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Abstract

Background

Alzheimer’s disease, a lethal neurodegenerative disorder that leads to progressive memory

loss, is the most common form of dementia. Owing to the complexity of the disease, its root

cause still remains unclear. The existing anti-Alzheimer’s drugs are unable to cure the dis-

ease while the current therapeutic options have provided only limited help in restoring mod-

erate memory and remain ineffective at restricting the disease’s progression. The striatal-

enriched protein tyrosine phosphatase (STEP) has been shown to be involved in the inter-

nalization of the receptor, N-methyl D-aspartate (NMDR) and thus is associated with the

disease. The present study was performed using machine learning algorithms, docking pro-

tocol and molecular dynamics (MD) simulations to develop STEP inhibitors, which could be

novel anti-Alzheimer’s molecules.

Methods

The present study deals with the generation of computational predictive models based on

chemical descriptors of compounds using machine learning approaches followed by sub-

structure fragment analysis. To perform this analysis, the 2D molecular descriptors were

generated and machine learning algorithms (Naïve Bayes, Random Forest and Sequential

Minimization Optimization) were utilized. The binding mechanisms and the molecular inter-

actions between the predicted active compounds and the target protein were modelled

using docking methods. Further, the stability of the protein-ligand complex was evaluated

using MD simulation studies. The substructure fragment analysis was performed using Sub-

structure fingerprint (SubFp), which was further explored using a predefined dictionary.

PLOS ONE | DOI:10.1371/journal.pone.0129370 June 12, 2015 1 / 20

OPEN ACCESS

Citation: Jamal S, Goyal S, Shanker A, Grover A
(2015) Checking the STEP-Associated Trafficking
and Internalization of Glutamate Receptors for
Reduced Cognitive Deficits: A Machine Learning
Approach-Based Cheminformatics Study and Its
Application for Drug Repurposing. PLoS ONE 10(6):
e0129370. doi:10.1371/journal.pone.0129370

Academic Editor: Asad U Khan, Aligarh Muslim
University, INDIA

Received: February 5, 2015

Accepted: May 7, 2015

Published: June 12, 2015

Copyright: © 2015 Jamal et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: AG is thankful to Department of Science
and Technology, Government of India for the financial
support.

Competing Interests: The authors have declared
that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0129370&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Results

The present study demonstrates that the computational methodology used can be em-

ployed to examine the biological activities of small molecules and prioritize them for experi-

mental screening. Large unscreened chemical libraries can be screened to identify

potential novel hits and accelerate the drug discovery process. Additionally, the chemical li-

braries can be searched for significant substructure patterns as reported in the present

study, thus possibly contributing to the activity of these molecules.

Background
Alzheimer’s disease is a major public health problem globally and contributes to 60–80% of all
dementia cases. Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that pre-
dominantly affects the elderly population [1]. According to the World Alzheimer Report 2013,
AD is the sixth leading cause of mortality in USA and currently affects some 35 million people
worldwide. The report states that the annual number of new cases of AD will double by 2030
and triple by 2050 [2]. The disease is characterized by progressive memory loss, impairment of
cognitive domains such as language, and mood disturbances. The exponential rise in the num-
ber of patients with AD along with the socioeconomic burden associated with it has made it
necessary to discover novel drugs for the treatment of the disease [3].

The US Food and Drug Administration has approved five drugs, which are currently used
for the treatment of AD, although none of them have been able to curtail or hamper the dis-
ease’s progression. The currently available therapeutic options for AD include: three cholines-
terase inhibitors, namely Donepezil, Rivastigmine and Galantamine, and one N-methyl D-
aspartate antagonist (i.e. Memantine). The drugs presently available are not effective to any sig-
nificant degree and their effectiveness varies according to the population. The major difficulty
in the treatment of AD is the narrowing therapeutic options. This has made it necessary to de-
velop effective and secure drugs, which can reduce the overall burden of the disease [4, 5].

Various hypotheses have been proposed regarding the cause of AD. However, the character-
istic abnormalities include the aggregation of amyloid-β (Aβ) plaques and tau protein tangles
in the brain. Aβ is a short peptide resulting from the amyloid precursor protein (APP), which
undergoes various conformational changes and aggregates to form plaques outside the brain
[6]. The soluble Aβ forms result in the loss of synaptic functions as well as synapse and cogni-
tive impairment [7, 8]. Striatal-enriched protein tyrosine phosphatase (STEP), a brain-specific
protein tyrosine phosphatase, preferably expressed in the cortex, hippocampus and related
brain structures, regulates the trafficking of NMDRs (N-methyl D-aspartate receptors) [9]. The
STEP associates with the NMDRs, a class of glutamate receptors, and lessens their activity by
dephosphorylating the tyrosine (Tyr), which leads to the internalization of NMDRs in the
brain. The over-expression of STEP leads to excessive trafficking of glutamate receptors,
NMDRs, which has been related to the synaptic changes in the brain that ultimately lead to
neurodegenerative conditions such as AD [10].

In the present study, we have generated machine learning based models using the high-
throughput bioassay available on PubChem [11] that was developed to identify inhibitors of
STEP. The assay conducted is based on the hypothesis that STEP inhibitors may reduce the
cognitive deficits in the brain and thus may prove therapeutic in terms of slowing down disease
progression. The work carried out in this study comprises preprocessing with molecular
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descriptors followed by machine learning based classification, subsequent structure based mo-
lecular docking and processing with molecular dynamics simulation.

Computational Methodology

Data Source of the Inhibitors
A total of 359,231 striatal-enriched protein tyrosine phosphatase (STEP) inhibitors and non-
inhibitors were downloaded from PubChem, which is a large repository of chemical structures
along with their biological assay activities. The fluorescence-based bioassay provided at Pub-
Chem with assay id: 588621 to identify the small molecule inhibitors of STEP was used in the
study. According to the assay, the activity score of the compounds was reported at a 20 micro-
Molar concentration. The compounds showing> = 40% inhibition activity at a 20 microMolar
concentration were considered as active compounds, while the rest were categorized as inac-
tive. The actives were assigned a bioassay activity score of 20 while the inactives were assigned
a score of 0. The screening classified 887 compounds as active and 358,344 as inactive.

Molecular Descriptors Calculation
The molecular structures, downloaded in Structural Data Format (SDF), were converted into a
vector of features known as descriptors using the freely available PowerMV [12] software.
PowerMV calculated a total of 179 2D molecular descriptors, which comprise 147 Pharmaco-
phore fingerprints, 24 weighted burden number descriptors and 8 property descriptors. The
descriptors found to be redundant throughout the data were removed using the RemoveUseless
filter implemented in Weka (version 3.6.11) [13], a machine learning suite of programs.

Descriptor Selection Method
It has been reported that excessive descriptors may lead to over fitting of the model and so in-
crease the dimensionality of the dataset in addition to the computational time involved. Not all
descriptors are relevant to the data classification and thus irrelevant descriptors were removed
using various feature selection methods in order to generate robust classification models [14,
15]. Feature selection techniques reduced the noise from the data by decreasing the number of
features, concentrating on the significantly contributing subset and speeding up the data min-
ing process along with improving the resulting accuracy of the classifiers.

In the present study, we have used the CfsSubsetEval module in combination with the Best-
First attribute selection algorithm integrated in Weka to select relevant descriptors. CfsSubse-
tEval considers the predictive ability of each descriptor in addition to the redundancy among
the features and puts forward a subset of descriptors that are highly correlated with the dis-
criminating class but have low inter-correlation. The BestFirst search algorithm searches the
space of attributes by greedy hill-climbing along with a backtracking facility by searching in
both forward and backward directions. Initially, a subset of the best features is chosen random-
ly and a new feature is obtained based on information gained from the features of the chosen
set. Subsequently, the initially chosen descriptors are removed and the process is repeated until
all the features have been considered at least once.

Machine Learning Based Classification Models
We have used a set of machine learning algorithms, namely the Bayes theorem-based Naive
Bayes (NB), the decision tree-based Random Forest (RF) and the support vector machine-
based Sequential Minimization Optimization (SMO), for the prediction of STEP inhibitors and
non-inhibitors.
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The Naive Bayes classifier performs by computing the probability of a compound being ac-
tive or inactive and then assigning that compound to a class with maximum probability. While
calculating the probability, the classifier assumes all the attributes to be independent of each
other [16]. NB classifier has the advantage of being the simplest and the fastest classifier and
thus has already been used quite frequently in a number of studies [17, 18]. The model was
generated keeping all the parameters as default in Weka (S1 table).

The Random Forest classification algorithm is based on a group of random decision trees
constructed using multiple features for each molecule from the training set. The final class that
a molecule is assigned to is determined by the mode of the decision of the individual trees (i.e.
the mode of the output class of the individual trees) [19]. RF uses an ensemble of decision trees
to assign a specific class to a particular molecule and previous studies have shown that the mul-
tiple decision trees give much accurate prediction than an individual tree [20]. Default parame-
ter settings were maintained in Weka while running the Random Forest classifier (S1 table).

Sequential Minimization Optimization is a support vector machine-based classification al-
gorithm, which uses a kernel function, constructs a hyperplane and then attempts to maximize
it to find best possible separation between the two classes [21]. SMO has the ability to handle
very large datasets by breaking the large problem into many small problems and then solving
each small problem which makes it the most preferred machine learning classifier [22, 23, 24,
25]. PolyKernel was used and the ‘Build logistic models’ was set true, while all the other param-
eter settings were kept as default in Weka (S1 table).

These classifiers have already been explained in detail elsewhere [16, 19, 21]. In the present
study, the classification was conducted using a machine learning tool, Weka (version 3.6.11)
[13], which provides a set of machine learning algorithms for data mining experiments. The re-
sults obtained using the various classification algorithms were then compared. The models
were generated using descriptors at two different levels: one using the descriptors obtained by
using the RemoveUseless filter of Weka and the other with the descriptors obtained using the
CfsSubsetEval module.

Handling Imbalanced Data
One of the principle problems with high-throughput screen datasets is the imbalance in data
(i.e. the presence of one class as a majority compared to another class) [26]. In the bioassay
dataset used in the present study, the number of active compounds was 887, making it the mi-
nority class, while the number of inactive compounds was 358,344, making it the majority
class. This could result in a biased classification by the classifier, which may predict every com-
pound as belonging to the major class and therefore overlook the minority class.

Weka handles misclassification problems due to a class imbalance by using cost sensitive
classification and implementing it using a 2�2 confusion matrix. The 2�2 cost matrix consists
of four segments: true positives (TP), true negatives (TN), false positives (FP) and false nega-
tives (FN). In cost sensitive classification, the misclassification costs are applied, although the
algorithm then tries to minimize them. Misclassifying an active molecule cannot be allowed
and thus the costs are applied to false negatives to reduce their number and retain active com-
pounds. However, reducing the number of false negatives simultaneously increases the false
positives. Therefore, a threshold of 20% was established and the cost of false negatives was in-
creased until the false positives rate reached 20%. The threshold value used in this study has
been determined empirically as satisfactory results have been reported in a plethora of previous
studies [26, 27, 28] where this 20% false positive threshold has been used.
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Evaluation of Performance
The predictive performance of the classifiers was evaluated using a cross validation approach
where an internal cross validation was conducted on the training set. During cross validation,
the training data was divided into n subsets, with the n-1 subsets being used as the train set and
the left out single subset being used as the test set. The process was repeated n times and each
left out single subset was used once as the validation set on the trained model. The performance
of the machine learning methods can be assessed in terms of the four elements of the confusion
matrix, which include true positives (TP), false positives (FP), true negatives (TN) and false
negatives (FN). Various statistical measures for assessing sensitivity, specificity the overall ac-
curacy and G-mean, were used to measure the performance of the classifiers in determining in-
hibitors from non-inhibitors. A receiver operating characteristic (ROC) plot was also used to
evaluate the performance of the generated models by computing the Area under Curve (AUC).

Sensitivity ¼ TP=TP þ FN

Specificity ¼ TN=TN þ FP

Accuracy ¼ TP þ TN=TP þ TN þ FP þ FN

G�mean ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sensitivity � Specificity

p

SMART Filtering of the Data
The SMART pattern represents the unwanted fragments present in the compounds that have
been found to be toxic or to have undesirable effects. The compounds predicted to be active by
the machine learning model were passed through the SMARTsfilter (http://pasilla.health.unm.
edu/tomcat/biocomp/smartsfilter) web application to filter out the compounds containing any
of the SMART patterns. The SMARTs set includes five filters, namely PAINS [29], Glaxo [30],
ALARM NMR [31], Pfizer LINT and Oprea. The compounds were passed through each of the
five filters and any compound that matched any of the SMART set was considered as having
failed, while those compounds that did not match to any of the five SMARTs were categorized
as having passed.

Molecular Docking
The X-ray crystal structure of the human protein tyrosine phosphatase, PTPN5 (STEP, stria-
tum enriched phosphatase) (PDB ID: 2BV5), was downloaded from the protein data bank
(PDB) [32] at a resolution of 1.8 Å. The protein was further pre-processed and optimized using
the Protein Preparation Wizard implemented in Schrodinger Suite [33, 34]. Using the Receptor
Grid Generation panel of Schrodinger, the grid was generated using the centroid of selected
residues, Ser473, Ala474, Gly477 and Arg478, taking the radius as 20 Å. The scaling factor and
partial charge cut off were kept as default at 1.0 and 0.25, respectively, and no constraints were
defined. The compounds that passed the SMARTsfilter were further screened using the dock-
ing approach and were prepared using Schrodinger’s LigPrep [35] software.

The prepared ligands were subjected to docking within the active site of STEP using Schro-
dinger’s Glide (Grid-based Ligand Docking with Energetics) [36, 37] module. Glide performs
an extensive conformational, locational and orientational search over the active site of the pro-
tein for each ligand and generates an output of Glide GScore and Glide energy. The Glide
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GScore includes Van der Waals energy, Coulomb energy, hydrophobic interactions, hydrogen
bonds, and polar interactions in the active site and solvation terms. The ligands were first
docked using the High-Throughput Virtual Screening (HTVS) docking protocol of Glide, fol-
lowing which the top scoring resulting ligands were further subjected to Glide’s Extra Precision
(XP) docking strategy. The final top scoring compounds were selected based on the Glide
GScore and Glide energy.

Molecular Dynamics Simulation Studies of the Docked Complex
The molecular dynamics (MD) simulation studies were performed using the Desmond Molec-
ular Dynamics system implemented in Schrodinger [38]. The MD studies were performed to
analyze the stability of the docked ligand-protein complex. Prior to the MD simulation, the
docked complex was prepared using Schrodinger’s Protein Preparation wizard. The prepared
protein was then solvated using a simple point charge (SPC) solvated model in an orthorhom-
bic boundary box with a 10 Å distance between the atoms of the protein and the sides of the
box. The force field used was the Optimized Potentials for Liquid Simulations (OPLS) all-atom
force field 2005 [39, 40]. Subsequent to the system builder step, the solvated protein was mini-
mized using the steepest descent (SD) minimization algorithm, which carried out a maximum
of 5000 steps until a gradient of 25 kcal/mol/Å was reached. This was followed by another min-
imization using the Limited-memory Broyden Fletcher Goldfarb Shanno (LBFGS) algorithm
and a convergence criteria of 1 kcal/mol/Å. The minimized system was then used to perform
the dynamics study for which simulations were carried out in the Isothermal-Isobaric ensemble
(NPT) at 300 K temperature and 1 atm pressure. During the minimization stages in MD simu-
lation, the initial minimization was performed with restraints on solute, followed by another
minimization without any restraints. Restraints applied only on the heavy atoms of the solute
were used throughout the simulation stages, however no restraints were applied in the final
stage of the MD simulations study. Constraints are implemented using M-SHAKE algorithm
in Desmond. The two parameters, maximum iteration count, m, which is the number of itera-
tions to be used in the constraint involved was set to 8 and relative tolerance, δ, for the con-
straint algorithm was set to was set to 10–8. The simulation for the docked complex was
carried out for 15 ns and the Smooth Particle Mesh Ewald Method was used to handle long
range electrostatic interactions. A cut off method with a default value of 9 Å as the cut off was
used for handling the short range interactions. The reference system propagator algorithms
(RESPA) were used with a 2 fs time step for bonded interactions, 2 fs time step for near-bonded
and 6 fs time step for far-bonded interactions. Further, the root mean square deviation
(RMSD) was computed and analyses were performed for all the trajectories in the 15 ns MD
simulation run.

Substructure Fragments
The inhibitors and non-inhibitors were searched for the presence of structural fragments using
the same substructure pattern recognition method as that used by Shen et al. [41] and Raghava
et al. [15]. The freely available PaDEL [42] software was used to generate substructure finger-
prints (SubFP), which generated a total of 307 substructure patterns. These substructures were
further searched in both the actives and inactives and were analyzed using the predefined sub-
structure dictionary available in PaDEL. The frequency of the substructure fragments in the in-
hibitors and non-inhibitors was calculated using the following formula:

Frequency of a fragment ¼ ðNfragment class � NtotalÞ=ðNfragment total � NclassÞ

where Nfragment_class is the number of compounds containing the substructure fragment in a
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STEP inhibition class, Ntotal is the total number of compounds, Nfragment_total is the total num-
ber of compounds containing the fragment, and Nclass is the number of compounds in the
inhibition class.

Results and Discussion
The present study was carried out to identify inhibitors of striatal-enriched phosphatase
(STEP) enzyme, which may prove therapeutic for Alzheimer's disease (AD). The high-
throughput assay used in the study was conducted on a total of 359,231 compounds using
fluorogenic phosphatase substrate and resulted in a total of 887 hit compounds that were cate-
gorized as actives while the remaining 358,344 were considered as inactive compounds.

Molecular Descriptors Analysis
The 179 2D molecular descriptors calculated using PowerMV were processed using the Remo-
veUseless filter in Weka. The resultant 154 attributes included 122 Pharmacophore finger-
prints, 24 weighted burden number descriptors and 8 property descriptors. Further, the
BestFirst search algorithm of Weka was applied on the non-redundant set of 154 descriptors.
The BestFirst search selected a set of 10 descriptors, which included 6 Pharmacophore finger-
prints and 4 weighted burden number descriptors. The list of the 154 non-redundant attributes
and 10 BestFirst descriptors is given in S2 table.

Performance of the Machine Learning Models
The machine learning models were generated using both sets of descriptors: all 154 descriptors
and 10 BestFirst descriptors using the classification algorithms NB, RF and SMO. The analysis
was performed using a 5-fold cross validation. S3 table lists the performance of the classifiers
using 5-fold cross validation.

All the models using 154 descriptors correctly predicted>75% of the test set compounds.
NB was found to be the least sensitive, with a sensitivity of 52%, while RF and SMO showed a
sensitivity of 64.9% and 69.4% respectively. All the models showed around 79% specificity.
However, since sensitivity and specificity do not provide a balanced classification, the G-mean
was calculated. SMO performed the best and had a G-mean value of 0.74 (Table 1). NB had an
AUC value of 0.72, RF had an AUC value of 0.79 and SMO had a value 0.81 (Fig 1(A)).

The models based on the BestFirst descriptors showed better accuracy and a specificity of
around 80%. However, they also showed a high rate of false positives. NB was again found to
be the least sensitive (Sn = 32.8%), followed by SMO (Sn = 36.7%), with RF being 57.6% sensi-
tive. RF performed best in terms of G-mean value at 0.68 (Table 2). The AUC values from the
ROC plot are 0.58, 0.74 and 0.57 for NB, RF and SMO respectively (Fig 1(B)).

Since the models based on both levels of descriptors showed similar accuracy, the RF model
based on the BestFirst descriptors was used for further analyses owing to its higher accuracy.

Table 1. Evaluation of generated models based on 154 attributes obtained using RemoveUseless filter.

Models True positives True negatives False positives False negatives Sensitivity (%) Specificity (%) Accuracy (%) G-mean

NB 92 57215 14454 85 52 79.8 79.7 0.64

RF 115 56697 14972 62 64.9 79.1 79 0.71

SMO 123 56903 14766 54 69.4 79.3 79.3 0.74

doi:10.1371/journal.pone.0129370.t001
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SMARTs Analysis
We analyzed the test instances predicted to be active by our best model for the presence of
SMART patterns to filter out unwanted molecules. A total of 13,722 predicted positives were
processed through the SMARTsfilter web application and 1,299 molecules passed through all
the filters, confirming the absence of any SMART pattern (Fig 2). The results indicated that the
majority of compounds (i.e. 78.7%) could not pass the ALARM NMR filter followed by the
PAINS (48.6%) and Pfizer LINT (38.1%). Some 13.4% and 9.3% of compounds could not pass
Oprea and Glaxo filters respectively. We also examined the 887 active compounds of the bioas-
say, of which only 30 compounds (3.4%) passed through all the five sets of SMARTs.

Molecular Docking Analyses
The 1,299 molecules that passed the SMARTsfilter were also virtually screened against human
protein tyrosine phosphatase, PTPN5 (STEP, striatum enriched phosphatase) (PDB ID:
2BV5), to further identify and rank the potential active molecules. Initially, the compounds
were docked using the HTVS approach, which led to 49 compounds with a Glide score of less
than -6.0 kcal/mol. The 49 compounds were then subjected to Glide XP docking. The top scor-
ing compound (1-benzyl-2, 5-dimethyl-4-({[(2S)-1-phenylbutan-2-yl] azaniumyl} methyl)-
1H-pyrrole-3-carboxylate, Ligand_874) among the resultant compounds had a Glide score of
-8.11 kcal/mol and a Glide energy of -42.44 kcal/mol (Table 3, Fig 3(A)). The ligand_874 that
occupied the active site defined and formed three hydrogen bonds with residues, Lys 439, Arg
478 and Gln 520. One hydrogen bond of 2.84 Å was formed between the NE atoms of Arg 478

Fig 1. ROC plot for the three machine learningmodels generated using (A) 154 descriptors. (B) 10 BestFirst descriptors.

doi:10.1371/journal.pone.0129370.g001

Table 2. Evaluation of generated models based on 10 BestFirst attributes obtained using CfsSubsetEval module.

Models True positives True negatives False positives False negatives Sensitivity (%) Specificity (%) Accuracy (%) G-mean

NB 58 57588 14081 119 32.8 80.3 80.2 0.51

RF 102 58049 13620 75 57.6 80.9 80.9 0.68

SMO 65 57796 13873 112 36.7 80.6 80.5 0.54

doi:10.1371/journal.pone.0129370.t002
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amino acid, the residue involved in the active site, and the O2 atom of ligand_874. Two other
hydrogen bonds were formed between the NZ of Lys 439 and the O1 of ligand_874 (2.83 Å)
and the NE2 of Gln 520 and the O2 of ligand_874 (3.06 Å). The ligand was also observed to
have many hydrophobic contacts involving the residues Tyr 304, Asn376, Glu378, Glu379,
Trp435, Pro436, Asp437 and Gln516. The compound, ligand_874, also passed the Lipinski fil-
ter with a molecular weight of 390.52 g/mol, two donor hydrogen bonds, 3.5 acceptor hydrogen
bonds and a partition coefficient (log P) value of 3.93. The interactions as well as the predicted
physical properties suggest the compound (1-benzyl-2, 5-dimethyl-4-({[(2S)-1-phenylbutan-
2-yl] azaniumyl} methyl)-1H-pyrrole-3-carboxylate, Ligand_874) to be a very promising can-
didate to fight Alzheimer’s disease. The chemical structure of the ligand is shown in Fig 4(A).

Molecular Dynamics Simulation Studies of the Docked Complex
To further evaluate the stability of the docked complex, the MD simulation of the Ligand_874
complex docked into the active site of STEP was carried out using the Desmond Molecular Dy-
namics system implemented in Schrodinger. As evident from Fig 5, the complex (backbone)

Fig 2. shows the %age of molecules filtered using SMARTs filter.

doi:10.1371/journal.pone.0129370.g002

Table 3. Binding affinity scores, energies, molecular interactions as well as H-bond distances of the docked compounds.

Compound Glide score
(XP) (kcal/
mol)

Interacting residues Distance (H-
bond, Å)

Glide energy
(kcal/mol)

Ligand_874 (1-benzyl-2, 5-dimethyl-4-({[(2S)-
1-phenylbutan-2-yl] azaniumyl} methyl)-1H-pyrrole-
3-carboxylate, Ligand_874) (AID 588621 dataset)

-8.11 Lys439, Arg478, Gln520, Tyr 304,
Asn376, Glu378, Glu379, Trp435,
Pro436, Asp437, Gln516

2.82, 2.84, 3.06 -42.44

Ligand_7 (Sigma-Aldrich compounds) -5.95 Lys439, Arg478, Gln520, Tyr 304,
Trp435, Scy472, Gln516

2.59, 2.68, 3.26 -32.80

Adenosine triphosphate (ATP) -9.34 Lys439, Arg478, Gln520, Trp435,
Asn376, Pro436, Asp437, Scy472,
Ser473, Gly477, Gln516

3.01, 2.80, 2.90;
2.99, 3.13; 2.94

-53.39

Folic Acid -6.03 Lys439, Arg478, Gln520, Trp435,
Arg303, Tyr304, Glu382, Scy472,
Ser473, Gln516, Thr517

3.03, 2.81, 3.15,
2.95, 2.87, 2.68

-50.97

doi:10.1371/journal.pone.0129370.t003
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acquired stability after 7 ns with a root mean square deviation (RMSD) of about 1.5 Å. The au-
thors have computed the root mean square deviation (RMSD) of the ligand and the protein-li-
gand complex in addition to the RMSD of the backbone. The ligand alone was stable after 7 ns
with a RMSD value of around 2 Å, and the backbone acquired stable trajectory beyond 7 ns
with a RMSD value of ~1.5 Å. During the RMSD analysis of the protein-ligand complex, both
the protein and the ligand acquired stability after 7ns having RMSD of about 1.5 Å and 2 Å re-
spectively. As evident from Fig 6, RMSD plots of the protein and ligand alone and the RMSD
plot of the full protein-ligand complex were clearly overlapping indicating that the complex
was stable and no large scale conformational changes were found to be associated with the
binding of the ligand. Additionally, we also extracted the structures of the simulated protein-li-
gand complexes corresponding to various frames over the entire trajectory and performed su-
perimposition analysis of these structures in order to gain insights into the dynamic stability of
binding (Fig 7). Fig 8(A) shows the superimposition of the ligand in the pre- and post-MD

Fig 3. Docked conformations of the lead compounds with STEP protein (A) H-bond interactions of Ligand_7 (B) H-bond interactions of Ligand_5
(C) H-bond interactions of ATP (D) H-bond interactions of Folic acid.

doi:10.1371/journal.pone.0129370.g003
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Fig 4. Chemical structures of the docked compounds (A) Ligand_7 (B) Ligand_5 (C) ATP (D) Folic acid.

doi:10.1371/journal.pone.0129370.g004

Fig 5. RMSD trajectory of the backbone obtained after MD simulation study.

doi:10.1371/journal.pone.0129370.g005
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simulated structures of the docked complex. The complete MD simulation study was carried
out for 15 ns, during which the Ligand_874 lost all the interactions formed in the pre-MD
docked pose, as evident from Fig 8(B). In the initial docked pose, the Ligand_874 formed three
H-bonds with residues Lys 439, Arg 478 and Gln 520. However, the ligand moved away during
the MD simulations and only one H-bond with Arg478 was formed. The hydrophobic interac-
tions of the ligand were also altered and reduced to three residues (Asp376, Gln379 and
Gln520) out of the eight formed in the pre-MD initial docked pose (Fig 9).

Substructure Fragment Analysis
To identify the structural fragments responsible for the activity of the active compounds, the
inhibitors and non-inhibitors set was further searched for the presence of substructure

Fig 6. RMSD trajectory of the protein-ligand complex obtained after MD simulation study.

doi:10.1371/journal.pone.0129370.g006

Fig 7. Superimposition of the structures of the complexes corresponding to various frames, 7, 9, 11,
13 and 15, during the trajectory analysis.

doi:10.1371/journal.pone.0129370.g007
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fragments using Substructure fingerprint (SubFP). The substructures with a statistically signifi-
cant p-value (p<0.01) were included in the study. The detailed analysis of the substructure
fragments with their frequencies in the inhibitors and non-inhibitors is given in Table 4. Ni-
trate, carboxylic acid, Michael acceptor, alkene, anion and salt were highly significant among
the inhibitors. It has been suggested that nitrates and their derivatives could be potential neuro-
protective agents, with one such novel therapeutic agent, GT 1061, currently being in Phase I
clinical trials [43]. The other patterns more frequent in inhibitors than non-inhibitors included
vinylogous ester, vinylogous carbonyl, 1, 3-Tautomerizable, conjugated double bond, annelated
rings and carbonic acid derivatives.

Screening of the DrugBank Database
The predictive models generated in the present study were used to screen a set of 1,510 ap-
proved drugs downloaded from the DrugBank [44] database. The NB model predicted 600
drugs to be active, the RF model predicted 370 drugs to be active and the SMOmodel predicted
456 drugs to be active against the STEP enzyme in Alzheimer's. We conducted a consensus
analysis, which resulted in 109 drugs predicted to be active by all the three models. The list of
109 drugs is available in S4 table.

Novel Treatments for Alzheimer’s using Drug Repositioning
Drug repositioning, which is the process of identifying new therapeutic effects of existing medi-
cations, presents an excellent opportunity for the identification of better and safer treatments
that would reduce the preclinical research required along with the time and costs involved in
developing novel drugs [45]. The concept of drug repurposing has already been successful in
treating many diseases including cancer, cardiovascular disease, obesity, irritable bowel syn-
drome, psychosis, smoking cessation, and Parkinson's disease [46, 47]. Drug repositioning has
now been utilized in the development of AD treatments and has been reported in various stud-
ies [48, 49]. Corbett et al. detailed 15 drug candidates for repositioning in the case of AD,

Fig 8. MD simulations (A) Superimposition of pre-MD (purple) and post-MD (green) complex of Ligand_7 with STEP, (B) H-bond interactions
present in Ligand_7 with STEP complex obtained after MD.

doi:10.1371/journal.pone.0129370.g008
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which included antihypertensives, antibiotics, anti-diabetic drugs and retinoid therapy. A total
of 109 drugs were here predicted as active against Alzheimer’s and so could be used as

Fig 9. shows the hydrogen and hydrophobic interactions between the ligand and the protein.

doi:10.1371/journal.pone.0129370.g009

Table 4. Lists the names of predicted active drugs from DrugBank against Alzheimer’s by generated predictivemodels.

DrugBank
ID

Drug name Drug class Glide Score (XP)
(kcal/mol)

Glide energy
(kcal/mol)

Literature reference

DB00171 Adenosine
triphosphate

Dietary supplement -9.34 -53.39 Coskuner and Murray, 2014

DB00158 Folic acid Dietary supplement -6.03 -50.97 Das, 2008, Ford et al., 2010

DB00144 Phosphatidylserine Dietary supplement -5.95 -45.36 Meng et al., 2014

DB00177 Valsartan Antihypertensive -3.92 -40.55 Wang et al., 2007

DB00328 Indomethacin Non-steroidal anti-
inflammatory drug

-3.50 -36.48 Jaturapatporn et al., 2012, Bernardi
et al., 2012

DB00796 Candesartan Antihypertensive -3.08 -40.17 Anderson et al., 2011, Lithell et al.,
2003

DB00307 Bexarotene Oncology -3.0 -23.90 Appleby et al., 2013

DB00966 Telmisartan Antihypertensive 0.90 -41.03 Mogi et al., 2008

doi:10.1371/journal.pone.0129370.t004
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repositioning candidates. However, we will be discussing those eight drugs for which any kind
of study with respect to Alzheimer’s has already been reported. The 109 drugs predicted by our
classification models included antihypertensives such as Valsartan [50], Telmisartan [51] and
Candesartan [52, 53], which have previously been positioned as repurposing candidates for
AD. The other drugs reported as active against STEP included Folic acid, Indomethacin, Aden-
osine triphosphate, Bexarotene and phosphatidylserine. Folic acid, a form of the water soluble
Vitamin B9, has been reported to reduce the level of homocysteine in the blood, which is other-
wise increased in cases of AD and may contribute to disease pathology [54, 55]. Non-steroidal
anti-inflammatory drugs (NSAIDs) such as Indomethacin have also been found to slow the
progression of the disease in Alzheimer’s patients by reducing the inflammatory action induced
by Aβ [56, 57]. One of the early biomarkers in cases of AD is altered amyloid-β protein (Aβ)
levels. In a recent study, ATP has been found to interact with Aβ and thus plays a possible role
in the progression of the disease [58]. Phosphatidylserine has also been indicated in the treat-
ment of Alzheimer's disease [59]. Various studies have reported that Bexarotene, commonly
used to treat T-cell lymphomas, also affects apolipoprotein E induction and so could be a good
candidate for Alzheimer’s treatment [60]. The details of the aforementioned drugs along with
their classes are given in Table 5 and information concerning all the 109 drugs is given in S4
table.

To have a better understanding of the binding mechanisms as well as an independent evalu-
ation approach, the eight repositioning candidates discussed above were screened against
human protein tyrosine phosphatase, PTPN5 (STEP, striatum enriched phosphatase) (PDB
ID: 2BV5). The drug molecules were first docked using Schrodinger’s Glide HTVS, after which
the top scoring poses of all the drugs were docked using Glide’s XP docking strategy. We iden-
tified two high scoring repositioning candidates, namely Adenosine triphosphate (ATP) with a
Glide score of -9.34 kcal/mol and Folic acid with a Glide score of -6.03 kcal/mol.

Adenosine triphosphate (ATP) formed six hydrogen bonds, out of which 2 hydrogen bonds
were formed between the NH2 and NE atoms of active site residue Arg 478 and the O7 of ATP,
with distances of 2.90 Å and 2.80 Å respectively. Two hydrogen bonds were formed between
the NE2 atom of active site residue Gln 520 and the O5 and O6 atoms of ATP, with distances
of 2.99 Å and 3.13 Å respectively. One hydrogen bond was formed between the NZ atom of
Lys 439 and the O4 atom of ATP (3.02 Å) while the last bond was formed between the NE1 of
Trp 435 and the O5 atom of the ligand, ATP (2.95 Å).

The second high scoring repositioning candidate was Folic acid, which formed six hydrogen
bonds and had a Glide energy of -50.97 kcal/mol. It formed a hydrogen bond (H-bond) with
the active site residue Arg 478 (2.81 Å) and other restudies, which involved Arg 303 (2.88 Å),
Tyr 304 (2.68 Å), Trp 435 (2.95 Å), Lys 439 (3.04 Å) and Gln 520 (3.15 Å). The interacting resi-
dues for both the repositioning candidates, ATP and Folic acid, can be seen in Fig 3(C) and Fig
3(D) respectively. The chemical structures are shown in Fig 4(C) (ATP) and Fig 4(D) (Folic

Table 5. Shows the frequencies of substructure fragments in the inhibitors and non-inhibitors.

Substructure fragment number Substructure name Frequency in inhibitors Frequency in non-inhibitors

SubFP187 Nitrate 325.17 0.19

SubFP84 Carboxylic acid 4.06 0.99

SubFP303 Michael acceptor 2.80 0.99

SubFP5 Alkene 2.09 0.99

SubFP297 Anion 2.00 0.99

SubFP299 Salt 2.00 0.99

doi:10.1371/journal.pone.0129370.t005
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acid). Table 3 details the Glide score, the Glide energy, the interacting residues and the H-bond
distances of the top scoring repositioning candidates.

External Test Set Validation
The predictive models generated in the present study were used to screen the MyriaScreen di-
versity library of 23,165 compounds purchased from Sigma-Aldrich. The compounds were
tested on the three models (NB, RF and SMO) generated using the BestFirst descriptors. The
NB model predicted 7,285 compounds to be active, RF predicted 4,938 compounds to be active
and SMO predicted 6,014 compounds that can act as inhibitors against STEP. The consensus
between all three BestFirst models resulted in 1,226 compounds showing activity against STEP.
The 1,226 compounds were further filtered for the presence of undesirable compounds using
the SMARTsfilter web application. Out of the 1,226, 147 compounds did not contain any of the
undesirable SMARTs patterns and passed through all the filters. The majority of the com-
pounds did not pass through PAINS (51.9%), while 42.7% compounds did not pass through
ALARM NMR and 37% compounds did not pass through Oprea. S5 table lists the final com-
pounds from the MyriaScreen library that can play a possible role as STEP inhibitors.

The 147 compounds that passed the SMARTsfilter were further docked in the active site of
human protein tyrosine phosphatase, PTPN5 (STEP, striatum enriched phosphatase) (PDB
ID: 2BV5), using the Glide module of Schrodinger. The compounds were first docked using
the HTVS approach followed by the XP docking approach. The top scoring compound, (3S)‐1‐
(furan‐2‐ylmethyl)‐5‐oxopyrrolidine‐3-carboxylate (Ligand_5), had Glide score of -5.95 kcal/
mol and Glide energy of -32.80 kcal/mol. The compound formed hydrogen bonds with three
residues, one with active site residue Arg478 (2.68 Å) and the other two with Lys439 (2.59 Å)
and Gln520 (3.26 Å) (Fig 3(B), Table 3). The residues involved in the hydrophobic interactions
with the compound included Tyr304, Trp435, Scy472 and Gln516. The compound had a mo-
lecular weight of 290.20 g/mol, 1 donor hydrogen bond, 5.5 acceptor hydrogen bonds and a log
P value of 0.5, which clearly indicate that the compound passed the Lipinski filter and so can be
an effective inhibitor against Alzheimer’s. The chemical structure of the compound, (3S) ‐1‐
(furan‐2‐ylmethyl) ‐5‐oxopyrrolidine‐3-carboxylate (Ligand_5), is shown in Fig 4(B).

Conclusion
Alzheimer’s disease is a major health concern globally, particularly among the elderly. AD affects
millions of lives worldwide in addition to the social and economic burdens associated with the
disease. Owing to the limited number of therapeutic options currently available, along with low
drug efficacy, it has become crucial to develop reasonably priced, safe, secure and effectual anti-
Alzheimer’s drugs. Drug discovery and development is an extremely slow, costly process and is
prone to a high rate of failures. The high-throughput screens have resulted in a large amount of
freely available data, which offers tremendous prospects. However, prioritizing the molecules be-
fore experimental screening in the drug discovery process still remains an issue to be addressed.

The present study deals with the generation of machine learning based computational models,
which can prioritize molecules based on their chemical properties and activities. The machine
learning models were generated using 154 2Dmolecular descriptors identified via the Naive
Bayes, Random Forest and Sequential Minimization Algorithmmethods. In addition, we used
the BestFirst search algorithm to identify relevant descriptors, which resulted in 10 descriptors.
The models generated at both descriptor levels performed extremely well in classifying inhibitors
and non-inhibitors against striatal-enriched protein tyrosine phosphatase (STEP), a tyrosine
phosphatase reported to be associated with AD. Until now, the proposed strategy has been ap-
plied to develop inhibitors against Acetyl cholinesterase (Ache) [61]. However, since no effective
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drug targeting Ache has been reported so far, the identification of novel inhibitors against other
crucial targets can be considered as a viable and worthy approach.

The compounds predicted to be active by the machine learning based models were screened
using molecular docking studies for deeper insights into their binding mechanisms. We identi-
fied two top scoring compounds: Ligand_874 (AID 588621) with a Glide score of -8.11 kcal/
mol and Ligand_7 (Sigma_Aldrich compounds) with a Glide score of -5.95 kcal/mol. We also
performed MD simulation studies for the docked complex of Ligand_874 and STEP. This sta-
bilized the docked complex and resulted in stronger and energetically more favorable interac-
tions as compared to the pre-MD docked complex. Our models also predicted some of the
FDA approved drugs that can be used as repositioning candidates in cases of Alzheimer’s. The
two top scoring drug candidates that can be repositioned and used against Alzheimer’s were
ATP and Folic acid, with Glide scores of -9.34 kcal/mol and -6.03 kcal/mol respectively.

To identify the structural fragments contributing to the activity of the molecules, we used a sub-
structure pattern recognition method in which the substructure fingerprints were generated based
on a predefined fingerprint dictionary. We computed the frequencies of the substructures in the in-
hibitor and non-inhibitor sets and found that substructures like nitrate, carboxylic acid, Michael ac-
ceptor, alkene, anion and salt were present in a large number in the active compound sets. The
proposed computational pre-screening approach would improve the likelihood of identifying ac-
tives from a large number of unscreened compounds, which could potentially result in less resource
intensive and more cost effective drugs that will provide better healthcare options to patients.

Supporting Information
S1 Table. Details of the parameters used in generating the models using NB, RF and SMO
machine learning algorithms.
(DOCX)

S2 Table. List of the 154 non-redundant attributes and 10 BestFirst descriptors.
(DOCX)

S3 Table. List of performance of the classifiers using 5-fold cross validation.
(DOCX)

S4 Table. List of 109 drugs predicted as active by all the three models NB, RF and SMO.
(DOCX)

S5 Table. List of 147 final compounds fromMyriaScreen library which can have a possible
role as STEP inhibitors.
(DOCX)
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