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Abstract

The recent uptake in popularity in vehicles with zero tailpipe emissions is a welcome devel-

opment in the fight against traffic induced airborne pollutants. As vehicle fleets become elec-

trified, and tailpipe emissions become less prevalent, non-tailpipe emissions (from tires and

brake disks) will become the dominant source of traffic related emissions, and will in all likeli-

hood become a major concern for human health. This trend is likely to be exacerbated by

the heavier weight of electric vehicles, their increased power, and their increased torque

capabilities, when compared with traditional vehicles. While the problem of emissions from

tire wear is well-known, issues around the process of tire abrasion, its impact on the environ-

ment, and modelling and mitigation measures, remain relatively unexplored. Work on this

topic has proceeded in several discrete directions including: on-vehicle collection methods;

vehicle tire-wear abatement algorithms and controlling the ride characteristics of a vehicle,

all with a view to abating tire emissions. Additional approaches include access control mech-

anisms to manage aggregate tire emissions in a geofenced area with other notable work

focussing on understanding the particle size distribution of tire generated PM, the degree to

which particles become airborne, and the health impacts of tire emissions. While such

efforts are already underway, the problem of developing models to predict the aggregate

picture of a network of vehicles at the scale of a city, has yet to be considered. Our objective

in this paper is to present one such model, built using ideas from Markov chains. Applica-

tions of our modelling approach are given toward the end of this note, both to illustrate the

utility of the proposed method, and to illustrate its application as part of a method to collect

tire dust particles.

1 Introduction

The recent uptake in popularity in vehicles with zero tailpipe emissions is a welcome develop-

ment in the fight against traffic induced airborne pollutants, see Fig 1 for an illustrative
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historical review. The deployment of such vehicles is consistent with the prevailing contempo-

rary narrative which is heavily focussed on mechanisms to abate mobility related greenhouse

gases and tailpipe pollutants; see [1] for a snapshot of some recent work across several disci-

plines on this topic. However, as vehicle fleets become electrified, non-tailpipe emissions

(from tires and brake disks) are likely to become a major concern for human health and this is

likely to be exacerbated by the transition to electric vehicles due to their heavier weight and

increased torque capabilities [2, 3].

The issue of emissions from tire wear is in itself a very old topic. Somewhat remarkably,

issues around the process of tire abrasion, its impact on the environment and human health,

and modelling and mitigation measures, remain relatively unexplored and poorly understood.

In addition, the general public seems oblivious to the fact that these emissions are significant

and almost certainly harmful to human health. The fact that the topic is relatively unexplored

and unknown (by the general public) in the context of automotive engineering is very surpris-

ing given the rate at which tire mass abrades and contributes to particulate matter (PM) in

moving vehicles. PM is a generic term used for a type of pollutants that consists of a complex

and varied mix of small particles. There is a growing and rich literature documenting the link

between PM and its effects on human health [4–9]. A recent review of the impact of tire and

road wear particles can be found in [10]. Roughly speaking, smaller PM particles tend to be

directly more harmful to humans compared to larger ones, as they can travel deeper into the

respiratory system [6, 11–13] (though larger toxic particles can also cause harm if they enter

our food systems). Some of the known health effects related to PM include oxidative stress,

inflammation and early atherosclerosis. Other studies have shown that smaller particles may

go into the bloodstream and thus translocate to the liver, the kidneys or the brain (see [14] and

references within). According to the World Health Organisation, for PM2.5, the daily maxi-

mum deemed safe level on average is 25 μg/m3, whereas the annual maximum permitted level

is on average 10 μg/m3. For PM10, the maximum permitted levels are on average 50 μg/m3 and

20 μg/m3 on a daily and annual basis, respectively. In general, based on these numbers, it is

acknowledged that non-exhaust emissions (including brake and tire wear, road surface wear

and resuspension of road dust) resulting from road traffic, account for a significant

Fig 1. Evolution of recent vehicle emissions narrative, and emerging non-tailpipe emissions concerns.

https://doi.org/10.1371/journal.pone.0260226.g001
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component of traffic related PM emissions [15]. To parse these numbers in the context of a

specific city it was recently estimated that approximately 186 kg per day of tire mass is lost to

abrasion in Dublin each day [2].

Recently, the issue of tire generated PM emissions has become a topic of interest for several

groups worldwide [16–18]. Roughly speaking, work on this topic has proceeded in several

directions with work on the topic focussing on on-vehicle collection methods, on vehicle tire-

wear abatement algorithms, or estimating properties of tire debris. For example, several of the

authors of [2], the tire Collective, have constructed a prototype on-wheel system for collection

of tire debris [19]. Other authors [20, 21] have explored controlling the ride characteristics of a

vehicle with a view to abating tire emissions. A further approach in [2] explores access control

mechanisms to manage aggregate tire emissions in a geofenced area. Other notable work on

the topic focusses on the particle size distribution of tire generated PM, or to which degree this

becomes airborne [8] (while currently available emission factors for tire wear in literature

gives estimates of vehicle emissions of between 0.005 − 100g/km, no reliable method to calcu-

late tire related PM or tire wear, depending, for example, on the vehicle operation, appears to

be available [15, 22]). The issue of which particulates become airborne is in fact the subject of

some debate in the community. We note strongly that we are not concerned with such classifi-

cations. While research on emissions has focussed on airborne pollutants, the reality is that

both outcomes are problematic for humans. Particles that become airborne have the potential

to contribute to poor air quality in cities with all the ensuing health consequences; those that

fall to the ground have the potential to enter water systems and contribute to the general prob-

lem of environmental microplastic pollution. Thus both manifestations of the tire pollution

problem need to be addressed.

Our objective in this paper is to develop city-scale models of tire pollution, for both air-

borne and non-airborne PM, that can be used to inform policy makers in the fight to mitigate

the effect of tire abrasion. We have already mentioned that the issue of tire wear is an old and

relatively unexplored topic,in automotive engineering, and is subject to sources of large uncer-

tainty. For example, tire induced PM, depends not only on the chemical composition of tires,

but also on traffic densities, speeds, driving styles, and road surfaces. Indeed, the ultimate

impact on humans depends on the effect of large aggregations of vehicles, each driven by driv-

ers with differing styles, and with different tires. Given this uncertainty, there is clearly a need

for robust and efficient methods that indicate the likely locations where large accumulations of

tire mass are likely to be found. We would also like that these models somehow capture the

complex relationship between speed limits, traffic signalling, and densities, so that these

parameters can be explored from the perspective of tire emissions. To do this we shall build on

our previous work on Markovian [23] models of traffic networks. An important point to note

in this context is that even though tire emission factors are not well known (perhaps even

unknowable), the qualitative aspects of the tire abrasion process is understood (the qualitative

effects of speed, acceleration, weight, road surface). This is important from the context of Mar-

kovian network emission models which, even though uncertain, do tell us where build ups are

likely to occur and the importance of road segments from the context of road debris. We shall

show how such models enable a number of important applications in the fight against tire

dust; in particular how such models can be used to inform tire dust collection strategies and to

inform vulnerable road users such as pedestrians and cyclists.

2 Markovian models of traffic systems

The use of Markov chains for traffic congestion analysis was first proposed in [23]. Since then

the idea has been developed and applied to other traffic related issues in a series of papers [24,
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25] and by other authors [26, 27]. For convenience, we now briefly recall some of the back-

ground discussion on such models, while a more thorough explanation on such models can be

found in the previous references. Traffic flows can be described through aMarkov chain,

which is a stochastic process characterized by the equation

pðxkþ1 ¼ Sikþ1
jxk ¼ Sik; . . . ; x0 ¼ Si0Þ ¼ pðxkþ1 ¼ Sikþ1

jxk ¼ SikÞ 8k � 0; ð1Þ

where p(E|F) denotes the conditional probability that event E occurs given that event F occurs.

Eq (1) states that the probability that the random variable x is in state Sik+1 at time step k + 1

only depends on the state of x at time step k and not on preceding values. Usually the Markov

chain with n states is described by the n × n transition probability matrix P, whose entry Pij
denotes the probability of passing from state Si to state Sj in exactly one step. Clearly the matrix

P is a matrix whose rows sum to one (row-stochastic non-negative matrix).

Markov chains are particularly useful for traffic systems due to their close association with

graphs (in the context of traffic road networks). Recall that a graph is represented by a set of

nodes that are connected through edges. Therefore, the graph associated with the matrix P is a

directed graph, whose nodes are represented by the states Si, i = {1, . . ., n} and there is a

directed edge leading from Si to Sj if and only if Pij 6¼ 0. The strong connection between graphs

and Markov chains manifests itself in many ways. For example, the notions of chain irreduc-

ibility and strongly connected graphs are enunciations of the same concept. More precisely, a

graph is strongly connected if and only if for each pair of nodes there is a sequence of directed

edges leading from the first node to the second one. Thus, P is irreducible if and only if its

directed graph is strongly connected. The usefulness of Markov chains for road networks

extends well beyond their close relation to graphs. In particular, many easily computable prop-

erties of the chain (from the transition matrix) also have strong physical interpretations. For

example, for irreducible transition matrices, it is known that the spectral radius of P is 1. This

fact is used in applications to detect communities in chains associated with transportation net-

works. Moreover, the left-hand Perron eigenvector π of the Pmatrix, that is πT P = πT such

that πi> 0, ||π||1 = 1, yields a closed form expression for the stationary distribution of a ran-

dom walker over the graph associated with the Markov chain. As such it has a strong connec-

tion to likely congestion locations in transportation networks. We shall exploit the Perron

eigenvector in the present paper for the purpose of determining likely locations of high tire

emissions. Finally, two other quantities that are useful for studying graphs and which can be

easily computed are the Kemeny constant and theMean First Passage Time. The mean first pas-

sage time (MFPT) mij from the state Si to the state Sj denotes the expected number of steps to

arrive at destination Sj when the origin is Si, and the expectation is averaged over all possible

paths following a random walk from Si to Sj. If we assume thatmii = 0, then the Kemeny con-
stant is defined as

K ¼
Xn

j¼1

mijpj: ð2Þ

Remarkably, the right-hand side is independent of the choice of the origin state Si [28]. An

interpretation of this result is that the expected time to get from an initial state Si to a destina-

tion state Sj (selected randomly according to the stationary distribution π) does not depend on

the starting point Si [29]. Therefore, the Kemeny constant is an intrinsic measure of a Markov

chain. Eq (2) emphasizes the fact that K is only related to the particular matrix P and it

becomes very large if one or more of the other eigenvalues of P, different from λ1, are close

to 1.
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The use of Markov chains to model road network dynamics has been described in detail in

[23] and in many subsequent papers by other authors [26, 27]. The resulting networks are fully

characterized by a transition matrix P, which has the following form:

P ¼

PS1!S1
PS1!S2

. . . PS1!Sn

PS2!S1
PS2!S2

. . . PS2!Sn

..

. ..
. . .

. ..
.

PSn!S1
PSn!S2

. . . PSn!Sn

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

: ð3Þ

The matrix P is a square matrix whose size is given by the number of road segments. The

off-diagonal elements PSi!Sj are related to the probability that one passes directly from the

road segment Si to the road segment Sj. Importantly, the transition matrix can be very easily

computed after gathering the average travel times and junction turning probabilities. In our

models the diagonal terms are proportional to travel times. If travel times are computed for all

roads, and they are normalized so that the smallest travel time is 1, then the probability value

associated to each self-loop is

PSi!Si ¼
tti � 1

tti
; i ¼ f1; . . . ; ng ð4Þ

where tti is the average travel time (estimated from collected data) for the i-th road. The off-

diagonal elements of the transition matrix P can be obtained as

PSi!Sj ¼ ð1 � PSi!SiÞ � ðtpijÞ i 6¼ j; ð5Þ

where tpij is the turning probability (estimated from collected data) of going from road i to

road j [23]. In the next section we shall explain how this basic transition matrix (3) can be

modified to convert the model the evolution of tire emissions in an urban landscape.

Comment: The interested reader may ask the advantage of a Markovian model of traffic, as

compared with using a traffic simulator, such as SUMO, which we shall extensively use in the

remainder of this paper for validation purposes. The principal advantages of a theoretical

approach are threefold. First, in terms of utility, once identified, the Markovian model gives

access to predictions in a very efficient manner, especially when compared with Monte-Carlo

based approached based on vehicle simulators. Second, following from the previous point, the

parameters of mathematical models can be efficiently adjusted to explore traffic management

strategies, without the need for ensembles of complex simulations. Finally, by developing a

Markovian (transition matrix) approach to traffic modelling, one may avail of a well developed

suite of analytics that have been developed to analyse Markovian systems over the past century.

This can then be used both to study and analyse the properties of transportation networks, as

well as providing a basis for the design of network-level traffic policies. Indeed, this has been

explored in a series of papers on traffic modelling since the publication of [23]; see [25] for

examples of work in this direction.

3 Extension of Markovian model to tire emissions

Our starting point in developing a tire emissions model is the assumption that the Perron

eigenvector of a traffic congestion matrix also provides some relevant information about tires’

emissions. This is a reasonable assumption because the entries of the Perron eigenvector report

the average long-run fraction of time that a vehicle spends on each road. However, there is not
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a precise relationship between emissions and density information as tires emissions do not

only depend on the amount of time that is spent along one road, but also on other quantities,

such as average driving style and average speeds. To capture such effects, as a first approxima-

tion to develop city-scale models of tire pollution, we shall now describe how the number of

tire particles can be estimated depending on the vehicle’s speed, and how this information can

be embedded in the Markov chain transition matrix.

As we have mentioned, tire emission factors in the literature are characterised by huge

uncertainty varying between 0.005 to 100g/km [14]. In any case such a simple characterisation

of tire based PM is not suitable to build a Markovian model of tire emissions; to build such a

model a tire based PM estimation model depending on a vehicle’s operation mode (for exam-

ple, speed, acceleration, driving style) is required. To this end, we shall use measurements and

results from [30] that show a dependency of the number of ultra-fine tire particles PN pro-

duced by a vehicle and the vehicle’s operation. As particles irrespective of size, tend to be

harmful to human health [31] we shall in the sequel focus on the number of particles to evalu-

ate the impact in the city network, and consequently adopt and develop the approach from

[30] to estimate the number of particles.

Comment: To further justify our approach it is worth noting the approach adopted here

has also been recognised by the latest EU legislative regulations. These place a higher emphasis

on the number of particles rather than particle mass or size distribution [32].

The measurements from [30] show a linear dependency of PN and vehicle’s speed v, as well

as an approximately quadratic dependency of PN and the forces on the wheels F. The combi-

nation of both curves leads to the following estimate of PN

PNðF; vÞ ¼ ða0 þ a1 � F þ a2 � F2Þ � ðb0 þ b1 � vÞ: ð6Þ

It is not a trivial matter to gather information about values of F and it is therefore more con-

venient to express F as a function of v (as aggregate estimates of v are simpler to obtain). To do

so, we make the simplifying assumption that all roads in the city network are flat (without

incline or elevation) and, in addition, for the sake of simplicity, accelerations are neglected.

Comment: The previous assumption introduces some approximations in our estimates (for

example, accelerations would cause a higher number of tire particles (6)). However, we make

two observations.

(i) First, it is important to note that if city-wide accelerations can be measured and aggre-

gated, then this approach can be corrected to yield a more realistic and sophisticated

model for tire particle estimation.

(ii) In many of our applications, we are interested in locations of elevated tire dust. While the

simplified modelling approach will certainly affect the estimate of absolute amount of

PM gathered in a specific location, the relative ranking of locations (to guide, for exam-

ple, collection) will be less affected by the modelling assumption.

Thus, in our case, the force can be approximated as a function of velocity as

FðvÞ ¼ m � g � cr þ
rAcd

2
v2; ð7Þ

where the first term describes the rolling effect of the vehicle, while the second term takes into

account the air drag resistance. In Eq (7), m is the mass of the vehicle, g is the the gravitational

constant, cr is the rolling resistance, cd is the drag resistance coefficient, ρ is the density of air,

and A is the approximated front area of the vehicle. Numerical values for an average vehicle

are given in Table 1. To estimate the number of tire particles per driven km, (6) and (7) are
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combined as follows:

PNðvÞ ¼ a0 þ a1 �
FðvÞ
1000

þ a2 �
FðvÞ
1000

� �2
 !

� ðb0 þ b1 � vÞ �
1000

v
: ð8Þ

Note that the true process of generating tire particles is also affected by other factors that we

are not considering here, such as road surface, type of tire, vehicle’s weight [33] etc.

Comment: As a final comment, we further remark that Eq (8) gives the number of particles

under rather approximated conditions and may underestimate the actual number of PN, as

acceleration and braking events are neglected. However, as the Markovian models reveal den-

sities, we expect these approximations to be reasonably accurate up to a scaling factor.

The estimate of the number of tire particles (8) is now used to convert the unit of time of

the original transition matrix into a tire particle, and a step in the Markov chain now corre-

sponds to a unit of tire emission. For this purpose, we change the diagonal entries of the transi-

tion matrix P as follows:

PSi!Si ¼
PNðviÞ � li � 1

PNðviÞ � li
; i ¼ f1; . . . ; ng; ð9Þ

where vi is the average velocity on the road segment i and li is the length of the corresponding

road segment. Then, the off-diagonal elements are re-normalized as stated in Eq (5) to keep

the transition matrix row-stochastic.

Comment: The effect of the diagonal scaling of Eq (8) is that large values in the diagonal of

the original matrix P of Eq (8) corresponded to long times required to travel along a given

road segment, while in the new transition matrix for the tire emissions model, large values in

the diagonal entries of the new transition matrix now correspond to road segments with high

tire emissions. More properties of the diagonal scaling can be found in [24]. Table 2 summa-

rizes the interpretation of typical quantities of interest in Markov chains for the original transi-

tion matrix of travel times, and the new transition matrix related to tire emissions.

4 Applications of tire emissions model

While the utility of Markovian traffic models has been documented in several publication, to

the best of our knowledge their utility in the context of tire emissions has not yet been

Table 1. Numerical values for parameters in PN(v) (8).

Parameter Value Unit

m 2200 kg

g 9.81 m/s2

cr 0.0108 -

ρ 1.2 kg/m3

A 2.2 m2

cd 0.233 -

a0 -102 -

a1 -4009 N−1

a2 865 N−2

b0 0.4834 -

b1 0.062 s/m

https://doi.org/10.1371/journal.pone.0260226.t001
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investigated. The objective of this section is to present some basic applications of the tire emis-

sions model to illustrate its utility. We begin with some basic applications.

4.1 Application I—Design of low emissions zones

To illustrate potential applications of our approach, we now consider the design of a low emis-

sions zone for a city. To provide some background context and link this to our previous work

we now first consider the same urban network that had been investigated in references [23,

24]. This simple network is depicted in Fig 2 and assumes that two clusters of nodes A-B-C

and E-F-G are connected through node D. In the diagram nodes correspond to junctions, and

links to roads.

It is well known that changing speed limits may be a convenient policy to reduce urban

emissions of pollutants. To investigate this idea for tire emissions we now compare what hap-

pens if different speed limits are considered in the whole network, and results are illustrated in

Figs 3 and 4, in terms of the entries of the Perron eigenvector of the stationary distribution of

tire emissions. Recall, the entries of the Perron vector are those road segments where tire emis-

sions are most likely to accumulate (both airborne and on the ground).

As it can be seen from Figs 3 and 4, measured vehicle obtained from the mobility simulator

SUMO [34] (blue dashed line) are compared with the basic Markovian traffic model (black

solid line), for every considered speed limit. A very close correspondence between the simula-

tor output and the Markov chain can be observed. In the same figure, we also report the distri-

bution of different pollutants as estimated using the Markov chain of emissions [24].

Comment: While the stationary distributions of different pollutants and travel times can be

easily estimated with the Markovian approach in a few milliseconds, it is more complicated to

retrieve the same information by using the simulator. Indeed, in the latter case an ensemble of

Table 2. Interpretation of some Markov chain quantities of interest in: (a) the case of the Markov chain character-

ising road congestion; (b) the case of the Markov chain characterising tire emissions.

Quantity /

Markov chain

Congestion Tire emissions

Perron

Eigenvector

Vehicular density in the network Density of tires emissions in the network

Mean First

Passage Times

Average travel times for a pair of origin/

destination

Average amount of emissions for a pair of origin/

destination

Kemeny constant Average travel time for a random trip

(Global indicator of travel efficiency)

Average amount of emissions for a random trip

(Global indicator of tires-induced emissions)

https://doi.org/10.1371/journal.pone.0260226.t002

Fig 2. Simple urban network.

https://doi.org/10.1371/journal.pone.0260226.g002

PLOS ONE Markovian city-scale modelling and mitigation of micro-particles from tires

PLOS ONE | https://doi.org/10.1371/journal.pone.0260226 December 1, 2021 8 / 22

https://doi.org/10.1371/journal.pone.0260226.t002
https://doi.org/10.1371/journal.pone.0260226.g002
https://doi.org/10.1371/journal.pone.0260226


simulations has to be carried out for each different value of speed limits, to average the stochas-

tic effects of different routes of different vehicles.

4.1.1 Optimized speed limits. It can be observed in Fig 3 that for low speed limits the

density of pollutants is proportional to the density of vehicles (where there are more vehicles,

there is more pollution), however, when higher speed limits are considered, the proportional-

ity is lost, and different pollutants exhibit different properties with different speed limits. This

last comment is further illustrated in Fig 5 that shows the optimal value of the Kemeny

Fig 3. Distribution of emissions for the simple network with different speed limits, namely 20, 40 and 60km/h, in

the entire network.

https://doi.org/10.1371/journal.pone.0260226.g003
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constant as a function of speed limits. Recall that in the context of the tire emissions model,

the Kemeny constant K is a measure of the average number of emissions associated with trips

in the networks, and thus. it is a single quantity of the Markov chain which can be interpreted

as an indication for the pollution in the entire network.

In particular, a lower value the Kemeny constant corresponds to a lower value of average

emissions and a better overall network. As we have already observed, this may however be a

tricky problem, since the optimal speed limits for tire particles may actually increase emissions

from other pollutants. In order to calculate the optimal speed limit for the network, simula-

tions for different maximum speeds, which are 20, 35, 50, 65, 80, 95 km/h, have been con-

ducted using SUMO. After simulating the network for these six different speed limits, and

building the resulting Markov chain, six different Kemeny constants can be calculated for each

type of pollutant as well as for the travel time. It can be clearly observed that the optimal speed

Fig 4. Distribution of emissions for the simple network with different speed limits, namely 80, 100 and 120km/h,

in the entire network.

https://doi.org/10.1371/journal.pone.0260226.g004
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limit varies again for different types of pollutants. While low speed limits seem to be good for

reducing CO and tire particles, high speed limits would be better to reduce NOx and of course

travel time. Fig 5 depicts the non-obvious result that the “environmentally optimal” speed

limit actually depends on the specific pollutant that one is interested in minimizing. In particu-

lar, 40km/h appears to be the best speed limit if one aims at minimizing CO emissions, 60km/h
is the best choice for minimizing CO2 and tire emissions (which is the specific objective of this

manuscript), 100km/h is the best choice for minimizing NOx and Benzene, while, obviously,

the maximum considered speed limit (i.e., 120km/h) is the best option to minimize travel

times. Thus, the selections of the “best” speed limits is not trivial, and policy makers should be

informed about the optimal speed limits for different pollutants in order to make a decision.

4.1.2 Optimal speed limits in more realistic road networks. To conclude this section we

now confirm the above findings on a more realistic road network. To this end, rather than uti-

lising the simple network previously illustrated, we now consider the artificial, but nevertheless

realistic, network shown in Fig 6, where we assume that vehicles are allowed to travel in both

directions on each road. We simulate the traffic flows ustilising the previously mentioned sim-

ulator SUMO (Simulation of Urban MObility). SUMO has been developed at the Institute of

Transportation Systems at the German Aerospace Center and is an open source traffic simula-

tion package that has been frequently used for large traffic networks. Once pre-defined start

and destination roads are chosen, SUMO can automatically assign shortest routes to vehicles

(e.g., minimum time routes) to the vehicles. After the simulation, statistics such as average

travel times, average speeds, junction turning probabilities are available from SUMO for the

whole network, and can be used to form the transition matrix P of travel times. Then, the aver-

age speed model can be used to form the transition matrix of tire emissions as explained in

Section 3.

Fig 5. Kemeny constants for the simple network with different speed limits in the entire network.

https://doi.org/10.1371/journal.pone.0260226.g005
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As before, in order to calculate the optimal speed limit for the network, simulations for dif-

ferent maximum speeds, which are 20, 35, 50, 65, 80, 95 km/h, have been conducted using

SUMO. After simulating the network for these six different speed limits, and building the

resulting Markov chain, six different Kemeny constants can be calculated for each type of pol-

lutant as well as for the travel time. Fig 7 shows the Kemeny constants, normalized to fit the

same graph. It can be clearly observed that the optimal speed limit varies again for different

types of pollutants, confirming the results that had been provided for the simpler network.

While low speed limits seem to be good for reducing CO and tire particles, high speed limits

would be better to reduce NOx and of course travel time.

4.2 Application II—Advisory systems for protection of cyclists

One potential application of our Markov chain is related to the tire emissions footprint associ-

ated with specific routes. Active travel (cycling, walking) is experiencing a resurgence across

the developed world as citizens abandon public transportation in response to health related

concerns associated with Covid-19 [35, 36]. Pedestrians and cyclists are extremely vulnerable

road users and their exposure to traffic emissions regularly far exceeds that of car occupants.

Given this context our goal now is to use the Markovian model to find the minimum tire emis-

sion route for cyclists in the network in order to reduce the emission exposure and conse-

quently the harmful effect of emissions for their health. Here, we are using the classic Dijkstra

algorithm [37] to determine the best route, but different from traditional applications, we do

not wish to minimize distance or time, but the exposure to tires emissions. Thus, we associate

each road segment with its corresponding entry in the Perron eigenvector (which we remind

represents the normalized long run fraction of tire emissions release along each road segment),

and we use Dijkstra algorithm to find the best path. In addition to computing the minimum

tire emission route, one may also ask whether these best paths are sensitive to changing speed

limits; namely, in other words, to know whether changing the speed limits in the network also

Fig 6. Realistic urban network.

https://doi.org/10.1371/journal.pone.0260226.g006
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changes the minimum path. Fig 8 compares the normalized tire emissions along two possible

paths, having the same specified origin and destination point, for a cyclists, as a function of

speed limits. In particular, path A is the shortest path and the minimum emissions path when

speed limits are between 20 and 80 km/h whereas path B becomes the minimum tire emission

path for higher speed limits.

Fig 7. Kemeny constants for the realistic big network with different speed limits in the entire network.

https://doi.org/10.1371/journal.pone.0260226.g007

Fig 8. Minimum tire emission route for the realistic big network.

https://doi.org/10.1371/journal.pone.0260226.g008
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4.3 Application III—Tire-dust collection

We now present a somewhat unconventional application of the Markovian approach; namely,

using the Markovian approach to inform the collection of tire dust by road sweepers [38].

Street sweeping is an effective practice to reduce the amount of road dust, and there is a recent

interest in the literature to evaluate the effectiveness of the process [39] and to improve the effi-

ciency of sweeping machines [40]. Here, we take a different view, and we are rather interested

in the path followed by road sweepers. Indeed, we have already mentioned that tire particles

are harmful to humans irrespective of whether they become airborne, or become part of

ground debris. Ground debris is very harmful to humans due to the various pathways for tire

particles to enter the human food system; in particular, through city drainage systems. This lat-

ter aspect is an important consideration to motivate the collection of tire particles prior to

heavy rainfall events, or other severe weather events. In such circumstances, it is important to

collect as much tire debris as quickly as possible, and this is in severe contrast to how road

sweeping currently takes place.

Typically, road sweepers follow pre-defined paths, trying to cover most of the city, but with-

out taking into account parts that would maximize the collection of tire particles. In this partic-

ular context, our Markovian model has much to offer. Our basic intuition is as follows. Since

the Perron eigenvector provides the long-run fraction of pollutants along each road segment,

important information can be extracted from the Markov chain to inform collection of tire

particles in an optimum manner. However, as we have mentioned—our model is approximate

and subject to much uncertainty. Thus, we propose to use our estimated chain to seed a learn-

ing based algorithm, using Reinforcement Learning (RL), that will learn the routes that are

most likely to have large quantities of tire particles, and we now indicate how this can be

achieved making use of the Markovian modelling approach.

Recall that reinforcement learning [41] is a machine learning strategy where agents (such as

road sweepers) can explore an unknown environment, and learn optimal policies (such as the

most likely route to find large quantities of tire particles). Reinforcement learning in conjuc-

tion with our Markovian models is appealing for this problem for two reasons.

(i) Our Markovian model could, in principle, be used as a basis for routing algorithms. How-

ever, as mentioned, the model is very uncertain, as it neglects several factors that affect tire

particle generation. Thus, using a learning strategy to tune the elements of the transition

matrix to provide a basis for routing makes a great deal of sense for such applications.

(ii) In addition, as we have already mentioned, the Perron eigenvector of the tire emission

chain can be used to find the minimum tire emission routes for cyclists and other vulner-

able road users. However, the road sweeping problem is much more challenging if one

wishes to find themaximum polluted routes. This problem is an example of longest path

problems and these are known to be NP-hard.While it is true that longest path problems

can sometimes be converted into shortest path problems by negating the edge weights in

a graph [42], many shortest path algorithms are able to solve the problem only if the

underlying graph does not any cycles. This is not common for road network graphs, thus

further motivating our interest in reinforcement learning algorithms.

To orchestrate a setting for reinforcement learning that is well-posed, we must first ensure

that negative cycles in the graph associated with the network transition matrix are avoided.

Here, we remind that a negative cycle in a graph is a cycle for which the overall sum of the

weights is negative. To avoid such negative cycles in a graph, we simply add travel time/dis-

tance constraints to the longest path problem. In addition to making our solution well-posed,

such constraints in fact are very sensible for road sweeping applications due to limited battery
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capacity of sweeping vehicles in the case of electric road sweepers. To this end, we combine the

tire emission graph with a distance graph into one directed weighted graph G. Recall that an

entry of the Perron eigenvector represents the normalized long run fraction of tire emissions

released along the road segment assigned to that entry. The tire emission graph is then

obtained by assigning negated entries of the Perron eigenvector to the corresponding edges in

the graph. The distance graph is derived from a road network where the edge weight repre-

sents the length of road segments included in the corresponding state [43]. This then turns our

problem into a type of multi-objective optimisation problem. We use a convex linear combina-

tion of the two objectives (travel distance and tire emissions) characterised by a quantity α
which is the weight of the distance component of the cost. The corresponding weight function

is described in Function 1 which returns the weight of a given edge in graph G. This weight

represents the cost of traversing state s from any other preceding state.

Function 1 The Weight Function
Input: α 2 [0, 1]; s 2 S; ls; cs; Ltot;Ctot 2 R.
Output: ws.
1: function Wða; s; ls; csÞ

2: ws ¼ a � ls þ 1 � að Þ � � cs �
Ltot
Ctot

� �

return ws
Notation for the Weight Function: In Function 1 we have: α is the distance weight, a real

number that satisfies 0� α� 1; s is a state in the state space S; ls is the length of road links

included in state s (here, the road merging mechanism introduced in [43] is utilised); cs is the

amount of tire particles emitted along the road segments included in state s within some given

time interval τ; Ltot is the sum of the road lengths for a given road network; Ctot is the total

amount of tire particles emitted through the entire road network within time interval τ. Ctot
can be estimated using some historical data, and we simply assume that Ctot is known.

To further elaborate on our proposed algorithm, we denote by αmin the minimum value of

α such that the graph G does not have any negative cycles for weights computed as

Wða; s; ls;�csÞ, where �cs is the estimated amount of tire emissions along the road segments clus-

tered in state s within the time interval τ. The value of �cs is the result of multiplication of Ctot
by the corresponding to state s entry of Perron eigenvector. The value of αmin is determined

empirically to two decimal digits of precision. Note that even though the weight ws defined in

Function 1 is measured in the units of ls (i.e., distance), the values of ws can be negative. This

particular design of ws results in a lower value of αmin compared to what one would obtain in

the case of normalized unitless weights.

Once a combined graph (without any negative cycles) has been constructed, we then use a

shortest path algorithm to compute default solutions. To deal with values of α such that α<
αmin, approximation techniques are required to find the maximum tire emissions routes sub-

ject to the distance constraints. To solve this problem, our preferred approximation tool is

reinforcement learning. The default solutions from the Markov chain are used as the initial

estimate for the reinforcement learning algorithm. Note that even though the number of tire

particles is generally larger along longer routes, assigning very long routes to the road sweepers

would dramatically increase their travel time and may not even be feasible due to battery

constraints.

We employ reinforcement learning to amend the initial estimate whenever the constraint

of α< αmin is satisfied (note that the case α = 1 corresponds to the shortest path routing). The

Q-learning algorithm proposed in [44] is utilised here in our work. The initial parameters [41]

for the underlying Q-learning algorithm are obtained from the default solutions of the Mar-

kovian model. Actions of the agent (i.e. road sweeper) represent road directions, for instance,

turn left/right. The goal of the agent is to find a route which maximises the total expected
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reward [41]. The reward function for this application is outlined in Function 2: it returns a

reward at time step t.
Function 2 The Reward Function

Input: a 2 ½0; 1�; t;H 2 N; s; sD 2 S; b1; b2 2 R
þ.

Output: rt.
1: function RðsÞ
2: if s 6¼ sD then ⊳ Destination not reached yet
3: if t 6¼ H then ⊳ Time horizon not reached yet
4: Get the length ls of road links included in state s.
5: Get the estimated amount of pollution �cs in state s.
6: Measure the actual amount of pollution cs emitted in state s.

// Compute weights for state s
7: �ws ¼Wða; s; ls;�csÞ; ws ¼Wða; s; ls; csÞ ⊳Calls to Function 1
8: rt ¼ 1 �

�ws
ws

⊳Time horizon reached

9: else
10: rt = −β2 ⊳ Penalty
11: else ⊳ Destination reached
12: rt = β1
return rt
Notation for the Reward Function: The notation for Function 2 is as follows. H is the time

horizon, i.e. the number of allowed transitions per episode (day). State sD is the destination

state. The parameter β1 represents a reward that an agent would receive if it reached the desti-

nation state. Finally, β2 is a reward given to the agent if it did not reach the destination within

H times steps.

A realistic road network, based on an existing area in Barcelona, Spain, used in all our

experiments is depicted in Fig 9. To illustrate our algorithm we describe several illustrative

experiments, designed using the SUMO traffic simulator and randomly generated traffic con-

ditions. In all our experiments, a single Q-learning agent, i.e. road sweeper, starting from the

same origin O (see Fig 9) each episode (day) is used. The agent has a fixed destination D to

which it is asked to find the optimal route which (i) should be most polluted, and (ii) satisfies

the distance constraint given by the parameter α. A road sweeper is released every time a new

episode starts, i.e., once per day. Regarding the design parameters in the reward function, the

values of β1 and β2 were tuned to be 3 and 8, respectively. The values of αmin were empirically

determined for each specific experiment.

4.3.1 Experiment 1: Tire dust collection under high traffic densities. In this experiment,

we firstly consider a scenario in which traffic density is high. To achieve such a condition, we

release a new vehicle every simulation step. High traffic density conditions naturally result in a

larger amount of tire dust on the streets. In these settings, the estimated value of αmin is 0.78.

Fig 9 shows the shortest path in red, the initial solution in dashed green, and the optimal

solution in solid blue, obtained using the proposed Q-learning algorithm for high traffic densi-

ties. Fig 10 compares the properties of such three routes with α = 0.5 used for the Q-learning

solution. The brown dot-dashed line corresponds to the shortest path route, which was calcu-

lated using Dijkstra shortest path algorithm on the graph with weights computed using Func-

tion 1 for α = 1. The blue dashed line corresponds to the route obtained from the initial

estimate, i.e., the default solution. Such a route was also calculated using Dijkstra shortest path

algorithm on a graph with weights computed using the same weight function for α = αmin =

0.78. As it can be seen in Fig 10 (black solid line), the road sweeper uses the initial solution at

the beginning of the learning process. The agent, however, can explore the environment by

taking random actions and eventually improves the chosen sweeping path. As it can be

observed, the agent is able to find much longer routes than the shortest path and default routes

in a rapid fashion, and such routes are also more polluted with tire particles. Even though
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routes with higher tire emissions have been explored by the agent, it will not prefer them due

to the distance constraint, and this Q-learning routing system eventually converges to the solu-

tion which is optimal for the selected value of α.

4.3.2 Experiment 2: Tire dust collection under low traffic densities. To simulate traffic

conditions with a lower density, a new vehicle is now released every second simulation step. In

this case, the obtained value of αmin is 0.79. Fig 11 depicts the shortest path, default solution,

and performance of Q-learning for α = 0.4. For low densities, it is reasonable to reduce the

value of α in order to give more priority to pollution over distance. Otherwise, the Q-learning

routing system would be useless as it may converge to the default solution. Note that the

amount of collected pollution by the road sweeper in this case is indeed lower than that in the

case of high density traffic (see the middle subplots in Figs 10 and 11).

Fig 9. Realistic road network used in the experiments: An area in Barcelona, Spain. The road networks includes

153 road links which were clustered in 62 states. Fixed origin O and destination D are used in the experiments. Note:

the route marked with red is the shortest path route from O to D; the green route is the default solution; and the blue

one represents a solution provided by the Q-learning algorithm under high traffic density.

https://doi.org/10.1371/journal.pone.0260226.g009
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From Experiment 1 and Experiment 2, we can draw the conclusion that the system is

indeed able to find the optimal solution (the most polluted route with tire particles, without

breaking travel distance/time constraints) in both high and low density traffic conditions.

Thus, the RL strategy is an attractive alternative to those tools that can be fragile, especially

when dealing with longest path problems and large-scale scenarios.

Fig 10. Comparison of the shortest path routing, the initial solution (αmin = 0.78) and Q-learning solution for α =

0.5 under high density traffic conditions. The black curve corresponds to the median value of 100 different

realizations of the experiment. The error region indicates the 30th and 70th percentiles.

https://doi.org/10.1371/journal.pone.0260226.g010
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5 Conclusion

The problem of tire dust collection is likely to become one of the most pressing issues in auto-

motive research and in wider society. While the problem of micro-plastic pollution is already

becoming as issue of concern, the problem of tire induced pollution has, remarkably, yet to

manifest itself in the consciousness of the public-at-large, possibly due to the sheer weight of

the zero-tailpipe narrative that prevails currently in public discourse. Our objective in this

Fig 11. Comparison of the shortest path routing, the default solution (αmin = 0.79) and Q-learning solution for α
= 0.4 under low density traffic conditions. The black solid curve is the median value of 100 different realizations of

the experiment. The error region indicates the 30th and 70th percentiles.

https://doi.org/10.1371/journal.pone.0260226.g011
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paper is thus twofold. First, we wish to make researchers across a wide spectrum of disciplines,

aware of this problem, in all its guises. Second, we wish to suggest mitigation measures that

can be used to combat this problem. While previous studies have focussed on on-vehiclemiti-

gation measures, and network level access control mechanisms, our approach here is somewhat

different. Our approach is to develop modelling strategies that can be deployed a-posteri. Spe-

cifically, we wish to predict, using a combination of measurements, and analytics, the likely

areas where tire-dust will aggregate, with a view to using this information to inform collection

strategies. In this paper we have introduced one such model of tire dust distribution in cities.

A number of application use-cases are suggested that use the main features of this model.

Future work will explore refinements of this initial model and its experimental validation.
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1. Crisostomi, E., Shorten, R., Stüdli, S., Wirth, F., “Electric and Plug-in Hybrid Vehicle Networks”, CRC-

Press, 2017.

2. Katsikouli P., Ferraro P., Richardson H., Cheng H., Anderson S., Mallya D., et al. “Distributed Ledger

Enabled Control of tyre Induced Particulate Matter in Smart Cities”, Frontiers in Sustainable Cities, Vol

2, pp. 48–58, 2020. https://doi.org/10.3389/frsc.2020.575482

3. Prenner S., Allesch A., Staudner M., Rexeis M., Schwingshackl M., Huber-Humer M., et al. “Static

modelling of the material flows of micro- and nanoplastic particles caused by the use of vehicle tyres”,

Environmental Pollution, Volume 290, 2021. https://doi.org/10.1016/j.envpol.2021.118102 PMID:

34523518

4. Valavanidis A., Fiotakis K. and Vlachogianni T., “Airborne particulate matter and human health: toxico-

logical assessment and importance of size and composition of particles for oxidative damage and carci-

nogenic mechanisms”, Journal of Environmental Science and Health, Part C, Vol. 26, No. 4, pp. 339–

362, 2008. https://doi.org/10.1080/10590500802494538 PMID: 19034792

5. Gehring U., Beelen R., Eeftens M., Hoek G., de Hoogh K., de Jongste J., et al. “Particulate matter com-

position and respiratory health: the PIAMA Birth Cohort Study”, Epidemiology Vol. 26, No. 3, pp. 300–

309, 2015. https://doi.org/10.1097/EDE.0000000000000264 PMID: 25688676

6. European Environmental Agency, “Air Quality in Europe 2014 report”, Available at: http://www.eea.

europa.eu/publications/air-quality-in-europe-2014, 2014.

7. Laden F., Schwartz J., Speizer F. E. and Dockery D. W., “Reduction in fine particulate air pollution and

mortality: extended follow-up of the Harvard Six Cities study”, American journal of respiratory and critical

care medicine, Vol. 173, No. 6, pp. 667–672, 2006. https://doi.org/10.1164/rccm.200503-443OC

PMID: 16424447

8. Amato F., Cassee F.R., van der Gon H.A.D., Gehrig R., Gustafsson M., Hafner W., et al., “Urban air

quality: the challenge of traffic non-exhaust emissions”, Journal of hazardous materials Vol. 275, pp.

31–36, 2014. https://doi.org/10.1016/j.jhazmat.2014.04.053 PMID: 24837462

PLOS ONE Markovian city-scale modelling and mitigation of micro-particles from tires

PLOS ONE | https://doi.org/10.1371/journal.pone.0260226 December 1, 2021 20 / 22

https://doi.org/10.3389/frsc.2020.575482
https://doi.org/10.1016/j.envpol.2021.118102
http://www.ncbi.nlm.nih.gov/pubmed/34523518
https://doi.org/10.1080/10590500802494538
http://www.ncbi.nlm.nih.gov/pubmed/19034792
https://doi.org/10.1097/EDE.0000000000000264
http://www.ncbi.nlm.nih.gov/pubmed/25688676
http://www.eea.europa.eu/publications/air-quality-in-europe-2014
http://www.eea.europa.eu/publications/air-quality-in-europe-2014
https://doi.org/10.1164/rccm.200503-443OC
http://www.ncbi.nlm.nih.gov/pubmed/16424447
https://doi.org/10.1016/j.jhazmat.2014.04.053
http://www.ncbi.nlm.nih.gov/pubmed/24837462
https://doi.org/10.1371/journal.pone.0260226


9. de Miranda R. M., de Fatima Andrade M., Fornaro A., Astolfo R., de Andre P. A. and Saldiva P., “Urban

air pollution: a representative survey of PM2.5 mass concentrations in six Brazilian cities”, Air Quality,

Atmosphere and Health, Vol. 5, No. 1, pp. 63–77, 2012. https://doi.org/10.1007/s11869-010-0124-1

10. Baensch-Baltruschat B., Kocher B., Stock F., and Reifferscheid G., “Tyre and road wear particles

(TRWP)—A review of generation, properties, emissions, human health risk, ecotoxicity, and fate in the

environment”, Science of The Total Environment, Vol. 733, 2020. https://doi.org/10.1016/j.scitotenv.

2020.137823 PMID: 32422457

11. Chen H., Kwong J.C., Copes R., Tu K., Villeneuve P.J., Van Donkelaar A., et al. “Living near major

roads and the incidence of dementia, Parkinson’s disease, and multiple sclerosis: a population-based

cohort study”, The Lancet, pp.718–726, 2017. https://doi.org/10.1016/S0140-6736(16)32399-6 PMID:

28063597

12. Hatzopoulou M. and Miller E. J., “Linking an activity-based travel demand model with traffic emission

and dispersion models: Transports contribution to air pollution in Toronto”, Transportation Research

Part D: Transport and Environment, Vol. 15, No. 6, pp. 315–325, 2010. https://doi.org/10.1016/j.trd.

2010.03.007

13. WHO (World Health Organization), “Health effects of particulate matter. Policy implications for countries

in eastern Europe, Caucasus and central Asia”, 2013.

14. Grigoratos, T. and Martini, G., “Non-exhaust traffic related emissions. Brake and tyre wear PM”, Report

EUR, No. 26648, 2014.

15. Timmers V. R. and Achten P. A., “Non-exhaust PM emissions from electric vehicles”, Atmospheric Envi-

ronment, Vol. 134, pp. 10–17, 2016. https://doi.org/10.1016/j.atmosenv.2016.03.017

16. Kole P. J., Lohr A. J., Van Belleghem F. and Ragas A., “Wear and tear of tyres: a stealthy source of

microplastics in the environment”, International journal of environmental research and public health,

Vol. 14, No. 10, 2017. https://doi.org/10.3390/ijerph14101265 PMID: 29053641

17. Grigoratos T., Gustafsson M., Eriksson O. and Martini G., “Experimental investigation of tread wear and

particle emission from tyres with different treadwear marking”, Atmospheric Environment, Vol. 182, pp.

200–212, 2018. https://doi.org/10.1016/j.atmosenv.2018.03.049

18. Keuken M., Hugo D., and Karin V., “Non-exhaust emissions of PM and the efficiency of emission reduc-

tion by road sweeping and washing in the Netherlands”, Science of the total environment Vol. 408, No.

20, pp. 4591–4599, 2010. https://doi.org/10.1016/j.scitotenv.2010.06.052 PMID: 20627203

19. https://www.youtube.com/watch?v=fo-2b5JzTl8.

20. Obereigner, G., Shorten, R., Meier, F., Jones, S. et al. “Active Limitation of Tire Wear and Emissions for

Electrified Vehicles,” SAE Technical Paper 2021-01-0328, 2021.

21. Obereigner, G., Shorten, R., del Rey, L., “Low tire Particle Control”, Proceedings of IEEE International

Conference on System Theory, Control, and Computing, 2020.

22. Fauser, P., Tjell, J. C. and Bjerg, P. L., “Particulate air pollution, with emphasis on traffic generated aero-

sols”, 1999.

23. Crisostomi E, Kirkland S, Shorten R. (2011). “A Google-like model of road network dynamics and its

application to regulation and control”. International Journal of Control. Vol 81, No. 3, pp. 633–651.,

2011. https://doi.org/10.1080/00207179.2011.568005

24. Crisostomi, E., Kirkland, S., Schlote, A., and Shorten, R., “Markov chain based emissions models: a

precursor for green control”, Green IT: Technologies and Applications, pp. 381–400., Springer, 2011.

25. Faizrahnemoon M., Schlote A., Maggi L., Crisostomi E., Shorten R., “A big-data model for multi-modal

public transportation with application to macroscopic control and optimisation”, International Journal of

Control, Vol. 88, No. 11, pp. 2354–2368, 2015. https://doi.org/10.1080/00207179.2015.1043582

26. Wang T., Cao J., Hussain A., “Adaptive Traffic Signal Control for large-scale scenario with Cooperative

Group-based Multi-agent reinforcement learning”, Transportation Research Part C: Emerging Technol-

ogies, Vol. 125, pp. 103046, 2021. https://doi.org/10.1016/j.trc.2021.103046
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