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Abstract Generation of bone marrow (BM) from embryonic stem cells (ESCs) promises to 
accelerate the development of future cell therapies for life- threatening disorders. However, such 
approach is limited by technical challenges to produce a mixture of functional BM progenitor cells 
able to replace all hematopoietic cell lineages. Herein, we used blastocyst complementation to 
simultaneously produce BM cell lineages from mouse ESCs in a rat. Based on fluorescence- activated 
cell sorting analysis and single- cell RNA sequencing, mouse ESCs differentiated into multiple hema-
topoietic and stromal cell types that were indistinguishable from normal mouse BM cells based on 
gene expression signatures and cell surface markers. Receptor–ligand interactions identified Cxcl12- 
Cxcr4, Lama2- Itga6, App- Itga6, Comp- Cd47, Col1a1- Cd44, and App- Il18rap as major signaling 
pathways between hematopoietic progenitors and stromal cells. Multiple hematopoietic progen-
itors, including hematopoietic stem cells (HSCs) in mouse–rat chimeras derived more efficiently 
from mouse ESCs, whereas chondrocytes predominantly derived from rat cells. In the dorsal aorta 
and fetal liver of mouse–rat chimeras, mouse HSCs emerged and expanded faster compared to 
endogenous rat cells. Sequential BM transplantation of ESC- derived cells from mouse–rat chimeras 
rescued lethally irradiated syngeneic mice and demonstrated long- term reconstitution potential of 
donor HSCs. Altogether, a fully functional BM was generated from mouse ESCs using rat embryos as 
‘bioreactors’.

Editor's evaluation
This work convincingly establishes a chimeric blastocyst complementation assay as a "bioreactor" to 
study the differentiation of mouse embryonic stem cells into hematopoietic lineages. The elegance 
of the approach lies in the use of GFP+ mouse embryonic stem cells that are implanted into a rat 
blastocyst, thus allowing for the tracking and phenotyping of the mouse- derived GFP+ hematopoi-
etic cells in the post- natal rat. This is an important contribution that will be of interest to researchers 
in developmental biology and hematopoiesis.
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Introduction
The bone marrow (BM) is a remarkably complex organ consisting of multiple mesenchymal, immune, 
endothelial, and neuronal cell types which together comprise a highly specialized microenvironment 
required to support c blood regeneration or hematopoiesis (Baccin et al., 2020; Baryawno et al., 
2019; Rowe et al., 2016; Tikhonova et al., 2019; Vo and Daley, 2015). Hematopoiesis occurs in 
a stepwise manner and is initiated by a heterogeneous, multipotent, population of hematopoietic 
stem cells (HSCs), located at the apex of the hematopoietic differentiation tree. Long- term HSCs 
(LT- HSCs) remain quiescent to maintain their undifferentiated state within the BM niche. When 
necessary, LT- HSCs can either undergo differentiation or self- renewal, to maintain the HSC pool. 
Conversely, short- term HSCs (ST- HSCs) are restricted in their self- renewal capacity and primed for 
differentiation into multipotent progenitors (MPPs), initiating the process of blood cell development. 
MPPs further differentiate into common myeloid progenitors (CMPs), lymphoid- primed multipotent 
progenitors (LMPPs), and common lymphoid progenitors (CLPs) that become increasingly lineage 
restricted with subsequent cell divisions, ultimately yielding all mature blood cell types (Haas et al., 
2018). The complexities of the hematopoietic system have been studied extensively in vitro, utilizing 
paired- daughter and colony- forming unit (CFU) assays (Rowe et  al., 2016; Vo and Daley, 2015). 
Fluorescence- activated cell sorting (FACS) has allowed for precise isolation and characterization of 
HSCs and progenitor populations based on cell surface markers. Classically, the most biologically 
relevant way to test HSC function remains to be through serial transplantation and hematopoietic 
reconstitution of irradiated recipient mice (Purton and Scadden, 2007; Rowe et al., 2016; Vo and 
Daley, 2015). Recent advances in single- cell RNA sequencing (scRNAseq) have made it possible to 
further explore heterogeneity of the BM niche (Baryawno et al., 2019; Tikhonova et al., 2019), and 
identify gene expression signatures of hematopoietic progenitor cells as they differentiate into mature 
blood cell types (Baccin et al., 2020; Nestorowa et al., 2016).

Generation of functional BM from embryonic stem cells (ESCs) or induced pluripotent stem cells 
(iPSCs) promises to provide new therapeutic opportunities for hematologic and autoimmune disorders. 
However, this approach is limited by technical challenges to produce functional HSCs or the mixture of 
hematopoietic progenitors capable of replacing all mature blood cell types after cell transplantation. 
HSC- like cells have been generated from mouse and human ESCs and iPSCs using in vitro differentia-
tion protocols (Amabile et al., 2013; Doulatov et al., 2013; Grigoriadis et al., 2010; Kitajima et al., 
2011; Ledran et al., 2008; Sugimura et al., 2017; Vodyanik et al., 2006). Likewise, ESCs and iPSCs 
have been used to produce myeloid and lymphoid progenitor cells as well as differentiated hemato-
poietic cells, including neutrophils, monocytes, erythroid cells, and T and B lymphocytes (Doulatov 
et al., 2013; Elcheva et al., 2014; Galic et al., 2006; Kennedy et al., 2012; Montel- Hagen et al., 
2019; Nafria et al., 2020; Vodyanik et al., 2005). When transplanted into irradiated animals, ESC/
iPSC- derived hematopoietic progenitor cells undergo differentiation and engraft into the BM niche, 
providing an important source of renewal and regeneration for various blood cell lineages (Rowe 
et al., 2016; Sugimura et al., 2017; Vo and Daley, 2015). While ESC/iPSC- derived hematopoietic 
cells often express appropriate cell markers, gene expression and functional studies indicate signifi-
cant differences between ESC/iPSC- derived cells and endogenous cells that have undergone normal 
morphogenesis in the BM (Lin et al., 2019; Lu et al., 2016; Sugimura et al., 2017).

In vivo differentiation of ESCs into multiple cell lineages can be achieved using blastocyst comple-
mentation, in which donor ESCs are injected into blastocysts of recipient animals to create chimeras. 
Fluorescently labeled ESCs undergo differentiation in recipient embryos that serve as ‘biological reac-
tors’ by providing growth factors, hormones, and cellular niches to support ESC differentiation in the 
embryo. In mouse and rat apancreatic Pdx1−/− embryos, donor ESCs formed an entire pancreas in 
which both exocrine and endocrine cells were almost entirely derived from ESCs or iPSCs (Kobayashi 
et  al., 2010; Yamaguchi et  al., 2017). Mouse ESC/iPSC- derived β-cells from mouse–rat chimeras 
were fully differentiated and successfully rescued syngeneic diabetic mice (Yamaguchi et al., 2017). 
ESCs generated pancreatic cell lineages in apancreatic pigs (Matsunari et al., 2013), kidney in Sall1- 
deficient rats (Goto et al., 2019), endothelial cells in Flk1−/− mice (Hamanaka et al., 2018), lympho-
cytes in immunodeficient mice (Muthusamy et  al., 2011), and neuronal progenitors in mice with 
forebrain- specific overexpression of diphtheria toxin (Chang et al., 2018). Recently, mouse ESCs were 
used to generate lung and thyroid tissues in embryos deficient for Fgf10, Nkx2- 1, Fgfr2, or β-catenin 
(Kitahara et  al., 2020; Mori et  al., 2019; Wen et  al., 2021). Using blastocyst complementation, 
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mouse ESCs effectively produced hematopoietic cells in mice deficient for Kit or Flk1 (Hamanaka 
et al., 2018; Jansson and Larsson, 2010). ESC- derived endothelial progenitor cells from mouse–
rat chimeras were indistinguishable from endogenous endothelial progenitor cells based on gene 
expression signatures and functional properties (Wang et al., 2021), indicating that ESC/iPSC- derived 
progenitors can be used for tissue regeneration (Bolte et al., 2020a; Bolte et al., 2018; Dharma-
dhikari et al., 2015; Kolesnichenko et al., 2021). While all these studies support the effectiveness of 
blastocyst complementation for differentiation of multiple cell types from ESCs/iPSCs in vivo, genera-
tion of functional BM from ESCs in interspecies chimeras has not yet been achieved.

Herein, we used blastocyst complementation to produce mouse BM in a rat. ESC- derived cells 
from multiple hematopoietic and stromal cell lineages were indistinguishable from normal mouse BM 
cells based on gene expression signatures and cell surface markers. Transplantation of ESC- derived 
BM cells into lethally irradiated syngeneic mice prevented mortality and resulted in a long- term contri-
bution to BM and mature blood cell types. Our data demonstrate that interspecies chimeras can be 
used as ‘bioreactors’ for in vivo differentiation and functional studies of ESC- derived BM hematopoi-
etic and stromal cells.

Results
Generation of BM from pluripotent ESCs in interspecies mouse–rat 
chimeras
To determine whether mouse ESCs can differentiate into multiple hematopoietic cell lineages in the 
BM of a rat, blastocyst complementation was performed by injecting GFP- labeled mouse C57BL/6 
ESCs (ESC- GFP) into rat SD blastocysts to create interspecies mouse–rat chimeras. Chimeric embryos 
were transferred into surrogate female rats for subsequent development in utero (Figure 1A). While 
mouse–rat chimeras were viable, they were smaller than age- matched rats (Figure 1B). Consistent 
with the presence of mouse ESC- derived cells (black) in the skin tissue (Wang et al., 2021), mixed 
black and white pigmentation distinguished the mouse–rat chimeras from juvenile rats (Figure 1B). 
The average body weight of mouse–rat chimeras was smaller than rats, but larger than mice of 
similar age (Figure 1C). ESC- derived cells were abundant in femur and tibia bones of the chimeras as 
evidenced by GFP fluorescence (Figure 1D). FACS analysis of BM cells obtained from juvenile mouse–
rat chimeras revealed that the percentage of ESC- derived cells was 15–50% (Figure 1E, F). Thus, ESCs 
contribute to the BM of mouse–rat chimeras.

To identify ESC- derived HSCs, we used GFP fluorescence and mouse- specific antibodies recog-
nizing multiple cell surface antigens (Figure  1E and Figure  1—figure supplement 1A, B). First, 
ESC- derived GFP+ BM cells were subdivided into lineage- positive (Lin+) and lineage- negative subpop-
ulations (Lin−) (Figure 1E and Figure 1—figure supplement 1A, B). The percentage of ESC- derived 
Lin− cells in the BM of mouse–rat chimeras was similar to the percentage of Lin− cells in the BM of age- 
matched C57BL/6 mice (Figure 1E, G). Next, we used Sca1 and CD117 (c- KIT) antibodies to identify 
Lin−Sca1+c- KIT+ cells (LSKs) (Figure 1E). The percentage of LSKs was higher in the BM of mouse–rat 
chimeras compared to the control (Figure 1G). Based on cell surface expression of CD150 and CD48, 
the percentage of LT- HSCs among LSKs was also higher in mouse–rat chimeras (Figure 1E, H). While 
changes in ST- HSCs were not significant (Figure 1H), total numbers of HSCs (LT- HSCs + ST- HSCs) were 
higher in mouse–rat chimeras compared to mice of the same age (Figure 1I). Thus, mouse ESCs can 
differentiate into hematopoietic progenitor cells in the BM of mouse–rat chimeras.

Single-cell RNA sequencing identifies multiple subpopulations of ESC-
derived hematopoietic cells in the BM of mouse–rat chimeras
To identify ESC- derived cells in the BM, single- cell RNAseq (the 10× Chromium platform) of FACS- 
sorted GFP+ BM cells was performed. Mouse ESC- derived cells from P10 mouse–rat chimeras were 
compared to ESC- derived cells from P10 mouse–mouse (control) chimeras, the latter of which were 
produced by complementing mouse blastocysts with mouse ESCs from the same ESC- GFP cell line. 
Based on GFP fluorescence, contribution of ESCs to BM cells in both chimeras was similar (Figure 2—
figure supplement 1A, B). Since the numbers of HSCs and other hematopoietic progenitor cells 
in the BM are low compared to numbers of differentiated hematopoietic cells, we enriched for BM 
progenitor cell populations prior to single- cell RNA sequencing by combining 90% of FACS- sorted 
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Figure 1. Mouse embryonic stem cells (ESCs) contribute to hematopoietic stem cells (HSCs) in the bone marrow (BM) of mouse–rat chimeras. (A) 
Schematic shows blastocyst complementation of rat embryos with mouse ESCs to generate interspecies mouse–rat chimeras. GFP- labeled mouse ESCs 
(mESCs) were injected into rat blastocysts, which were implanted into surrogate rat females to undergo embryonic development in utero. Femur and 
tibia bones of the chimeras were used to obtain BM cells. (B) Photographs of mouse–rat chimeras are taken at postnatal (P) days P3, P8, P13, and P28. 

Figure 1 continued on next page
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GFP+Lin− cells and 10% of GFP+Lin+ cells in each experimental group. BM cells from 3 animals per 
group were combined prior to FACS sorting. Based on published gene expression signatures of 
mouse BM cells (Baccin et al., 2020), 11,326 cells from 14 major cell subtypes were identified: 5308 
cells from control mouse–mouse chimeras and 6018 cells from mouse–rat chimeras. These include 
lymphoid, erythroid, myeloid, and neutrophil progenitors, Pro- B, Pre- B, B and T lymphocytes, mega-
karyocytes, dendritic cells, neutrophils, basophils/eosinophils, monocytes, and LMPP cells (Figure 2A 
and Figure  2—figure supplement 2A). Analysis of BM cells from mouse–rat and mouse–mouse 
chimeras demonstrated similar distributions of hematopoietic cell lineages derived from CMP and 
CLP (Figure 2A), indicating identical cell types in mouse–rat and control chimeras. For selected genes, 
we used violin plots to confirm cell specificity and expression levels of Ptprc (Cd45), Pclaf, Vpreb1, 
Tmpo, Ebf1, Ms4a4b, Vamp5, Elof1, Elane, Ms4a2, Siglech, Ngp, Clec4d, Ctss, and Ftl1- ps1 in the 
combined dataset (Figure 2—figure supplement 3). Markers of endothelial cells, adipocytes, osteo-
cytes, and neuronal cells were undetectable in BM cell suspensions from both chimeras (Figure 2—
figure supplement 2B). Percentages CLP- derived lymphoid progenitors, Pro- B, Pre- B, and B cells 
were lower in mouse–rat chimeras compared to the control (Figure 2A, B). In contrast, percentages 
of CMP- derived erythroid, myeloid and neutrophil progenitors, dendritic cells, and basophils/eosin-
ophils were higher (Figure 2B). Monocytes and neutrophils were similar, whereas megakaryocytes 
were decreased in the BM of mouse–rat chimeras (Figure 2B). The percentage of LMPPs in mouse–rat 
chimeras was increased compared to the control (Figure 2A, B). HSCs, identified by coexpression of 
Kit, Ly6a(Sca1), and Flt3 mRNAs (Rowe et al., 2016; Vo and Daley, 2015), clustered together with 
myeloid and erythroid progenitors (Figure 2—figure supplement 4A, B). The number of ESC- derived 
HSCs was higher in BM of mouse–rat chimeras compared to the control (Figure 2—figure supple-
ment 4C), findings consistent with FACS analysis (Figure 1H, I). Only 6 out of 6018 BM cells (0.1%) in 
mouse–rat chimeras contained both mouse and rat mRNA transcripts (Supplementary files 1 and 2), 
indicating that the fusion of mouse and rat BM cells is rare. Thus, although the cellular composition of 
ESC- derived hematopoietic BM cells was similar in mouse–rat and mouse–mouse chimeras, mouse–rat 
BM was enriched in HSCs, LMPPs, and CMP- derived erythroid, myeloid, and neutrophil progenitors.

Single-cell RNA sequencing identifies close similarities in gene 
expression signatures between ESC-derived hematopoietic cells in 
mouse–rat and mouse–mouse chimeras
Comparison of gene expression signatures between mouse–rat and mouse–mouse chimeras revealed 
significant similarities among ESC- derived hematopoietic cell types. Lymphoid progenitors and pro- B 
cells isolated from mouse–rat and control chimeras expressed Mif, Rcsd1, and Tspan13, whereas pre- B 
cells expressed Hmgb2 and Pgls (Figure 2—figure supplement 5A). Cd79a and CD79b transcripts 
were detected in B cells of mouse–rat and control chimeras, whereas Cd3g and Lck were restricted to 
T cells (Figure 2—figure supplement 5A). Based on the correlation analysis, gene expression profiles 
of all lymphoid cell types were similar between mouse–rat and control chimeras (Figure 2—figure 
supplement 5B). Likewise, gene expression signatures of myeloid, erythroid, and neutrophil progen-
itors and their derivatives in the BM were similar in both experimental groups (Figure  2—figure 
supplement 6A, B). Furthermore, single- cell RNAseq identified close similarities in gene expression 
signatures of ESC- derived HSCs and LMPPs in both chimeras (Figure 2—figure supplement 7A, B). 

Mixed black and white pigmentation distinguishes the mouse–rat chimeras from juvenile rats and mice. (C) Weights of mouse–rat chimeras are shown 
at different time points and compared to rats and mice of similar ages. Chimeras are significantly smaller than rats, but larger than mice (n = 7–18 in 
each group), **p < 0.01, see also Source data 1. (D) Fluorescence microscopy shows GFP and bright- field images of femur and tibia bones from P4 
rat, mouse, and mouse–rat chimera. (E) Fluorescence- activated cell sorting (FACS) analysis of mouse ESC- derived (GFP- positive) cells in the BM of 
P10 mouse–rat chimeras. Lineage- negative (Lin−), LSK, short- term HSC (ST- HSC), and long- term HSC (LT- HSC) cell subsets were identified in the BM of 
mouse–rat chimeras (n = 10) and control mice (n = 8), see also Figure 1—figure supplement 1A, B. (F) Histograms show GFP fluorescence of BM cells 
from chimeras and control mice. (G–H) FACS analysis shows increased percentages of mouse LSKs and LT- HSCs in BM of mouse–rat chimeras (n = 10) 
compared to control mice (n = 8), **p < 0.01, N.S. indicates no significance. (I) FACS analysis shows increased numbers of HSCs (ST- HSCs + LT- HSCs) in 
BM of mouse rat chimeras (n = 10) compared to control mice (n = 8), **p < 0.01.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Identification of lineage− cells, LSKs, short- term HSCs (ST- HSCs), and long- term HSCs (LT- HSCs) in the bone marrow (BM).

Figure 1 continued
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Figure 2. Single- cell RNAseq analysis identifies embryonic stem cell (ESC)- derived hematopoietic cell lineages in the bone marrow (BM) of mouse–rat 
chimeras. (A) Parallel dimension UMAP plots show identical hematopoietic cell clusters in the BM of mouse–mouse chimera (5308 cells) and mouse–rat 
chimera (6018 cells). ESC- derived BM cells were obtained from the BM of P10 chimeras using fluorescence- activated cell sorting (FACS) for GFP+ cells, 
see Figure 2—figure supplement 1A, B. Cells from n = 3 animals per group were pooled together prior to FACS sorting. Cell clusters were identified 
from single- cell RNAseq datasets using Uniform Manifold Approximation and Projection (UMAP) method, see also Figure 2—figure supplements 
2A, B and 3. Hematopoietic stem cells (HSCs) were identified by coexpression of Kit, Ly6a (Sca1), and Flt3 (Flk2), see Figure 2—figure supplement 
4. Heatmaps and linear regression analysis identified significant similarities in gene expression signatures of lymphoid and myeloid progenitor cells 
obtained from mouse–rat (R) and mouse–mouse chimeras (M), see Figure 2—figure supplement 5A, B and Figure 2—figure supplement 6A, B. 

Figure 2 continued on next page
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Thus, gene expression signatures of ESC- derived hematopoietic cells were similar in mouse–rat and 
control mouse–mouse chimeras.

Chimeric BM is enriched in mouse hematopoietic progenitor cells and 
rat chondrocytes
To examine the composition and origin of stromal cells in mouse–rat chimeras, we used an enzymatic 
digestion to obtain both hematopoietic and stromal cells from BM of P5 mouse–rat chimeras and 
compared them to BM cells of mice and rats of the same age. Flow sorting for GFP was performed to 
separate donor mouse cells (GFP+) and recipient rat cells (GFP−) in the chimeric BM. BM from control 
P5 mice and rats was also FACS- sorted for GFP– BM cells to ensure similar conditions of cell prepa-
rations prior to single- cell RNAseq. Based on published gene expression signatures (Baccin et al., 
2020), 6375 mouse and 5495 rat cells were identified in the chimeras, which were compared to 6418 
cells from control mice and 7016 cells from control rats. Similar hematopoietic and stromal cell clus-
ters were present in BM of mice, rats, and mouse–rat chimeras (Figure 3A–C). These included stromal 
cell clusters (endothelial cells, fibroblasts, myofibroblasts, and chondrocytes) and hematopoietic cell 
clusters with various progenitor and differentiated hematopoietic cell types. Since we did not enrich 
BM cell populations for Lin− cells, some rare BM cell subsets, such as HSCs, LMPPs, and dendritic 
cells, were not detected as separate cell clusters. Compared to normal BM from P5 mice, chimeric 
BM was enriched in mouse ESC- derived hematopoietic progenitor cells, such as myeloid, granulo-
cyte, and erythroid progenitors, whereas mouse- derived B cell lineages were reduced (Figure 3A), 
findings consistent with single- cell RNAseq comparison of P10 BM from mouse–rat and mouse–mouse 
chimeras (Figure  2). The percentage of mouse endothelial cells was increased in mouse–rat BM, 
whereas the percentages of mouse chondrocytes and fibroblasts were reduced compared to mouse 
control (Figure 3A). In contrast, mouse–rat BM was enriched in rat- derived chondrocytes and fibro-
blasts, but the percentages of endothelial and most hematopoietic cells were reduced compared to 
age- matched rats (Figure 3B). Thus, mouse cells preferentially contributed to hematopoietic progeni-
tors and endothelial cells, whereas rat cells contributed to the majority of chondrocytes and fibroblasts.

Direct comparison of mouse and rat cells within chimeric BM demonstrated significant similarities 
between gene expression signatures of hematopoietic and stromal cell lineages (Figure 3—figure 
supplement 1A–D). To examine cell signaling between hematopoietic progenitors and stromal cells in 
BM of mouse–rat chimeras, we generated the map of potential ligand–receptor interactions using P5 
single- cell RNAseq datasets. There were remarkable similarities in major receptor–ligand interactions 
between stromal and erythro- myeloid progenitor cells (EMPs) (Figure 4). Regardless of mouse and rat 
origins of BM cells, endothelial cells interacted with EMPs through the Cxcl12- Cxcr4 receptor–ligand 
signaling pair. The main signaling circuit between fibroblasts and EMPs was Lama2- Itga6, whereas 
chondrocytes signaled to EMPs through App- Itga6 and Comp- Cd47 pathways (Figure  4). Major 
receptor–ligand interactions between granulocyte–monocyte progenitor (GMP) cells and stromal 

Gene expression profiles of ESC- derived HSCs and lymphoid- primed multipotent progenitor cells are shown in Figure 2—figure supplement 7A, B. 
(B) Table shows percentages of cells in individual clusters in mouse–mouse and mouse–rat chimeras. Blue color indicates decreased percentages of cells 
in mouse–rat chimeras compared to mouse–mouse chimeras. Red color indicates increased percentages of cells in mouse–rat chimeras.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Purification of mouse embryonic stem cell (ESC)- derived cells from bone marrow (BM) of mouse–rat and mouse–mouse chimeras 
before scRNAseq.

Figure supplement 2. Single- cell RNAseq analysis identifies hematopoietic cell subsets in the bone marrow (BM) of mouse–rat chimeras.

Figure supplement 3. Violin plots confirm expression of hematopoietic marker genes in bone marrow (BM) cell clusters.

Figure supplement 4. Single- cell RNAseq analysis identifies genes expressed in hematopoietic stem cells (HSCs) in chimeric bone marrow (BM).

Figure supplement 5. Embryonic stem cell (ESC)- derived lymphoid cell types in mouse–rat and mouse–mouse chimeras exhibit identical gene 
expression profiles.

Figure supplement 6. Embryonic stem cell (ESC)- derived myeloid cell types in mouse–rat and mouse–mouse chimeras exhibit similar gene expression 
profiles.

Figure supplement 7. Heatmaps identify gene expression profile of embryonic stem cell (ESC)- derived hematopoietic stem cells (HSCs) and lymphoid- 
primed multipotent progenitor (LMPP) cells from mouse–rat and mouse–mouse chimeras.

Figure 2 continued

https://doi.org/10.7554/eLife.74018
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Figure 3. Single- cell RNAseq analysis shows increased percentages of embryonic stem cell (ESC)- derived hematopoietic progenitors and endothelial 
cells but decreased percentages of ESC- derived chondrocytes in the bone marrow (BM) of mouse–rat chimeras. (A, B) Parallel dimension UMAP plots 
show identical hematopoietic and stromal cell clusters in the BM of P5 mice, rats, and mouse–rat chimeras. BM cells were obtained from P5 animals 
using an enzymatic digestion (n = 5 animals per group) and pooled prior to single- cell RNAseq. Cell clusters were identified from single- cell RNAseq 

Figure 3 continued on next page
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cells were also similar in BM cells of mouse and rat origin (Figure 4—figure supplement 1). These 
include Cxcl12- Cxcr4 signaling between endothelial cells and GMPs, Col1a1- Cd44 signaling between 
fibroblasts and GMPs, and App- Il18rap signaling between chondrocytes and GMPs (Figure 4—figure 
supplement 1). Analysis of expression patterns for several ligands and their receptors revealed no 
obvious differences between mouse and rat cells (Figure 4—figure supplement 2). These results 
demonstrate that mouse and rat BM cells use similar signaling pathways between stromal and hema-
topoietic progenitor cells.

Mouse HSCs in mouse–rat chimeras develop earlier than rat HSCs
Fetal HSCs emerge from hemogenic endothelium in the aorta–gonad–mesonephros region and later 
undergo expansion in the embryonic liver (Gao et al., 2018; Weijts et al., 2021). To examine the 
development of HSCs in mouse–rat chimeras, mouse- derived (GFP+) and rat- derived (GFP−) hemo-
genic endothelial cells were visualized in the dorsal aorta by colocalization of FLK1 with RUNX1 tran-
scription factor (Figure 5A, B). At E11, mouse embryos were significantly larger than rat and mouse–rat 
chimeric embryos (Figure 5—figure supplement 1), consistent with previous studies demonstrating 
that the main stages of mouse embryonic development occur approximately 1.5 days faster compared 
to embryonic development in the rat (Farrington- Rock et al., 2008; Marcela et al., 2012; Takahashi 
and Osumi, 2005; Torres et al., 2008). Therefore, we compared E11 mouse embryos with E12.5 rat 
and chimeric embryos which were in similar developmental stages. In the dorsal aorta of mouse–rat 
chimeras, the majority of FLK1+RUNX1+ cells expressed GFP, indicating the mouse origin of these cells 
(Figure 5B). Later in development, percentages of mouse Lin− cells, LSKs, and ST- HSCs were higher 
in fetal livers of mouse–rat chimeras as demonstrated by FACS analysis for Lin, CD117, Sca1, CD48, 
and CD150 (Figure 5C and Figure 5—figure supplement 2). The percentage of LT- HSC in fetal livers 
was unchanged (Figure 5C). Thus, ESC complementation causes the earlier development of donor 
HSCs in the dorsal aorta and increases percentages of donor- derived Lin− cells, LSKs, and ST- HSCs in 
the fetal liver.

Transplantation of ESC-derived BM cells from interspecies mouse–rat 
chimeras rescues lethally irradiated syngeneic mice
To test functional properties of mouse BM hematopoietic progenitor cells derived through a rat, cells 
were FACS- sorted for GFP from the BM of juvenile mouse–rat chimeras and transferred into the tail 
vein of syngeneic C57BL/6 adult mice that received the lethal dose of whole- body gamma- irradiation 
3 hr prior to the BM transplant (Figure 6A). Consistent with published studies (Rowe et al., 2016; 
Sugimura et al., 2017; Vo and Daley, 2015), all mice without BM transplant died between 9 and 
12 days after irradiation (Figure 6B). In contrast, all 20 mice transplanted with GFP+ BM cells from 
mouse–rat chimeras survived after lethal irradiation (Figure 6B, C). Histological assessment of femur 
bones confirmed the presence of GFP+ donor cells in the BM compartment of transplanted mice 
(Figure 6D). Blood analysis of mice harvested 8 days after irradiation showed significant decreases in 
white blood cells (WBCs), red blood cells (RBCs), platelets (PLT), hemoglobin (Hb) as well as numbers 
of granulocytes, monocytes, and lymphocytes (Figure  7A and Figure  7—figure supplements 1 
and 2). Transplantation of ESC- derived BM cells from mouse–rat chimeras increased WBC and the 
numbers of granulocytes, monocytes, and lymphocytes in the peripheral blood at day 8 (Figure 7A 
and Figure 7—figure supplements 1 and 2). Contribution of ESC- derived BM cells to granulocytes, 
monocytes, and B cells was higher compared to erythroid and T cells (Figure 7B and Figure 7—figure 
supplement 3). At 5 months after BM transplantation, ESC- derived cells completely restored blood 

datasets using Uniform Manifold Approximation and Projection (UMAP) method. Red color in the tables indicates increased percentages of cells in 
mouse–rat chimeras compared to either mice or rats of the same age. Blue color indicates decreased percentages of cells in mouse–rat chimeras. Gene 
expression signatures of mouse and rat hematopoietic and stromal cells are shown in Figure 3—figure supplement 1A–D. (C) A bar graph shows 
relative percentages of ESC- derived mouse cells (green) and endogenous rat cells (blue) in the BM of P5 mouse–rat chimeras.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Heatmaps compare gene expression profile in mouse and rat hematopoietic and stromal cells that form bone marrow (BM) in 
mouse–rat chimeras.

Figure 3 continued

https://doi.org/10.7554/eLife.74018
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Figure 4. Single- cell RNAseq analysis shows remarkable similarities in major receptor–ligand interactions between erythro- myeloid progenitors and 
stromal cells of mouse and rat origins. Bone marrow (BM) cells were obtained from P5 animals using an enzymatic digestion (n = 5 animals per group). 
Single- cell RNAseq was performed to identify BM stromal and erythro- myeloid progenitor cells (EMPs) based on gene expression signatures. The R 
package NicheNet was used to analyze the expression of ligands and receptors to identify intercellular communication patterns between EMPs and 

Figure 4 continued on next page

https://doi.org/10.7554/eLife.74018
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cell numbers, PLT and Hb in lethally irradiated mice (Figure 7C and Figure 7—figure supplements 
1 and 2). Long- term contributions of ESC- derived BM cells to all hematopoietic cell lineages in the 
peripheral blood were between 49% and 96% (Figure 7C and Figure 7—figure supplement 3). Thus, 
transplantation of ESC- derived BM cells from mouse–rat chimeras prevented mortality and restored 
hematopoietic blood lineages in lethally irradiated syngeneic mice.

Transplantation of ESC-derived BM cells from interspecies mouse–
rat chimeras resulted in the long-term contribution of donor cells to 
hematopoietic progenitor cells
Based on FACS analysis of irradiated mice at day 8, whole- body irradiation decreased the number 
of hematopoietic progenitor cells in the BM, including LSKs, ST- HSCs, and LT- HSCs (Figure 7D and 
Figure 7—figure supplement 4A, B). Transplantation of ESC- derived BM cells significantly increased 
LSKs but did not affect the numbers of ST- HSCs and LT- HSCs in irradiated mice (Figure 7D). Contri-
bution of ESC- derived BM cells to Lin− and LSK cell subsets was high, whereas ESC contribution to 
ST- HSCs and LT- HSCs at day 8 was low (Figure 7E and Figure 7—figure supplement 5). At 5 months 
after BM transplantation, percentages of LSKs, ST- HSCs, and LT- HSCs in the BM were increased 
(Figure 7D and Figure 7—figure supplement 4B). Long- term contribution of ESC- derived BM cells 
to LSKs, ST- HSCs, and LT- HSCs was between 92% and 95% (Figure 7F and Figure 7—figure supple-
ment 5). Finally, we performed BM transplantation again in secondary recipients to establish the 
functional potential and self- renewal capacity of the chimeric HSCs (Figure 7—figure supplement 
6A). The secondary BM transplantation rescued lethally irradiated mice and resulted in long- term 
engraftment of ESC- derived HSCs into hematopoietic cell lineages in the BM and peripheral blood 
(Figure  7—figure supplement 6B–E). Altogether, transplantation of ESC- derived BM cells from 
mouse–rat chimeras resulted in efficient, long- term contribution of donor cells to the BM and blood 
of lethally irradiated mice.

Discussion
Recent single- cell RNA sequencing studies identified remarkable diversity of hematopoietic cell types 
in the BM (Baccin et al., 2020). Generation of functional BM cells from pluripotent ESCs or iPSCs in 
a dish or in organoids represents a formidable challenge (Rowe et al., 2016; Vo and Daley, 2015). 
In the present study, we used blastocyst complementation to generate a diversity of hematopoi-
etic cell types from mouse ESCs in rat embryos. Interspecies mouse–rat chimeras were viable and 
contained approximately 25% of ESC- derived mouse cells in the BM. It is possible that inactivation 
of genes critical for hematopoiesis in rat embryos prior to blastocyst complementation can improve 
the integration of mouse ESCs into the BM of mouse–rat chimeras. This approach was supported by 
recent studies with mouse–mouse chimeras, in which ESCs contributed to more than 90% of hema-
topoietic cells in mice deficient for either Kit or Flk1 (Hamanaka et al., 2018; Jansson and Larsson, 
2010). While ESCs contributed to all hematopoietic cell lineages in interspecies BM, the percentage 
of lymphoid progenitors was lower, whereas the percentages of myeloid progenitor cells and HSCs 
were higher in mouse–rat chimeras compared to control mouse–mouse chimeras. Since both chimeras 
were produced by complementing blastocysts with mouse ESCs from the same ESC- GFP cell line, it is 
unlikely that these changes are dependent on donor ESCs. It is possible that the observed differences 
in BM cellular composition between mouse–rat and mouse–mouse chimeras are due to interactions of 
donor ESCs with the host embryo. Structural and functional differences between hormones, growth 

BM stromal cells. Receptor–ligand interactions between stromal and granulocyte–monocyte progenitor (GMP) cells are shown in Figure 4—figure 
supplement 1. Violin plots were used to identify expression of ligands and their receptors in hematopoietic and stromal BM cells, see Figure 4—figure 
supplement 2.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Single- cell RNAseq analysis shows similar receptor–ligand interactions between stromal and granulocyte–monocyte progenitor 
(GMP) cells.

Figure supplement 2. Violin plots show expression of ligands and their receptors in hematopoietic and stromal bone marrow (BM) cells.

Figure 4 continued

https://doi.org/10.7554/eLife.74018
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Figure 5. Mouse hematopoietic stem cells (HSCs) in mouse–rat chimeras develop earlier than rat HSCs. (A, B) Immunostaining for RUNX1 (white) and 
FLK1 (red) shows that hemogenic endothelium in the dorsal aorta (DA) of mouse–rat chimeras develops mostly from embryonic stem cell (ESC)- derived 
mouse cells. GFP (green) was used to identify ESC- derived cells, whereas 4′,6- diamidino- 2- phenylindole (DAPI, blue) was used to stain cell nuclei. 
Frozen sections were obtained from E11 mouse embryos and E12.5 embryos from rats and mouse–rat chimeras since these embryos are in similar 

Figure 5 continued on next page
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factors, and their receptors in rats and mice can contribute to the efficiency or timing of differentiation 
of mouse ESCs into hematopoietic cell lineages in BM of chimeras.

Our data demonstrate that chimeric HSCs develop more efficiently from donor mouse cells in the 
dorsal aorta, fetal liver, and BM, whereas rat cells are less efficient to differentiate into HSCs. Since 
we observed high numbers of mouse hemogenic endothelial cells in the chimeric dorsal aorta, it is 
likely that donor hemogenic endothelium undergoes direct transition to functional HSCs in the fetal 
liver, whereas endogenous (non- GFP+) hemogenic endothelium can be a source of rat HSCs. Since 
mouse embryos develop faster compared to rat embryos by approximately 1.5 days (Farrington- Rock 
et al., 2008; Marcela et al., 2012; Takahashi and Osumi, 2005; Torres et al., 2008), it is possible 
that mouse ESC- derived progenitor cells migrate faster into developing hematopoietic niches in the 
mouse–rat chimeras, leading to preferential development of HSCs from cells of mouse origin and 
contributing to increased numbers of mouse- derived hematopoietic progenitors in the BM of mouse–
rat chimeras. These data suggest that using donor ESCs from species with less gestational time in 
interspecies ‘bioreactors’ can lead to larger quantities of ESC- derived hematopoietic progenitors in 
the chimeric BM. Our single- cell RNAseq analysis enabled us to identify potential signaling pathways 
and receptor–ligand interactions between hematopoietic progenitors and stromal cells in the BM. 
These pathways include Cxcl12- Cxcr4 signaling between hematopoietic progenitors and endothelial 
cells, which plays a critical role in maintenance of HSCs during BM homeostasis and promotes niche 
regeneration and hematopoietic reconstitution after BM transplantation (Baccin et al., 2020; Singh 
et  al., 2020; Sugiyama et  al., 2006). Other pathways identified in our studies, including Lama2- 
Itga6, App- Itga6, Comp- Cd47, Col1a1- Cd44, and App- Il18rap, have not been extensively studied in 
the BM microenvironment but are implicated in regulation of cell adhesion, migration, oncogenesis, 
fibrosis, and inflammatory responses (Kiratipaiboon et  al., 2020; Sibin et  al., 2019; Rock et  al., 
2010; Strelnikov et  al., 2021; Yang et  al., 2017). Notably, our data suggest that some of these 
signaling pathways can be targeted to modulate the development and expansion of donor ESC- 
derived hematopoietic progenitor cells in the BM of interspecies chimeras.

Despite mosaicism in interspecies BM, mouse ESC- derived cells from multiple hematopoietic cell 
lineages were highly differentiated and indistinguishable from the normal mouse BM cells based on 
gene expression signatures and cell surface proteins. Consistent with functional competency of ESC- 
derived BM, transplantation of BM cells into lethally irradiated syngeneic mice prevented mortality 
and resulted in long- term contribution of ESC- derived cells to all hematopoietic cell lineages in the 
BM and peripheral blood. One of the limitations of our studies is that the functional potential of 
chimeric HSCs was established from whole BM transplants and not from transplantation of purified 
HSCs. While these experiments are technically challenging, transplantation of FACS- sorted donor 
HSCs into lethally irradiated mice will be needed in our future studies to investigate whether chimeric 
HSCs are fully functional to restore all hematopoietic cell lineages after irradiation. Our results are 
consistent with recent studies demonstrating the ability of mouse ESCs to generate functional pancre-
atic, endothelial, and kidney cells in interspecies mouse–rat chimeras (Goto et al., 2019; Wang et al., 
2021; Yamaguchi et al., 2017). Interestingly, long- term contribution of donor BM cells to ST- HSCs and 
LT- HSCs of irradiated mice was high, supporting the ability of donor HSCs to self- renew. In contrast, 
the short- term contribution of donor BM cells to ST- HSCs and LT- HSCs of irradiated mice was low. 
Low contribution of donor BM to HSCs at day 8 is not surprising considering an acute hematopoi-
etic deficiency in lethally irradiated mice. It is possible that most donor- derived HSCs undergo rapid 

developmental stages, see also Figure 5—figure supplement 1A–C. DA indicates the lumen of dorsal aorta. Yellow dashed line indicates the luminal 
surface of DA wall. Inserts show high magnification of hemogenic endothelial cells expressing both RUNX1 and FLK1. Scale bars are: A, 200 μm; B, 
20 μm; inserts in B, 5 μm. Abbreviations: DA, dorsal aorta; Li, liver. (C) Fluorescence- activated cell sorting (FACS) analysis shows increased percentages 
of mouse ESC- derived Lin− cells, LSKs, and short- term HSCs (ST- HSCs) in fetal livers of mouse–rat chimeras (n = 6) compared to control mouse embryos 
(n = 4), see also Figure 5—figure supplement 2. Fetal livers were obtained from E15.5 mouse–rat chimeras and E14 mouse embryos since these 
embryos are in similar developmental stages. *p < 0.05, **p < 0.01, N.S. indicates no significance, see also Source data 1.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Mouse embryonic development occurs faster than embryonic development in the rat and mouse–rat chimera.

Figure supplement 2. Fluorescence- activated cell sorting (FACS) analysis identifies mouse hematopoietic progenitor cells in fetal livers of mouse–rat 
chimeras.

Figure 5 continued

https://doi.org/10.7554/eLife.74018
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Figure 6. Transplantation of mouse embryonic stem cell (ESC)- derived bone marrow (BM) cells from interspecies mouse–rat chimeras rescues lethally 
irradiated syngeneic mice. (A) Schematic diagram shows transplantation of ESC- derived bone marrow cells (BMCs) into lethally irradiated (IR) mice. 
ESC- derived cells were obtained from the BM of juvenile mouse–rat chimeras using fluorescence- activated cell sorting (FACS) for GFP+ cells. BM and 
peripheral blood were harvested 8 days and 5 months after BM transplantation. (B) Kaplan–Meier survival analysis shows a 100% mortality in irradiated 

Figure 6 continued on next page
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differentiation into other hematopoietic cell types to compensate for the loss of injured hematopoi-
etic cells after irradiation.

Generation of intraspecies chimeras through blastocyst complementation creates an interesting 
opportunity to use patient- derived iPSCs to produce tissues or even organs in large animals, for 
example, pigs or sheep, which can serve as ‘biological reactors’. However, at this stage of technolog-
ical advances it is impossible to restrict the integration of ESC/iPSC- derived cells into selected organs 
or cell types. Off- target integration of ESCs and iPSCs into the brain, testes, and sensory organs 
raises important ethical concerns for the use of human–animal chimeras in regenerative medicine 
(Masaki and Nakauchi, 2017; Wu et  al., 2016). To improve the selectivity of ESC/iPSC integra-
tion into chimeric tissues, various genetic modifications can be introduced into the host embryos to 
advance the technology. Harvest of tissues from chimeric embryos instead of adult chimeras can alle-
viate some of the ethical concerns, suggesting a possibility of using chimeric embryos as a potential 
source of patient- specific hematopoietic progenitor cells.

In summary, blastocyst complementation of rat embryos with mouse ESCs was used to simulta-
neously generate multiple hematopoietic and stromal cell lineages in the BM. ESC- derived cells in 
mouse–rat chimeras were indistinguishable from normal mouse BM cells based on gene expression 
signatures and cell surface markers. Transplantation of ESC- derived BM cells rescued lethally irra-
diated syngeneic mice and resulted in long- term contribution of donor cells to hematopoietic cell 
lineages. Thus, the interspecies chimeras could be considered for in vivo differentiation of patient- 
derived iPSCs into hematopoietic cell lineages for future cell therapies.

Materials and methods
Mice, rats, and generation of mouse–rat and mouse–mouse chimeras 
through blastocyst complementation
C57BL/6 mice were purchased from Jackson Lab. Interspecies mouse–rat chimeras were generated 
using blastocyst complementation as described (Li et al., 2021; Wang et al., 2021). Briefly, blasto-
cysts from SD rats were obtained at embryonic day 4.5 (E4.5), injected with 15 GFP- labeled mouse 
ESC cells (ESC- GFP, C57BL/6 background) (Sun et al., 2021; Wen et al., 2021) and transferred into 
pseudopregnant SD rat females. Mouse–mouse chimeras were generated by complementing CD1 
blastocysts with 15 mouse ESC- GFP cells. For FACS analysis and BM transplantation, BM cells were 
collected from chimeric pups that were harvested between postnatal day 4 (P4) and P10. For single- 
cell RNA sequencing, BM cells were prepared from P10 and P5 mice, rats, and chimeras. To perform 
BM transplantation, BM cells from two tibias and two fibulas of mouse–rat chimeras were collected 
and FACS- sorted for ESC- derived (GFP+) cells. 500,000 FACS- sorted GFP+ BM cells were intravenously 
(i.v.) injected into lethally irradiated C57BL/6 male mice (6–8 weeks of age) via the tail vein. Three 
hours before BM transplantation, whole- body irradiation was performed using 11.75 Gy. Mice were 
harvested after 8 days or 5 months after BM transplantation. For the second BM transplantation, GFP+ 
BM cells were FACS- sorted from irradiated mice 5 months after the first BM transplantation and then 
i.v. injected into new irradiated recipients. Tissue dissection, processing, and preparation of single- 
cell suspensions were carried out as described (Bolte et al., 2011; Kalin et al., 2008; Kalinichenko 
et al., 2003; Kim et al., 2005; Wang et al., 2003). Blood analysis was performed in animal facility of 
Cincinnati Children’s Hospital Research Foundation.

Single-cell RNAseq analysis of ESC-derived BM cells
Prior to scRNAseq (10× Chromium platform), BM cells were pooled from three P10 mouse–rat chimeras 
and three P10 mouse–mouse (control) chimeras and then FACS- sorted for GFP and the lineage (Lin) 

mice. Survival is dramatically improved after transplantation of irradiated mice with ESC- derived BM cells obtained from mouse–rat chimeras (IR + BMC). 
Survival in untreated wild- type (wt) mice is shown as a control (n = 12–20 mice in each group). (C) Photograph shows irradiated C57BL/6 mice 5 months 
after successful BM transplantation. Untreated C57BL/6 mouse is shown as a control. Gray color of irradiated mice (arrows) is consistent with large doses 
of whole- body radiation treatment. (D) Hematoxylin and eosin (H&E) staining shows increased amounts of hematopoietic cells in femur bones after BM 
transplantation into irradiated mice (top panels). GFP+ donor cells (green) are abundant in the BM compartment of transplanted mice (bottom panels). 
DAPI (blue) was used for counterstaining. Scale bars are: D, 200 μm; inserts in D, 5 μm.

Figure 6 continued
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Figure 7. Transplantation of mouse embryonic stem cell (ESC)- derived bone marrow (BM) cells from interspecies mouse–rat chimeras restores 
hematopoietic cell lineages in the blood and BM of lethally irradiated syngeneic mice. (A) Blood analysis shows that transplantation with ESC- derived 
BM cells from mouse–rat chimeras increases white blood cell (WBC) counts and red blood cell (RBC) counts in the peripheral blood of irradiated 
recipients. Blood samples were obtained from untreated mice (no IR), lethally irradiated mice without BM transplant (IR), and lethally irradiated mice with 

Figure 7 continued on next page
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marker. Since the numbers of HSCs and other hematopoietic progenitors in BM are significantly low 
compared to numbers of differentiated hematopoietic cells, the cell mixtures were enriched for BM 
progenitor cell populations by combining 90% of FACS- sorted GFP+Lin− cells and 10% of GFP+Lin+ 
cells in each experimental group. This enrichment enabled us to obtain enough progenitor cells for 
UMAP clustering analysis. In separate scRNAseq experiments, all BM cells (including hematopoietic, 
vascular, and stromal cells) were prepared from P5 mice, rats, and mouse–rat chimeras using enzy-
matic digestion and cell purification as described (Baccin et al., 2020). BM cells from five animals 
were pooled together prior to single- cell RNAseq. All raw data and the processed count matrix of 
BM datasets were uploaded to the GEO database (accession number GSE184940). Read alignments, 
quality controls, and false discovery rates were described previously (Guo et al., 2019; Ren et al., 
2019; Wang et al., 2022). Identification of cell clusters and quantification of cluster- specific gene 
expression in BM scRNAseq datasets were performed as described (Baccin et al., 2020; Wang et al., 
2021; Wen et al., 2021). To assess the transcriptomic similarity of ESC- derived and endogenous BM 
cells, the scRNAseq datasets were normalized with SCTransform and then integrated utilizing the 
canonical correlation analysis. In the integrated scRNAseq datasets, the SelectIntegrationFeatures in 
Seurat package (version 4.0.0 in R 4.0 statistical environment) was used to identify anchors for inte-
gration. The RunPCA function was used for principal component analysis (PCA) of scRNAseq datasets, 
and the PCElbowPlot function was used to calculate the standard deviations of the principal compo-
nents (PCs). PCs with standard deviation >3.5 were chosen as input parameters for nonlinear UMAP 
clustering analysis. Next, the FindNeighbors function was used to compute the k.param nearest 
neighbors, and BM cell clusters were identified by a shared nearest neighbor modularity optimization 
clustering algorithm implemented in the FindClusters function with resolution set at 0.4 (Guo et al., 
2019; Wang et al., 2021; Wen et al., 2021).

Analysis of potential receptor–ligand interactions using single-cell 
RNAseq datasets
The R package NicheNet was used to analyze the information about expression of cognate ligands 
and receptors to identify intercellular communication patterns between hematopoietic progenitors 

BM transplant (IR + BMC). BM transplantation was performed using ESC- derived BM cells obtained from juvenile mouse–rat chimeras. Fluorescence- 
activated cell sorting (FACS) analysis of the peripheral blood to identify granulocytes, B cells, monocytes, T cells, and erythroid cells in shown in 
Figure 7—figure supplement 1. Concentrations of lymphocytes, monocytes, and neutrophil in the blood were increased after BM transplantation (n 
= 9–15 mice in each group), **p < 0.01, N.S. indicates no significance, see also Source data 1. BM transplantation also increased concentrations of 
platelets, hemoglobin, basophils, and eosinophils in the peripheral blood, see Figure 7—figure supplement 2. (B, C) FACS analysis for GFP+ cells in 
each cell subset shows that ESC- derived BM cells from mouse–rat chimeras contribute to multiple hematopoietic cell lineages in the peripheral blood 
of lethally irradiated mice (n = 9–16 mice in each group), see also Figure 7—figure supplement 3. (D) FASC analysis shows that transplantation with 
ESC- derived BM cells from mouse–rat chimeras increases percentages of LSKs, short- term HSCs (ST- HSCs), and long- term HSCs (LT- HSCs) in the BM 
of irradiated mice 5 months after BM transplantation (n = 9–16 mice in each group), see also Figure 7—figure supplement 4A, B. **p < 0.01, N.S. 
indicates no significance, see also Source data 1. (E, F) FACS analysis for GFP+ shows that ESC- derived BM cells from mouse–rat chimeras contribute 
to multiple hematopoietic progenitor cells in the BM of irradiated mice (n = 9–16 mice in each group), see also Figure 7—figure supplement 5. For 
secondary transplantation of mouse ESC- derived BM cells into lethally irradiated syngeneic mice, see Figure 7—figure supplement 6A–E.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Fluorescence- activated cell sorting (FACS) analysis identifies granulocytes, B cells, monocytes, T cells, and erythroid cells in the 
peripheral blood after bone marrow (BM) transplantation.

Figure supplement 2. Transplantation of irradiated mice with embryonic stem cell (ESC)- derived bone marrow (BM) cells from mouse–rat chimeras 
increases hemoglobin (Hb) concentration and numbers of platelets (PLT), basophils, and eosinophils in the peripheral blood.

Figure supplement 3. Identification of embryonic stem cell (ESC)- derived cells in the peripheral blood of irradiated mice after bone marrow (BM) 
transplantation.

Figure supplement 4. Transplantation of mouse embryonic stem cell (ESC)- derived bone marrow (BM) cells from interspecies mouse–rat chimeras 
results in reconstitution of BM hematopoietic and progenitor cells after irradiation.

Figure supplement 5. Identification of embryonic stem cell (ESC)- derived hematopoietic cells in the bone marrow (BM) of irradiated mice after BM 
transplantation.

Figure supplement 6. Secondary transplantation of mouse embryonic stem cell (ESC)- derived bone marrow (BM) cells from interspecies mouse–rat 
chimeras rescues lethally irradiated syngeneic mice.

Figure 7 continued
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and stromal cells as described (Browaeys et al., 2020). EMP and GMP cells were chosen as potential 
sources of receptors, whereas BM stromal cell types were chosen as potential sources of ligands. The 
background expression of genes was specified with default approach used in the NicheNet pipe-
line, and expressed genes were identified based on >10% detection in specific clusters. To identify 
ligand–receptor interactions between EMPs/GMPs and stromal cells, we selected the top 20 ligands 
predicted to drive hematopoietic cell differentiation based on the Pearson correlation coefficient 
between the ligand–receptor regulatory potential score of each ligand and the target indicator vector. 
Using the NicheNet pipeline, the Circos plots were generated to show common ligand–receptor inter-
actions between EMPs/GMPs and stromal cells in the BM.

FACS analysis
FACS analysis was performed using cells obtained from the BM and blood. Antibodies for FACS 
analysis are listed in Supplementary file 3. Immunostaining of cell suspensions were performed as 
described (Bolte et al., 2017; Xia et al., 2015). Identification of hematopoietic cell types based on 
multiple cell surface markers is described in Bolte et al., 2020b; Pradhan et al., 2019; Ren et al., 
2013; Ren et al., 2010; Sun et al., 2017. To identify ESC- derived HSCs, we used GFP fluorescence 
and mouse- specific antibodies recognizing multiple cell surface antigens. First, ESC- derived GFP+ 
BM cells were subdivided into Lin+ and Lin− cell subsets. Second, we used Sca1 and CD117 (c- KIT) 
antibodies to identify Lin−Sca1+c- KIT+ cells (LSKs). Third, CD150 and CD48 antibodies were used to 
identify ST- HSCs and LT- HSCs among LSKs. Stained cells were analyzed using a five- laser FACSAria II 
(BD Biosciences) (Cai et al., 2016; Sun et al., 2021).

Histology and immunostaining
Frozen or paraffin- embedded sections of tissue samples were stained with hematoxylin and eosin 
(H&E) for histological evaluation (Kalinichenko et al., 2002) or to visualize GFP (Ustiyan et al., 2018; 
Ustiyan et al., 2016). Frozen sections from embryos were used for immunofluorescent staining as 
described (Black et al., 2018; Ustiyan et al., 2012; Wang et al., 2010). Primary antibodies for immu-
nostaining are listed in Supplementary file 3. Secondary antibodies were conjugated with Alexa 
Fluor 488, Alexa Fluor 594, or Alexa Fluor 647 (Invitrogen and Jackson ImmunoResearch Laboratory) 
to visualize specific staining as described (Bolte et al., 2012; Hoggatt et al., 2013; Milewski et al., 
2017a). DAPI (Vector Laboratory) was used to counterstain cell nuclei (Milewski et al., 2017b). Histo-
logical and immunofluorescent images were obtained using a Zeiss Axioplan2 microscope (Carl Zeiss 
Microimaging) as described (Bolte et al., 2015; Kalin et al., 2008; Pradhan et al., 2016).

Statistical analysis
Statistical significance was determined using nonparametric Mann–Whitney U- test, one- way analysis 
of variance, and Student’s t- test. Multiple means were compared using one- way analysis of variance 
with the post hoc Tukey test. p ≤ 0.05 was considered statistically significant. Data were presented as 
mean ± standard error of mean (SEM).
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