with the above results for expression-based and keyword-based

NSGs, see that rdnsv0 is reduced in nervous system genes. In addition,

GO-categories related to tyrosine kinase signaling (GO:0007169,

GO:0007167) display the lowest levels of nonsynonymous variation.

It remains to be found out, whether this reduction constitutes

a feature that is genuine to tyrosine kinase signaling genes orwhether

it is driven by their functions in nervous system cells.

On the other end of the spectrum, we see the highest level of

nonsynonymous variation for GO-categories related to olfactory

receptor function (GO:0004984, GO:0004930) as well as immune

system function (GO:0006955, GO:0006952) (Table 2b). GO

‘olfactory receptor’ genes display both rdnsv0 and rdnsv1 values

fairly close to 1, i.e. both rdnsv0 and rdnsv1 account for the increased

overall rdnsv in individual exomes. In contrast, GO ‘immune

response’ genes show rdnsv0 values roughly equal to random gene

sets, but greater rdnsv1 values, which is similar as seen for keyword-

based ISGs. These observations suggests that the high overall rdnsv

of ‘olfactory receptor’ genes is largely due to relaxed constraint,

Figure 2. Distribution of rdnsv estimates over 200 individual exomes. A) expression-based candidate genes and B) keyword-based candidate
genes. The value of rdnsv is estimated separately for each of the 200 exomes and found consistently smaller for NSGs (light grey) are than ISGs
(medium grey). In addition, smaller estimates of rdnsv for expression-based ISGs than keyword-based ISGs are seen. No difference exists between
expression-based NSGs and keyword-based NSGs.
doi:10.1371/journal.pone.0038087.g002
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whereas the high overall rdnsv of ‘immune response’ genes might

be due to an influence of positive selection.

Discussion

We devise a method for estimating the relative density of

nonsynonymous variants as compared with the neutral expectation

(rdnsv), which we apply to two separate exome datasets [12,13]. We

notice that rdnsv shows relatively small differences between in-

dividual exomes, but strong difference between gene categories. To

capture the dependency of rdnsv on the allele frequency of SNVs, we

fit a regression model to the values of rdnsv as stratified by the

frequency of SNVs.We interpret the slope of thismodel as ameasure

of the overall strength of selection on segregating nsSNVs. The y-

intercept of this model (rdnsv0) may be interpreted as a prediction of

the proportion of nsSites (among all nsSites) where mutations are

tolerated to segregate in the population.

We use our method to measure the levels of nonsynonymous

variants (nsSNVs) among human nervous system genes (NSGs),

immune system genes (ISGs), randomly sampled genes (RSGs) and

GO-annotated genes. That rdnsv is consistently reduced for NSGs

is indicating stronger purifying selection. We find that the reduced

overall rdnsv values of NSGs are paralleled by smaller estimates of

rdnsv0. This smaller rdnsv0 predicts greater proportions of nsSites

that are intolerant to mutations as an important cause for the

reduced overall rdnsv. Such a prediction of a greater proportion of

Figure 3. Estimates of rdnsv over different allele frequency bins. The estimates of rdnsv decrease with SNV allele frequency in all gene
categories. The slope of the fitted regression model can be interpreted as a measure for the influence of purifying selection on segregating nsSNVs.
The y-intercept (rdnsv0) can be interpreted as the proportion of nsSites where mutations are tolerated to segregate with an allele frequency notably
greater than 0. A) Expression-based NSGs (circles), ISGs (triangles) or RSGs (crosses). The fitted models are rdnsv(NSG) = 0.4520.0616;
rdnsv(ISG) = 0.5820.0796 and rdnsv(RSG) = 0.5820.0716B) Keyword based NSGs (blue) and ISGs (red). The fitted models are
rdnsv(NSG) = 0.4320.0616; rdnsv(ISG) = 0.5820.0456.
doi:10.1371/journal.pone.0038087.g003
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strongly deleterious nsSites in NSGs is consistent with the high

frequency of neurological symptoms among undiagnosed disease

phenotypes [32] as well as the greater number of established

monogenic disease genes in the OMIM database. Based on an

analysis of the OMIM database [33], about 2.4 as many

monogenic disease genes for the nervous system than the immune

system have been discovered (326 to 135). In contrast, about 3.8 as

many susceptibility loci were identified for immune phenotypes

than nervous system phenotypes (122 to 32), based on the NHGRI

GWAS catalog [34] (Figure S2). Our present study demonstrates

how these different rates of monogenic disease manifestations for

different phenotypes are reflected in the sequence variability

patterns of a population-based sample. The reduced level of

nonsynonymous variation in NSGs is also consistent with the

strong conservation of such genes among mammals [15,35]. The

presented analysis additionally suggests that a greater proportion

of mutation intolerant sites has made a major contribution to the

increased interspecies conservation. Stronger purifying selection

on nervous system genes could be caused by the functional

complexity of neuronal cells and the developmental complexity of

the nervous system. A larger proportion of highly deleterious

nsSites in NSGs is further consistent with the role of exomic de-novo

mutations in mental retardation [36], schizophrenia [37], and

autism [38–40].

On the other hand, it has been hypothesized that functional

variants in immune genes are more often positively selected due to

pressures that were imposed by infectious agents [15,41–44]. Here

we see that rdnsv values are increased for certain sets of ISGs (i.e.

keyword-based ISGs and GO-immune response genes). Impor-

tantly, any influence of positive selection would not be expected to

influence the intercept (rdnsv0) of the regression models, because it

would alter the allele frequencies of segregating SNVs and not the

proportion of nsSites that tolerate mutations. Instead, the slope of

the model reflects the overall strength of selection on segregating

nsSNVs, which influences the proportion of nsSites where nsSNVs

may become fixed (rdnsv1). Therefore, it is interesting that the

greater overall rdnsv for certain types of ISGs in individual exomes

is paralleled by an increased estimate of rdnsv1, but not an

increased rdnsv0. This seems to support positive selection over

relaxed constraint as possible explanation. Although more

prevalent positive selection in ISGs may contribute to the presence

of more common nsSNVs and putative disease variants, it

nevertheless needs to be pointed out that all tested sets of

immunological genes still display a negative slope parameter. This

is consistent with a general importance of purifying selection for

the frequency spectrum of segregating nsSNVs in ISGs too. It

remains to be found out in future studies, which molecular subsets

of ISGs are more likely to harbour SNVs that are influenced by

positive selection and whether the observed heterogeneity might

be due to differences between genes that function in the innate and

the adaptive immune system.

It is important to distinguish our approach for analyzing the

level of nonsynonymous variation from methods for calculating the

Ka/Ks ratio that are widely employed in comparative genomic

studies [45]. In particular, one may want to compare our

normalization strategy to approximate methods for calculating

Table 2. Estimates of rdnsv in the 200 exomes in sets of genes as defined by ontology (GO) annotations.

Gene Ontology (GO) category genes nsSNVs sSNVs mean rdnsv sd rdnsv rdnsv0 rdnsv1

A)

GO:0007169:transmembrane_receptor_tyrosine_kinase_signaling 313 365 636 0.121 0.011 0.385 0.072

GO:0007167:enzyme_linked_receptor_protein_signaling_pathway 394 466 771 0.128 0.01 0.397 0.095

GO:0006935:chemotaxis 337 405 669 0.136 0.01 0.401 0.094

GO:0048812:neuron_projection_morphogenesis 326 445 703 0.139 0.011 0.396 0.11

GO:0007409:axonogenesis 303 420 664 0.141 0.012 0.397 0.11

GO:0031175:neuron_projection_development 368 510 795 0.143 0.011 0.4 0.119

GO:0048667:cell_morphogenesis_involved_in_neuron_differentiation 322 446 694 0.146 0.012 0.397 0.12

GO:0043005:neuron_projection 411 587 831 0.15 0.01 0.484 0.1

GO:0045202:synapse 326 477 633 0.151 0.013 0.544 0.089

GO:0048666:neuron_development 436 578 890 0.153 0.011 0.399 0.126

B)

GO:0005815:microtubule_organizing_center 277 542 484 0.344 0.025 0.5 0.399

GO:0005576:extracellular_region 1322 2281 1948 0.345 0.012 0.644 0.341

GO:0006952:defense_response 525 764 691 0.351 0.022 0.556 0.345

GO:0006955:immune_response 500 696 625 0.357 0.023 0.533 0.393

GO:0004871:signal_transducer_activity 1170 2350 1994 0.4 0.016 0.586 0.369

GO:0004872:receptor_activity 1233 2710 2218 0.406 0.015 0.615 0.368

GO:0038023:signaling_receptor_activity 913 2046 1583 0.456 0.019 0.624 0.43

GO:0004888:transmembrane_signaling_receptor_activity 844 1991 1489 0.466 0.02 0.654 0.437

GO:0004930:G-protein_coupled_receptor_activity 604 1469 890 0.603 0.029 0.741 0.573

GO:0004984:olfactory_receptor_activity 310 1024 430 0.896 0.048 1.011 0.993

The 10 GO-categories with the smallest (A) and the greatest (B) mean values of rdnsv are shown. The full list of all GO-categories with at least 1000 coding SNVs is given
in Table S3. For each category the number of annotated genes, nonsynonymous and synonymous SNVs, the mean and standard deviation of individual rdnsv estimates
across the 200 exomes, as well as the values of rdnsv0 and rdnsv1, are shown.
doi:10.1371/journal.pone.0038087.t002
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the Ka/Ks ratio under a two parameter model with different rates

of transitions and transversions [46,47]. However, our method is

designed to evaluate variants from individual human genome

sequences, whereas Ka/Ks ratio methods are designed to analyze

fixed differences between sequences that are millions of years apart

and connected by a phylogenetic tree. From a technical point of

view, different mutational pathways between codons and recurrent

mutation of a same site have to be considered for comparative

genomic data, but not for human SNV data. On the other hand,

no consistent phylogenetic tree exists for a set of individual human

genome sequences. Therefore, a different set of methods has to be

used to analyze SNV data.

To our knowledge, the proposed approach has not been used

before to analyze individual genome data. Our estimates of the

proportions of nsSites that are tolerant and intolerant to mutations

are consistent with earlier studies that estimated the proportions of

neutral, weakly and strongly deleterious nsSites in human genes by

different methods [9,12,48] and from human and chimp

comparison [15]. In addition, the confidence in our normalization

procedure may be strengthened by the estimates of rdnsv close to 1

for olfactory receptor activity genes, because those genes are

known to be degenerating in the human lineage and evolve largely

neutral [49]. Nevertheless, it may be kept in mind that some

uncertainty is introduced by the assumption that sSNVs evolve

neutrally, which might not always be the case due to selection on

synonymous mutations [50] or background selection [51]. Also it

might be possible to refine the method by taking hypermutability

of CpG sites into account [52]. However, these factors do not alter

the comparison of sets of genes, as long as they influence nsSites

and sSites homogeneously across categories. Furthermore, one

might try to advance the approach by fitting more complex

statistical models than a regression line over the frequency

stratified rdnsv estimates. In this context, it is noteworthy that the

rdnsv estimate for the lowest allele frequency consistently shows

a relatively large positive deviation from the linear model across

the analyzed genes sets. This could indicate a non-linearity that

might be better captured by a more complex model that may be

fitted to larger SNV datasets becoming available in future.

However, it might also be influenced by a higher false positive

SNV call rate in the lowest frequency bin, what may also be

considered by subsequent modeling approaches.

In conclusion, we propose a novel statistical method that

estimates the relative density of nonsynonymous variants (rdnsv) in

a set of human genes. We are convinced that in many situations

any possible sources of impreciseness are outweighed by the

advantage of its practical simplicity (in the simplest form,

multiplying an observed ratio between nsSNVs and sSNVs by f’

(,0.4) and plotting this transformed ratio over the allele

frequency). Using this method we explain here, why the nervous

system is more often affected by monogenic diseases than the

immune system. We would expect that the described method will

turn out to be useful for other questions too.

Supporting Information

Figure S1 Mean number of coding nucleotide sites per
gene for different sets of candidate genes. a) Expression-
based candidates and b) keyword-based candidates. Sites are

defined as mutational opportunities in the reference sequence.

Sites are stratified as nonsynonymous (dark grey) and synonymous

(light grey). The mean number of nonsynonymous and synony-

mous sites is greater in nervous system genes than immune system

genes or random genes. Error bars denote two standard errors of

the mean.

(PDF)

Figure S2 Number of monogenic disease genes from the
OMIM database and complex disease loci from the
GWAS-catalog (both queried 03/10). Nervous system

phenotypes are more often linked to monogenic disease genes

and therefore have more entries in OMIM (dark grey bars). Vice

versa, immune system phenotypes are more often linked to

complex susceptibility loci and therefore have more entries in the

GWAS-catalog (light grey bars).

(PDF)

Table S1 Number of synonymous and nonsynonymous
sites in different sets of genes in the human genome
reference sequence. Sites are defined as mutational opportu-

nities in the coding sequence of genes. Sites may be classified

synonymous (sSite) or nonsynonymous (nsSite). In a similar sense,

each site can be a transition site or transversion site. Among sSites,

the ratio of transition and transversion sites (sSitets/sSitetv) is close to

1, whereas among nsSites this ratio (nsSitets/nsSitetv) is close to 0.4.

Candidate genes for the nervous system (NSG) and the immune

system (ISG) are defined by tissue specific expression and keyword

search and further compared with randomly sampled genes

(RSG).

(PDF)

Table S2 Number of SNVs in different sets of candidate
genes in the diploid genome and 200 exomes. For each

gene set, its total number of nsSNVs and sSNVs, its rate of

nsSNVs/nsSite (Rn) and its rate sSNVs/sSite (Rs) are shown. Immune

System Genes (ISG) and a set of randomly sampled genes (RSG)

are compared to nervous system genes (NSG) based on 10,000

permutation of gene category labels. The intervals for RSGs in

square brackets show the 2.5% and 97.5% quantiles from 10.000

random draws of genes. To further estimate the relative density of

nsSNVs (rdnsv) from the Rn/Rs ratio, the respective correction

factor f needs to be applied, which is described in the main text.

(PDF)

Table S3 Estimates of rdnsv in the 200 exomes in sets of
genes as defined by ontology (GO) annotations. For each
category the number of annotated genes, nonsynonymous and

synonymous SNVs, the mean and standard deviation of individual

rdnsv estimates across the 200 exomes, as well as the values of rdnsv0
and rdnsv1, are shown.

(PDF)
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