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Peste des Petits Ruminants (PPR) is an acute and highly contagious transboundary

disease caused by the PPR virus (PPRV). The virus infects goats, sheep and some wild

relatives of small domestic ruminants, such as antelopes. PPR is listed by the World

Organization for Animal Health as an animal disease that must be reported promptly.

In this paper, PPR outbreak data combined with WorldClim database meteorological

data were used to build a PPR prediction model. Using feature selection methods, eight

sets of features were selected: bio3, bio10, bio15, bio18, prec7, prec8, prec12, and

alt for modeling. Then different machine learning algorithms were used to build models,

among which the random forest (RF) algorithm was found to have the best modeling

effect. The ACC value of prediction accuracy for the model on the training set can reach

99.10%, while the ACC on the test sets was 99.10%. Therefore, RF algorithms and eight

features were finally selected to build the model in order to build the online prediction

system. In addition, we adopt single-factor modeling and correlation analysis of modeling

variables to explore the impact of each variable on modeling results. It was found that

bio18 (the warmest quarterly precipitation), prec7 (the precipitation in July), and prec8

(the precipitation in August) contributed significantly to the model, and the outbreak of

the epidemic may have an important relationship with precipitation. Eventually, we used

the final qualitative prediction model to establish a global online prediction system for the

PPR epidemic.

Keywords: peste des petits ruminants, Worldclim, random forest algorithm, global online prediction

system, outbreaks

INTRODUCTION

PPR also known as pseudorinderpest [as designated by the World Organization for Animal Health
(OIE)], is an acute viral infection caused by PPRV. PPRV belongs to the Morbillivirus genus within
the Paramyxoviridae family and is closely related to rinderpest virus of the same genus, with
only one serotype (1). Affected animals are characterized by symptoms including fever, stomatitis,
diarrhea and pneumonia, and these can often be confused with secondary infections, making PPR
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a serious viral disease that is difficult to characterize, diagnose and
treat. PPRV mainly infects small ruminants and the virus does
not cause human infection (2). PPRV can be transmitted by direct
contact and is highly contagious. Small ruminants are infected
by contact with the secretions or feces of infected animals, or
by transporting infected animals to uninfected areas (3). Once
introduced, the virus can infect up to 90% of herds, and the
disease can kill 30 to 70% of infected animals. Since the first
outbreak of PPR in Ivory Coast in 1942, it has spread to most
parts of Africa, the Middle East, and Asia. To date, more than 70
countries have confirmed the discovery of PPR in their territories,
and many are at risk of disease transmission. There are nearly
1.7 billion sheep and goats in these regions, accounting for about
80% of the global total (OIE). The food security and livelihoods of
farmers in Africa, the Middle East and Asia have all been affected
by the outbreak of PPR, especially affecting the production of
small ruminants, which in turn exacerbates some of the world’s
poorest regional poverty stricken areas and has brought a huge
economic burden to agriculture. Currently, in many developing
countries, particularly in West Africa and South Asia, PPR is
considered to be one of the major animal transboundary diseases
that threatens livestock production (4, 5).

A large part of the healthy and sustainable development
of animal husbandry is affected by animal diseases. Frequent
outbreaks of animal diseases will cause a large number of animal
deaths, which will seriously affect income-generating households
and businesses that depend on livestock products. Moreover,
in order to prevent the further development of the epidemic,
relevant government departments will also take corresponding
countermeasures, which also brings a huge economic burden
(6). Therefore, it is very important to carry out risk assessments
on the transmission characteristics and outbreak risks of animal
diseases, so that early warning is in advance. The traditional
part of veterinary medicine includes: risk assessment and
management. The Agreement on Sanitary and Phytosanitary
Measures issued by the World Trade Organization in 1994
significantly increased the application of import risk analysis
methods (7, 8). A series of mathematical or statistical methods
are used in epidemic risk analysis (9). For example, there are risk
assessment models based on qualitative or quantitative analysis,
spatial prediction models based on geographic information
systems (10), propagation dynamics models and prediction
models based on machine learning algorithms (11, 12), etc.

Qualitative and quantitative models are two major categories
of risk assessment models. Qualitative models often use “high,”
“medium,” and “low” to describe the probability of risk occurring.
The importance of risk factors is then used to determine
the overall degree of risk (13). Assigning values to various
elements and potential risks that constitute risks is the key
to quantitative models. When all the elements of measuring
risk are allocated, the entire evaluation process and results
can be quantified (14, 15). In 2015, Woube et al. used the
Monte Carlo simulation method to sample the occurrence
probability of each risk node based on the risk scenario tree,
and assessed the risk of importing bovine pleuropneumonia
into the Ethiopian region through the import route (16). The
national veterinary department plays a very important role in

protecting animal health, providing reliable disease monitor
information, and performing scientific and effective assessments
(17). However, veterinary services in many countries are now
unable to perform their disease monitoring, prevention, and
control duties. Because of the lack of veterinary services, and
animal disease surveillance methods are still very traditional
(18). At the same time, due to the differences in monitoring
methods of different countries, it usually leads to delays in
reporting, which will increase the spread of the epidemic and
cause irreparable losses.

With the rapid development of machine learning technology,
more and more people have started to pay attention to regression
and classification problems that can help them find the rules
governing massive data in order to achieve the prediction effect.
Data prediction has become an important part of daily life.
The technology has been widely used in weather forecasting,
medical diagnosis and financial forecasting. Machine learning is
a multidisciplinary major covering probability theory, statistics
and computer algorithms. Ability to learn from data through
continuous optimization algorithms for analysis and prediction
(11, 19, 20). Machine learning is currently widely used in different
research fields, such as economics, biomedicine, engineering
technology, etc. At the same time, machine learning can be used
to solve classification, regression, clustering and other problems
according to the characteristics of the algorithm (21). In the
field of veterinary epidemiology, the epidemic prediction model
of machine learning algorithms is gradually being widely used.
The model can make an early prediction of the occurrence of
the epidemic, because once it breaks out, the destructiveness
is incalculable (22). Williams et al. used random forest (RF)
algorithms to predict suitable habitats for six rare plant species in
Creek Terrane, Northern California (23). In 2013, the enhanced
regression tree algorithm was used by Samir Bhatt et al. to
establish a dengue risk statistical model to predict dengue
epidemics worldwide (24).

In addition, climate and environmental factors (temperature,
precipitation, etc.) have an impact on the spread of the virus, and
climate and environmental factors may be the main cause of the
occurrence and recurrence of infectious diseases. The analysis of
the relationship between environmental and climatic conditions
and diseases plays an important role in the monitoring and
control of animal epidemics. The WorldClim database is based
on monthly average climate data for weather stations from a
large number of global, regional, national, and local sources
(25). The WorldClim data set is widely used in the simulation
of global climate change and disease analysis. In 2019, Zheng
et al. conducted seasonal simulation of the environmental
suitability distribution of Aedes albopictus in China based on
Worldclim data (26). Chalghaf et al. used temperature and
precipitation data from the worlsclim database to predict the
distribution of Leishmania vetors in the Mediterranean Basin
using a comprehensive niche model method (27). Mollalo
et al. collected remote sensing data and meteorological data
related to environmental factors under the framework of
geographic information System (GIS). They used different
machine learning algorithms to build a qualitative prediction
model for leishmaniasis, and the results showed that support
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vector machine (SVM) algorithm had the best modeling
effect (28).

Inspired by the successful application of these prediction
models in disease surveillance, we want to apply them to
the prediction of PPR. In this paper, PPR outbreak data and
WorldClim database meteorological data were used to build a
PPR prediction model. After feature selection methods were
used, eight sets of features were selected: bio3, bio10, bio15,
bio18, prec7, prec8, prec12, and Alt for modeling. Then different
machine learning algorithms were used to build models, among
which the RF algorithm was found to have the best modeling
effect. Therefore, the RF algorithms of eight variables was
finally selected to build the model. In addition, in order to
determine the impact of each variable on the modeling results,
we performed single-factor modeling and correlation analysis on
the variables involved during the modeling. Eventually, we used
the final qualitative prediction model to establish a global online
prediction system for the PPR epidemic. On this basis, we hope
that this research can play a role in monitoring the outbreak of
PPR in the future. Thereby reducing the occurrence of epidemics
and economic losses.

MATERIALS AND METHODS

Source and Pretreatment of Data
Outbreak data: Information on the PPR outbreak was obtained
from the global Animal Disease Information System (Empres-I)
of the Food and Agriculture Organization of the United Nations
(FAO), including the specific time of outbreak, the longitude and
latitude of the outbreak point. The time range of outbreak data
used to construct the global PPR prediction model was January 1,
2008 to December 31, 2018.

Climate data: 19 global climate-related variables (bio1–19)
and precipitation (prec1–12 month) and altitude data were
collected from the WorldClim database of WorldClim version
2 (http://www.worldclim.org).

Methods
Naïve Bayes
The Naïve Bayes (NB) belongs to the supervised learning
generative model and is a simple probability classifier based
on Bayes’ theorem (29). The algorithm consists of two types
of probabilities: the probability that the data belongs to each
class and conditional probability. Once these two probabilities
have been calculated, the Bayesian probability model can be
used to predict the new data. It has the advantages of simple
implementation, no iteration, and high learning efficiency (30).
Therefore, in practical applications, NB classifier is widely used
to solve classification problems.

Random Forest
Random forest (RF) is an algorithm developed and inferred by
Breiman et al. (31). In machine learning, a random forest is
a classifier that contains multiple decision trees. It can handle
a large number of input variables and can produce a highly
accurate classifier (32). A random forest is an improvement on
this approach, which creates a decision tree so that the optimal

segmentation point is not selected, but suboptimal segmentation
is performed by introducing randomness.

AdaBoost
The AdaBoost (Adaptive Boosting) is an integrated learning
algorithm proposed by Freund and Schapire to solve dichotomy.
It can adaptive to adjust the weight distribution of samples, and
set the weight of the wrong samples high and the weight of
the right samples low (33). In summary, After AdaBoost creates
the first tree, it uses the training performance of this instance
to measure how much weight should be given to each training
instance in the next tree. The weight of training data that is hard
to predict will increase, while the weight of instances that are easy
to predict will decrease. The models are created one by one, and
each model updates the weight of the training instance, which
affects the learning of the next tree in the sequence. The research
and application of AdaBoost algorithm are mostly concentrated
on classification problems, and have achieved great success in
solving application problems in different industries.

Support Vector Machine
Support vector machine (SVM) is a generalized linear classifier
proposed by Vapnik et al. (34). In simple terms, the basic steps
of SVM are as follows: first map the input points to the high-
dimensional feature space and find the separated hyperplane
to maximize the margin between the two classes in this space.
The marginal distance between the decision hyperplane and the
instances that are closest to boundary is maximized (35). SVM
is widely used in classification algorithms, and the classification
effect is very good. For example, it is used in pattern recognition
problems such as portrait recognition and text classification. It
has unique advantages in small samples and high-dimensional
data analysis (36).

Artificial Neural Networks
Artificial neural network (ANN) is a powerful machine learning
model. It is a complex network structure formed by simulating a
large number of processing units connected to each other based
on a mathematical model (37). The input layer, the hidden layer
and the output layer are three parts of the neural network. The
more layers of hidden layer, the more nodes of hidden layer,
under the nonlinear activation function, the neural network can
learn deeper features. The artificial neural network has self-
learning, adaptability and has strong fault tolerance. It is a
powerful tool for handling non-linear systems.

C4.5
C4.5 is a machine learning algorithm for classification decision
based on ID3, which improves the objective function of split
attributes (38). C4.5 algorithm uses information gain rate instead
of information gain as the attribute selection criteria of decision
tree. In addition, it has the advantages of processing discrete
and continuous attribute types, pruning after constructing
decision trees, and processing training data with missing
attribute values. Because of its simplicity and high performance,
C4.5 is a very important algorithm to implement accurate
classification models.
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Feature Selection
Features are the performance of some prominent properties and
the key to distinguishing things. Therefore, when we want to
classify or identify things, we actually judge by the performance
of the features. When the data is redundant and complex, feature
selection can be selected from the original attribute data set,
identifying and deleting as much irreparable and redundant
information as possible. It simplifies the size and complexity of
the data set and can increase the effect of classification. So as to
better solve the problem.

Calculation
Analysis Tools
Weka version 3.6 can be used for machine learning algorithm
modeling and analysis (https://www.cs.waikato.ac.nz/ml/weka/),
and this runs under the Windows 7 64-bit operating system. In
this study, the parameter settings of all the machine learning
algorithms used are summarized in Supplementary Material I.

Construction of an Online Prediction System
J2EE and MVC frameworks were used to construct a qualitative
prediction model of PPR. The three-layer architecture of view
layer, control layer andmodel layer realizes the separation of data
display and data processing. The specific implementation of the
system is as follows:

a. View layer: The Worldclim data input by the user is first
transmitted to the control layer in the form of a data stream,
and then the prediction results of the control layer are output to
realize the visualization results.

b. Control layer: Call the function to transfer the data instance
to the model layer and output the calculation result of the model
layer to the view layer.

c. Model layer: The model layer is an important core module,
and the model calculation is performed by reading the data
instances generated by the control layer.

RESULTS

Analysis of the Global PPR Outbreak
PPR is an infectious transboundary disease that has a severe
economic impact on people who depend on income from
livestock products. The small ruminant epidemic was first
reported in Ivory Coast in 1942, and then spread rapidly. The
epidemic has occurred in 70 countries around the world, covering
Asia, Africa, the Near East, and the Middle East.

In our current research, we collected data from 2,977 cases of
PPR outbreaks in the world from 2008 to 2018 from Empres-
I system (detailed outbreak data are not available in some
countries). Based on this data analysis, we found that the
outbreaks were concentrated on three continents in Europe, Asia,
and Africa. The global PPR epidemic is still erupting frequently
and has an upward trend (as shown in Figure 1). The Europen
Food Safety Authority (EFSA) considers PPR to be one of the key
animal diseases that should be controlled in Africa, the Middle
East and South Asia, and is considered essential for poverty
alleviation in these regions.

Identification of Outbreak Sites
It has long been observed that diseases are closely related
to seasons and climate. Changes in weather can often cause
changes in certain diseases, especially those caused by certain
viruses. The survival and spread of viruses are often related to
climatic variables such as temperature. In order to study the
impact of temperature and precipitation on the distribution of
PPR epidemics, we obtained 32 global climate-related variables:
bioclimatic variables (bio1–bio19), precipitation from January to
December (prec1–12) and altitude data (alt). WorldClim version
2 has the average monthly climate data for the minimum, mean,
and maximum temperatures and for precipitation observed from
1970–2000. The specific meanings of these variables are shown in
Table 1 [the spatial resolution of the variables is 30 s (∼1 km2)].
The outbreak data used in this study was collected from the
EMPRS-i disease information system, and these defined 2,976
points (excluding a coordinate point in the Maldives) as the
outbreak points (Figure 2). Then we used the R language code
to randomly generate 10,000 random points in the global scope,
removed the above outbreak points and the data points located
in the Antarctic continent, and set the remaining 6,938 points
as non-outbreaks points. (The original data of this study are
summarized in Supplementary Material II).

Finally, climate variables of the above outbreaks and
non-outbreaks were extracted from the WorldClim version
2 database to construct the data set, which was divided
into a training set (n = 5948, in which 1,783 outbreaks
and 4,165 non-outbreaks occurred, respectively) and
a test set (n = 3,966, in which 1,193 and 2,773 are
outbreaks and non-outbreaks occurred, respectively) for
model construction.

Feature Selection
When we classify or recognize things, we actually judge them
by their features. For example, for a data set with n variables,
there may be 2n combinations of subsets. Due to the huge
amount of computation, we cannot try all methods, so feature
selection becomes very important. In line way many feature
selection methods, this study adopted the different properties
discriminator in combination with different search methods
to search for the optimal feature subset, explored the possible
combinations of common ones and selected 1–32 different
subsets of combination. The results are shown in Table 2, and
by comparing the variable selection results, we found that
screening of variables for 8, 11, and 15 was the most reasonable
avenue to pursue and selection of the types of variables stayed
consistent. Therefore, we finally chose to filter the number of
variables as 8, 11, and 15 variables to form the dataset for the
modeling process.

Prediction Model Construction
After the feature selection in the previous step, the 8, 11, and
15 variables were selected to form the dataset for the subsequent
modeling. During the model construction process, we selected 10
common machine learning algorithms (such as SVM, KNN, RF,
etc.) for modeling, and evaluated the model in terms of sensitivity
(SN), specificity (SP), prediction accuracy (ACC) and Matthews’
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FIGURE 1 | Global distribution of PPR during 2008–2018. (A) Heat map of the global PPR epidemic outbreaks between 2008 and 2018 inclusive. (B) Number of PPR

outbreaks in Europe, Asia, and Africa during 2008–2018. (C) Number of PPR outbreaks per year from 2008 to 2018.

coefficient (MCC). As shown in Table 3. When eight variables
were involved in the modeling, the prediction accuracy using
10 algorithms was within range of 93.1–99.6% on the training
set and 92.8–99.5 on the test set. With these methods, the KNN
(99.6, 99.5%) and RF (99.1, 99.1) algorithms had the highest
ACCS on both the training and test sets. When 11 variables were
involved in the modeling of 10 algorithms, the ACC value of the
modeling prediction accuracy on the training set was 92.3–99.4%,
and for the test set was 92.0–99.7%, with KNN (99.4, 99.7%)
and RF (99.2, 99.3%) algorithms having the highest prediction
accuracies on both the training and test sets, respectively. In
addition, when 15 variables were used to model 10 algorithms,
the ACC value on the training set was 91.9–99.4%, and on
the test set was 91.7–99.7%, with the KNN (99.4, 99.7%) and
RF (99.2,99.2%) algorithms again having the highest prediction
accuracies. Therefore, when the number of variables was eight
and then modeling effect achieved was the best. Finally, the eight
variables that were selected for modeling were, bio3, bio10, bio15,
bio18, prec7, prec8, prec12, and Alt.

Model Prediction
To verify the data obtained before we set up the accuracy of the
model, we chose a global outbreak of small ruminants which
occur frequently in three countries: China, Bangladesh, and
Morocco, and the outbreak data of 2008–2018 from the FAO was
downloaded as positive sample. This was randomly generated in
the country without breaking point as negative samples was set
up as three separate independent test sets. The variables filtered
were selected, and the data preprocessing was carried out in order
to establish the model for verification.

The prediction results obtained are shown in Table 4. The
accuracy of the model was 60.2 to 73.3% for the Chinese
verification test set, 55.4 to 100% for the Moroccan verification
test set, and the lowest ACC of 47.8 was obtained for Bangladesh.
The ACCs of China and Morocco were higher than that of
Bangladesh, where SN was high but SP was low. This may be
explained that Bangladesh is a small country (14.7572 km) and
there was a nationwide outbreak of PPR. Positive and negative
samples cannot be separated, while the climates of negative
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TABLE 1 | The variables and description of data in the WorldClim database.

Variable Description Variable Description

bio1 Annual mean

temperature

bio12 Annual precipitation

bio2 Mean diurnal range

[mean of monthly

(max–min temp)]

bio13 Precipitation of wettest

month

bio3 Isothermality

(bio2/bio7) (*100)

bio14 Precipitation of driest

month

bio4 Temperature

seasonality (standard

deviation *100)

bio15 Precipitation

seasonality (coefficient

of variation)

bio5 Max temperature of

warmest month

bio16 Precipitation of wettest

quarter

bio6 Min temperature of

coldest month

bio17 Precipitation of driest

quarter

bio7 Temperature annual

range (bio5–bio6)

bio18 Precipitation of

warmest quarter

bio8 Mean temperature of

wettest quarter

bio19 Precipitation of coldest

quarter

bio9 Mean temperature of

driest quarter

Prec1–12 Precipitation from

January to December

bio10 Mean temperature of

warmest quarter

alt altitude

bio11 Mean temperature of

coldest quarter

and positive samples (the outbreak point) were similar. In the
previous studies, the KNN and RF have the best modeling
effect on both the training and test sets. Combined with the
validation results from China and Morocco, we found that the
RF (73.3, 99.6%) algorithm was more accurate than the KNN
(60.7, 88.4%) in the ACC prediction on the test set in the model
validation. Comparatively speaking, KNN algorithm has high
time complexity and space complexity. The unbalanced sample
distribution will lead to misclassification. In the training process,
RF algorithm can detect the interaction between features, so as
to balance the errors. In the actual classification prediction of this
study, RF algorithm has a higher prediction accuracy for different
independent test sets, and KNN algorithm is vulnerable to data
influence. So in the end, we chose the data set of eight variables
(bio3, bio10, bio15, bio18, prec7, prec8, prec12, and Alt) and used
the RF algorithm to build the online prediction model of small
PPR outbreaks around the world.

Comparison and Analysis of Variables
Before and After Screening
After the previous variable screening, the RF algorithm was
finally selected for the modeling process, and it was found that
the ACC value of the model was more than 90%. We also want
to further compare the difference between the RF modeling
results with no variable screening (i.e., all the variables which
were involved in the modeling) and the RF modeling results of
previous variable screenings. The results (as shown in Figure 3)
showed that the ACC of the model did not decrease when the
number of variables was reduced by 75% (from 32 to 8) after

variable selection, indicating that the feature selection could
process the data to some extent and remove some redundant
variables, which could play a corrective role and improve the
longitude of the model.

Based on the construction of the prediction model, we
conducted Pearson and Spearman correlation analyses on the
eight variables screened for in order to determine the correlation
of each variable to the PPR outbreak, and found that the variables
selected for had a strong correlation (as shown in Figure 4).
In addition, in order to determine the impact of each variable
on the modeling results, we conducted a single factor modeling
analysis. The results are shown in Figure 5. An estimate of eight
variables modeled using the RF method were obtained from the
SN, SP, ACC and the area under the ROC curve (AUC). It was
found that bio18 (the warmest quarterly precipitation), prec7 (the
precipitation in July), and prec8 (the precipitation in August)
contributed significantly to the model, and the outbreak of the
epidemic may have an important relationship with precipitation.
The AUC values for bio2, bio17, prec2, and prec11 were lower,
suggesting that these variables had less impact on the outbreak.

Online Prediction System for PPR
In view of the superior predictive ability of this epidemic
qualitative prediction model, we have further constructed an
online prediction system for the use of experimental technicians.
Users can access the system through the link http://www.
biotechshu.com:8080/PPR/index.jsp (as shown in Figure 6). The
operation steps are as follows: Step 1: Enter the initial interface
of the prediction system through the website link; Step 2: Enter
the value of eight meteorological datasets (bio3, bio10, bio15,
bio18, prec7, prec8, prec12, and Alt) in a someone region, and
click the “PREDICT” button; Step 3: The system calls the model
calculation in the background, and outputs the model result as
safety or outbreak.

To sum up, when the user enters the main interface of the
system and enters eight relevant meteorological data values, the
system will call the model in the background and output the
prediction results through the model calculation. The machine
learning algorithm is a good analysis tool in understanding the
factors related to the spread of disease, and can establish an
appropriate prediction model. We hope that this system can play
a role in monitoring the outbreak of PPR in the future. Thereby
reducing the occurrence of epidemics and economic losses.

DISCUSSION

Infectious diseases are a type of diseases that are transmitted
between humans or animals. For most infectious diseases, the
pathogen, the vector (or host) and the transmission environment
are three essential elements. The survival, reproduction,
distribution and transmission of pathogens, vectors, and hosts
require suitable climatic and weather conditions (39). Some
studies have shown that changes in the climate and environment
may affect the spread of diseases, such as temperature, wind,
precipitation, and sunshine (40, 41). For example, climate
change will damage the immunity and disease susceptibility of
humans or animals, thereby affecting the spread of diseases. In
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FIGURE 2 | The distribution of outbreak and non-outbreak points in the study region. (A) Global outbreak points of PPR (n = 2,977). (B) Selection of random points (n

= 10,000). (C) Distribution of outbreak points (n = 2,976) and non-outbreak points (n = 6938).
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TABLE 2 | Feature selection for screening of different variables.

Attribute evaluator Search method No. Variable

CfsSubsetEval BestFirst 8 3,10,15,18,26,27,31,32

GeneticSearch 11 3,6,10,15,18,24,26,27,28,31,32

GreedyStepwise 8 3,10,15,18,26,27,31,32

LinearForwardSelection 8 3,10,15,18,26,27,31,32

RankSearch 15 1,3,4,9,10,11,13,15,16,18,25,26,27,28,31

ScatterSearchV1 8 3,10,15,18,26,27,31,32

SubsetSizeForwardSelection 8 3,10,15,18,26,27,31,32

ChiSquaredAttributeEval Ranker 32 all

ClassifierSubsetEval GeneticSearch 1 25

RankSearch 1 27

ConsistencySubsetEval BestFirst 8 5,7,9,15,19,22,23,27

GeneticSearch 10 3,6,10,14,18,20,22,28,30,32

GreedyStepwise 8 5,7,9,15,19,22,23,27

LinearForwardSelection 8 5,7,9,15,19,22,23,27

RankSearch 20 1,3,4,5,6,8,9,10,11,12,13,15,16,18,24,25,26,27,28,31

SubsetSizeForwardSelection 8 5,7,9,15,19,22,23,27

FilteredAttributeEval Ranker 32 all

FilteredSubsetEval BestFirst 8 3,10,15,18,26,27,31,32

GeneticSearch 11 3,6,10,15,18,24,26,27,28,31,32

GreedyStepwise 8 3,10,15,18,26,27,31,32

LinearForwardSelection 8 3,10,15,18,26,27,31,32

RankSearch 15 1,3,4,9,10,11,13,15,16,18,25,26,27,28,31

ScatterSearchV1 8 3,10,15,18,26,27,31,32

SubsetSizeForwardSelection 8 3,10,15,18,26,27,31,32

GainRatioAttributeEval Ranker 32 all

InfoGainAttributeEval Ranker 32 all

LatentSemanticAnalysis Ranker 1 1

OneRAttributeEval Ranker 32 all

PrincipalComponents Ranker 8 1,2,3,4,5,6,7,8

ReliefFAttributeEval Ranker 32 all

SVMAttributeEval Ranker 32 all

SymmetricalUncertAttributeEval Ranker 32 all

WrapperSubsetEval GeneticSearch 1 25

RankSearch 1 27

general, climatic conditions limit the geographic distribution of
infectious diseases, and weather affects the time and intensity
of disease outbreaks (42). The current global infectious disease
situation is still severe, and infectious disease surveillance has
played an irreplaceable role in controlling the outbreak of
infectious diseases (43–45). The establishment of surveillance
and prediction models for infectious diseases will still be an
effective way to prevent and control infectious diseases. An
outbreak of PPR poses a serious threat to small ruminant
farming, especially for families who rely on rearing sheep for
their income. Based on this, we consider establishing a prediction
model of PPR for outbreak surveillance of this disease. Some
researches have shown that understanding disease-related factors
is a critical step in control and eradication strategies. The
machine learning algorithm is one of the analysis methods,
and an appropriate algorithm can be used to establish an

appropriate prediction model. For example, the RF algorithm
was used by Machado et al. to analyzed the importance of
factors related to the occurrence of bovine verbal diarrhea vs.
(BVDV) (46). Based on the species distribution model, Sehgal
et al. further applied machine learning algorithms to determine
the relationship between parasite prevalence and environmental
predictors (47).

Inspired by the successful application of these prediction
models in disease surveillance, we want to apply them to the
prediction of PPR. In line with many feature selection methods,
this study adopts the different properties discriminator in
combination with different search methods to search the optimal
feature subset, and then explores the possible combinations of
common ones and subsequently selects 1–32 different subsets
of combinations. By comparing the variable selection results, it
was found that screening of variables for 8, 11, and 15 was a
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TABLE 3 | Weak classification filter results for classification modeling of the variables.

Number Algorithm Training set Test set

SN SP ACC MCC SN SP ACC MCC

8 BayesNet 80.99 98.63 93.34 0.84 82.06 98.67 93.67 0.85

NaiveBayes 80.76 98.49 93.17 0.84 81.22 97.84 92.84 0.83

ANN 96.63 99.09 98.35 0.96 96.65 99.86 98.89 0.97

SVM 86.37 99.54 95.6 0.9 85.92 99.21 95.21 0.89

KNN 99.89 99.52 99.63 0.99 99.25 99.64 99.52 0.99

Adaboost 83.01 98.25 93.68 0.85 84.91 97.26 93.55 0.84

Bagging 96.3 99.54 98.57 0.97 95.31 99.5 98.23 0.96

BFTree 96.3 99.04 98.22 0.96 96.9 98.85 98.26 0.96

C4.5 96.63 99.26 98.47 0.96 97.07 99.42 98.71 0.97

RF 97.53 99.81 99.13 0.98 97.74 99.82 99.19 0.98

11 BayesNet 79.02 98.8 92.87 0.83 80.55 98.74 93.27 0.84

NaiveBayes 79.75 97.72 92.33 0.81 80.64 96.93 92.03 0.81

ANN 97.25 99.5 98.82 0.97 97.32 99.6 98.92 0.97

SVM 85.59 99.57 95.38 0.89 85.58 99.35 95.21 0.89

KNN 99.05 99.64 99.46 0.99 99.58 99.82 99.75 0.99

Adaboost 83.85 97.09 93.12 0.83 84.91 97.26 93.55 0.84

Bagging 96.47 99.59 98.66 0.97 95.31 99.57 98.29 0.96

BFTree 96.63 99.09 98.35 0.96 95.31 99.31 98.11 0.95

C4.5 97.25 99.21 98.62 0.97 97.23 99.39 98.74 0.97

RF 97.87 99.88 99.28 0.98 97.9 99.93 99.32 0.98

15 BayesNet 79.98 98.73 93.11 0.83 81.31 98.23 93.14 0.83

NaiveBayes 80.54 96.81 91.93 0.80 81.89 95.96 91.73 0.80

ANN 97.36 99.54 98.89 0.97 96.65 99.5 98.64 0.97

SVM 84.3 99.62 95.02 0.88 84.58 99.53 95.03 0.88

KNN 98.93 99.66 99.45 0.99 99.5 99.78 99.7 0.99

Adaboost 83.51 96.97 93 0.83 84.91 97.26 93.55 0.84

Bagging 97.03 99.57 98.81 0.97 95.73 99.28 98.21 0.96

BFTree 96.41 99.26 98.4 0.96 96.14 99.35 98.39 0.96

C4.5 96.92 99.3 98.59 0.97 97.49 99.39 98.81 0.97

RF 97.81 99.86 99.24 0.98 97.65 99.93 99.24 0.98

TABLE 4 | Validation results for China, Bangladesh, and Morocco.

Algorithm China (%) Bangladesh (%) Morocco (%)

SN SP ACC SN SP ACC SN SP ACC

BayesNet 33.5 96.2 66.7 100 0 47.8 33.0 93.4 55.4

NaiveBaye 28.9 96.2 64.5 100 0 47.8 0 100 57.8

ANN 98.9 44.8 70.3 100 0 47.8 100 100 100

SVM 88.4 92.8 90.7 100 0 47.8 0 100 57.8

KNN 100 25.7 60.7 100 0 47.8 99.0 80.6 88.4

Adaboost 70.1 95.9 83.7 100 0.1 47.8 0 100 57.8

Bagging 95.8 77.4 86.1 100 0 47.8 95.2 100 98.0

BFTree 95.4 45.8 69.2 100 0.1 47.8 98.6 88.2 92.6

C4.5 94.7 29.5 60.2 100 1.4 48.5 99.0 99.0 99.0

RF 98.9 50.5 73.3 100 0 47.8 99.0 100 99.6
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FIGURE 3 | Comparison of modeling results using RF algorithms before and after feature selection. (A) Training set. (B) Test set.

FIGURE 4 | Correlation coefficients among variables after variable screening. (A) Pearson correlation coefficient. (B) Spearman correlation coefficient.

reasonable way to proceed and the selection of the types of the
variables were consistent. Therefore, we finally chose to filter
the number of variables as 8, 11, and 15 variables to form the
dataset for modeling. When eight variables were involved in the
modeling, the prediction accuracy of 10 algorithms was within
the ACC range of 93.1–99.6% on the training set and 92.8–99.5%
on the test set. In conjunction with this, the KNN (99.6, 99.5%)
and RF (99.1, 99.1%) algorithms had the highest prediction
accuracy on both the training set and test sets. In addition, we
conducted Pearson and Spearman correlation analyses on the
eight variables screened for, in order that explore the correlation
of each variable to the PPR outbreak, and found that the variables

selected for, had a strong correlation. Finally, the eight variables
scenario was selected for modeling. By comparing the modeling
results before and after variable screening, it can be found that
feature selection method accelerates the calculation speed of the
model and improve the ACC of the model.

Raising the speed of the model calculation is done on the
basis of different algorithms with different modeling precisions.
Among them, choosing variables screen after eight subsets using
the RF algorithm to construct model, the model on the training
set achieved the highest ACC of 99.10%. It was found that the
ACC values of the KNN and RF algorithms were relatively close,
but the prediction accuracy of the RF algorithm in the model

Frontiers in Veterinary Science | www.frontiersin.org 10 January 2021 | Volume 7 | Article 570829

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Niu et al. Prediction for Global Peste des Petits Ruminants Outbreaks

FIGURE 5 | Results of single-factor modeling using RF algorithms.

FIGURE 6 | The interface of the Peste des petits ruminants predicting web server.

validation for China and Morocco was better than that of the
KNN algorithm (60.7, 88.4%) and the ACC value (73.3, 99.6%).
This may depend on its ability to process very high-dimensional

data. For example, when there are a large number of unknown
features in the data set, it can well-detect the interaction
between features and which features are more important in the
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classification process. Even when there is a lot of noise in the data
set, good prediction performance can be achieved.

Machine learning is a branch of artificial intelligence (AI),
and its statistical learning ability provides important help for
the diagnosis, animal population monitoring and analysis of
in veterinary epidemiology (48, 49). With limited laboratory
testing capabilities, AI approaches can rapidly monitor and
analyze animal epidemic diseases such as avian influenza,
African swine fever (ASF) (49). Walsh et al. successfully applied
gradient boosted trees combined with features of avian influenza
(bird type, age, etc.) to predict the probability of isolating
avian influenza viruses (AIV) (50). Fernandez-Carrion et al.
applied AI innovation technologies including deep learning and
computer vision to detect lethargy of ASF among wild boars
under experimental conditions. These investigation suggest the
potential application of AI algorithms in veterinary epidemiology
(51). In this study, we used 10 different machine learning
algorithms for modeling outbreaks of ASF, and our results
showed that the application of machine learning modeling and
available dataset (outbreaks data and meteorological data) in
the public domain are promising. We think this approach
could also be used to guide for understanding other infectious
diseases, such as foot and mouth disease and African swine
fever research, and so on. For most animal epidemic diseases,
climate change is only one of many factors affecting the spread
of disease. The occurrence of animal epidemic diseases is the
result of the mutual influence of various internal and external
factors. In addition, the density of livestock population, the
age of livestock, and the difference of geographical location are
also external factors that we cannot ignore. Peste des Petits
Ruminants is a serious disease of small ruminants, which is
exacerbated by animal migration, trade, and increased breeding
density (52). In livestock industries, the spatial distribution data
of the animal population and farm is very important for the risk
management of relevant government departments (53). Hollings
et al. assessed three machine learning [boosted regression trees
(BRT), random forests (RF), and K-nearest neighbor (K-NN)]
species distribution models (SDM) for their capacity to estimate
national-level farm animal population numbers within property
boundaries. Cecilia et al’s. evaluation model based on machine
learning algorithms found that host data (farm density) with
vector abundance predictions was sufficient to identify areas at
greater risk of becoming endemic (54).

In our following research, the population density and
distribution of susceptible animals, the movement and migration
of animals, and other features should also be taken into account
in future researches. What’s more, if the data set is sufficient,
we can increase the comparison between algorithms and use
new algorithms such as deep learning. In addition, the potential
errors and systematic errors of the data set should also be
considered. We believe that these can increase the accuracy of
classification prediction. In addition, in order to determine the
impact of each variable on the modeling results, we selected the
optimal RF algorithm for single-factor modeling and determined
the prediction and contribution analysis of each variable’s
characteristics to the PPR outbreak. It was found that bio18
(the warmest quarterly precipitation), prec7 (the precipitation

in July), and prec8 (the precipitation in August) contributed
significantly to the model, and the outbreak of the epidemic
may have an important relationship with precipitation. The AUC
values of bio2, bio17, prec2, and prec11 were lower, suggesting
that these variables had less impact on the PPR outbreak.
These three variables are more important predictors of PPRV
outbreak than other variables, and there was a relationship
between meteorological factors and PPR outbreak, which was
also consistent with the research results of Ma Jun et al. (55, 56).
PPRV is a kind of enveloped virus, which is more stable in a
dry environment (57). So, we have further constructed an online
prediction system for the use of experimental technicians. The
system plays a role in risk monitoring. It can be used to monitor
risk trends in different regions and make an overall forecast of
PPR outbreaks based on climate variables. Based on the nature of
machine learning algorithms, future prospective applications and
validation can help further develop the model.

As a common meteorological database, WorldClim is often
used in ecological and GIS modeling. However, the disadvantage
is that these data are a statistic of the past few decades, so
there must be some errors in the recent data (58). For example,
the current global warming, temperature and altitude are also
changing, which will lead to additional effects. In order to solve
the impact of these factors, we believe that real-time update of
meteorological data will become very important in the future. In
addition, somemodel features (such as slope, surface temperature
and other terrain data) can also be added to improve the accuracy
of model prediction.

CONCLUSIONS

In this paper, PPR outbreak data combined with WorldClim
database meteorological data were used to build a PPR prediction
model. After the method of feature selection, eight sets of
features were selected: bio3, bio10, bio15, bio18, prec7, prec8,
prec12, and Alt for the modeling process. Then different machine
learning algorithms were used to build models, among which
the RF algorithm was found to have the best modeling effect.
The ACC value of prediction accuracy of the model on the
training set can reach 99.10%, while ACC on the test set is
99.10%. Therefore, the RF algorithm of eight variables was finally
selected to build the model leading to the construction of the
online prediction system. In addition, in order to determine the
impact of each variable on the modeling results, we performed
single-factor modeling and correlation analysis on the variables
involved in the modeling. It was found that bio18 (the warmest
quarterly precipitation), prec7 (the precipitation in July), and
prec8 (the precipitation in August) contributed significantly to
the model, and the outbreak of the epidemic may have an
important relationship with precipitation. Eventually, we used
the final qualitative prediction model to establish a global online
prediction system for the PPR epidemic. On this basis, we hope
that this research can play a role in monitoring the outbreak of
PPR in the future. Thereby reducing the occurrence of epidemics
and economic losses.
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