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Abstract

Oil palm monoculture comprises one of the most financially attractive land-use options in

tropical forests, but cropland suitability overlaps the distribution of many highly threatened

vertebrate species. We investigated how forest mammals respond to a landscape mosaic,

including mature oil palm plantations and primary forest patches in Eastern Amazonia.

Using both line-transect censuses (LTC) and camera-trapping (CT), we quantified the gen-

eral patterns of mammal community structure and attempted to identify both species life-his-

tory traits and the environmental and spatial covariates that govern species intolerance to oil

palm monoculture. Considering mammal species richness, abundance, and species com-

position, oil palm plantations were consistently depauperate compared to the adjacent pri-

mary forest, but responses differed between functional groups. The degree of forest habitat

dependency was a leading trait, determining compositional dissimilarities across habitats.

Considering both the LTC and CT data, distance from the forest-plantation interface had a

significant effect on mammal assemblages within each habitat type. Approximately 87% of

all species detected within oil palm were never farther than 1300 m from the forest edge.

Our study clearly reinforces the notion that conventional oil palm plantations are extremely

hostile to native tropical forest biodiversity, which does not bode well given prospects for oil

palm expansion in both aging and new Amazonian deforestation frontiers.

Introduction

Some 20% of the ~5 million km2 Brazilian Amazon has already been deforested since 1970[1].

Anthropogenic land-use, such as livestock ranching, timber extraction, mining and more

recently, large-scale intensive agriculture, has historically driven economic development across

the region, which is reflected in a regional-scale growth in Gross Domestic Product (GPD)

~1.4% higher than that of the rest of Brazil[2]. However, these development frontiers have

brought unprecedented environmental impacts to the region, including elevated deforestation,
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greenhouse gas emissions, forest degradation, defaunation, soil erosion, and wholesale indis-

criminate spread of agricultural pesticides, all of which are unaccounted for in country-scale

measures of wealth[2][3].

Oil palm plantations have become one of the most financially attractive crops in Amazonia,

not least because of the introduction of government-subsidized biodiesel to the Brazilian

energy grid since 2010[4] and restrictions imposed on biofuel cropland expansion in Southeast

Asia[5]. Palm oil extracted from Elaeis guineensis (Jacq.), yields higher productivity than other

sources of biofuel[6][7] but also satiates the burgeoning demand for this versatile product

from food, chemical, and cosmetics industries. Brazilian Amazonia currently has one of the

world’s largest potential areas for oil palm expansion (~2.3 million km2), related to climatic,

edaphic and topographic crop suitability[8][9]. The Brazilian government has actively encour-

aged oil palm expansion, which is extolled as a new opportunity to bring about socioeconomic

development and recovery of degraded areas in Amazonia. New state-level legislation has been

sanctioned to regulate oil palm plantations on forest areas (including secondary and logged

primary forest), or on fallow land (e.g., Instrução Normativa SEMAS/PA/2011). In particular,

the State of Pará has legally proposed that silviculture of exotic species, such as oil palm, should

count towards the restoration of up to 30% of natural forest set-asides within all private land-

holdings, which is mandatory under Brazilian environmental legislation (Federal Law No.

12.651/2012). Also, low land prices, cheap labor, cheap energy sources from hydropower infra-

structure and government-subsidized road-building[8][10], have further fueled the Amazon’s

potential to become the world’s largest oil palm producer within a few decades[6].

Given its economy of scale, oil palm cultivation requires large tracts of land, which has

resulted in the conversion of over 14 Mha of forest in Southeast Asia[9][11]. In contrast with

the original old-growth forests they replace, these plantations present an uniform habitat and

tree age structure[12], changes in soil fertility[13] and in the interaction with soil microbes

[14], a narrow spectrum of food resources, low-density understory, exposed soils, reduced leaf

litter[15][16], highly volatile microclimate[17], and a much lower discontinuous canopy[18].

Faunal diversity responses to these structural changes depending on both the landscape con-

text of plantations and species ecological plasticity in terms of tolerance to a severely modified

habitat[19][20][21]. Ecological studies addressing multiple taxa, including birds[20][21][22]

[23][24], reptiles[20], non-flying small mammals[25], bats, primates[26], butterflies[27], ants

[28] and aquatic invertebrates[29], have all shown that oil palm plantations are significantly

more depauperate than adjacent primary forests, even if these had been selectively-logged[12].

The total amount and distribution of remaining natural forest cover are critical determi-

nants of the fraction of native biodiversity, retained within agricultural landscapes[30][31].

However, physical distance from adjacent primary habitats and the permeability of a cropland

matrix, have significant effects on local patterns of diversity[30][32]. Pairwise comparisons

between oil palm and forest habitats could mask or underestimate differences in species rich-

ness if sampling effort is concentrated at fixed distances, especially near forest edges[33]. On

the other hand, responses to the spatial configuration of agricultural mosaics can be highly var-

iable among species functional groups[34]. Species attributes such as body mass, trophic level,

home range size, dispersal capacity and degree of habitat specialization, define the ecological

plasticity by which several species may or may not be able to tolerate severely modified habi-

tats[35][36].

Both terrestrial and arboreal forest mammals can be severely affected by a broad spectrum

of anthropogenic habitat disturbance in Amazonian forests[37][38]. However, the high diver-

sity of phenotypes and ecological traits of different functional groups, reflect their diverse

responses to environmental change[39]. In Peninsular Malaysia, terrestrial mammal species

richness in oil palm monoculture was significantly reduced, compared to natural forest
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patches[40]. Vertebrates characterized by strict forest habitat affiliation, such as neotropical

primates, are apparently most affected by forest conversion to cropland[41]. Wide-ranging

species with vast spatial requirements, such as large carnivores, can occasionally use oil palm

habitats near remaining forest patches[40]. Small carnivores, including small cats and civets,

frequently use oil palm plantations in Sumatra, but their occupancy is affected by proximity to

the forest edge[42]. Species reported to use oil palm landscape mosaics in Peninsular Malaysia,

typically have generalist diets[40]. All available evidence from studies in Southeast Asia, there-

fore, indicates that both species traits and the grain and spatial configuration of oil palm

monoculture affect their overall pattern of forest wildlife occupancy.

In Amazonia, areas most likely to be converted to oil palm plantations overlap the highest

species richness of threatened birds and mammals[43]. There has been no attempt to examine

the effects of primary and secondary forest conversion into oil palm monoculture on the

Amazonian mammal fauna. Here, we investigate how midsized to large-bodied terrestrial and

arboreal mammals respond to an Eastern Amazonian landscape mosaic, including oil palm

plantations and large remnants of primary forest. These mammal taxa account for a dispropor-

tionate amount of the overall vertebrate biomass in Amazonian forests[44]. So any adverse

effects to these species could amount to profound repercussions to ecosystem functioning

across entire landscape mosaics. We compared different compartments of oil palm plantations

with adjacent primary forest set-asides, using a standardized edge-distance gradient within

each habitat. We describe habitat differences in species richness, overall abundance and species

composition, and attempt to pinpoint key species life-history traits that govern species intoler-

ance (or lack thereof) to oil palm monoculture. Finally we discuss the implications of these

effects on biodiversity, considering the prospects for oil palm expansion in both aging and new

Amazonian deforestation frontiers.

Material and methods

Study site

This study was conducted within the 103,000-hectare Agropalma private landholding

(1˚55’57” S, 48˚45’49” W). The study area is located in an Eastern Amazonian landscape within

the State of Pará, Brazil, which contains 39,000 ha of oil palm plantations and 64,000 ha of

unflooded (terra firme) primary forest (Fig 1). Following a history of deforestation since the

1970s[45], remaining forest patches interspersed with oil palm plantations ranged from 1,500

to 15,000 ha (Fig 1). This region had been exploited mainly by conventional timber extraction

and forest conversion into cattle pastures, but more recently a government-subsidized process

of forest conversion into oil palm plantations. Most extensive oil palm plantations were consol-

idated since the 1980s, particularly in the municipal counties of Moju and Tailândia[46]. The

broader landscape within the study region is currently a mosaic of anthropogenic open-habitat

areas and natural forest remnants under varying degrees of degradation[47] (Fig 1).

Terra Firme forests in the study landscape, which are representative of the native forests in

this eastern Amazonian region, were set-aside as Legal Reserves within the Agropalma land-

holding, as required by Brazilian law. Primary forest sites sampled here had not succumbed to

understory fires but had been exposed to a history of small-scale selective logging, although

this was discontinued at least 20 years prior to the study. Forest canopy heights are typically in

the range of 25–35 m and dominant tree families included the Lecythidaceae, Sapotaceae, Bur-

seraceae, Moraceae, Violaceae, and Leguminosae. Mean annual temperature is ~26.6˚C, mean

annual precipitation is ~2,500 mm, and soils throughout the study landscape are mainly highly

weathered acidic oxisols.

Oil palm monoculture and mammal fauna in Amazon forest
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Mammal population surveys

We selected eight oil palm (OP) plantation sites of comparable ages in relation to overall habitat

structure (7–15 years-old), which were paired with eight neighboring primary forest (PF) sites

(Fig 1). Paired OP-PF sites were at least 4 km apart from one another, thereby maximizing the

degree of spatial independence. Transects of 5 km in length were cut and marked every 50m in

both all OP and PF sites surveyed. Within OP sites, we avoided placing any portion of transects

within 500 m of the nearest remnants of riparian forest along perennial streams, which were

also legally required forest set-asides, to control for any additional forest edge effects. Our

pairwise design required that transects were placed in neighboring OP and PF sites, thereby

creating a distance gradient into each of these two main habitat types, but given the spatial

Fig 1. Location of the study area. Location of the study area in Eastern Brazilian Amazonia (solid square in inset map of South America).

The main map represents the boundaries of the study area and the spatial distribution of 16 transects (white lines) in both habitat types,

along which line-transect censuses and camera-trapping surveys were conducted. Dark green and orange polygons indicate primary forest

and oil palm plantations, respectively, within the landscape mosaic. The diagram (lower right) provides details of the spatial configuration of

camera-trapping stations along one of the transects. Inset figures show the typical structure and vertical profile of each habitat type: oil palm

plantations (above) and primary forest (below). The background shows remaining forest cover, represented by different shades of green,

and anthropogenic land cover (e.g., pasture and agriculture, shown in light brown) across the entire neighboring region. The map and

satellite free source: MapBiomas Project [2017] Brazil’s Annual Coverage and Land Use Map Series, acessed in [2017] link: [http://

mapbiomas.org].

https://doi.org/10.1371/journal.pone.0187650.g001
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constraints of the study landscape, it was rarely possible to set up a continuous 10-km transect

either side of the OP-PF habitat interface (Fig 1). Three of the eight PF transects were placed

farther away from forest edges, thereby allowing us to sample sites at farther distances (5 – 12

km) from the nearest oil palm plantations. The same was the case for two of the eight OP tran-

sects, which were far apart (0.5 – 5.5 km) from the nearest areas of primary forest.

We conducted mammal surveys in both habitat types (OP and PF) using two methods: line

transect censuses (LTC) by observers on foot and camera trapping (CT). A total of 627 km of

transect census walks were carried out in April-May and October-November 2013, which

included both the dry and wet seasons. Slow census walks (~1250 m h–1) were conducted by at

least two independent observers from early in the morning (05:30h to 09:30h) and in the after-

noon (15:30h to 19:30h) along alternate transects to match the typically bimodal activity

rhythm of most forest vertebrates[48]. To maximize temporal independence, we never sur-

veyed the same transect within less than a 4-day interval between consecutive census walks. In

addition, a total sampling effort of 6,720 camera trap-nights was deployed from December

2014 to December 2015, which also included both the dry and wet seasons. We deployed seven

CT stations per transect, each of which was spaced apart by approximately (but never less

than) 700 m (Fig 1, S1 Fig), with a group of four paired transects (two in OP and two in PF)

sampled simultaneously. This allowed us to camera-trap all 16 transects within 12 months.

Each CT deployment was exposed for periods of 60 consecutive days, using high-capacity

memory cards. Although we always attempted to deploy all cameras for 68 days, occasional

malfunction and theft resulted in inconsistent deployment durations. When cameras were

removed, a note was made of any problems or malfunctions such as water ingress, insect

attack, dislodgement or battery failure. Mean functioning camera-trap night (FCTNs) per CT

deployment was 54.61 ± 20.23. CT photographs were defined as an independent event if con-

secutive photos recorded (i) one or more individuals of different species; or (ii) one or more

individuals of the same species over a minimum time interval greater than 60 min[49]. Using

these criteria, all photos defined as non-independent were excluded from subsequent analyses.

Habitat structure

We quantified the forest habitat structure at all mammal survey sites to understand how this

may affect mammal species richness, composition and abundance. Along each transect, we

placed 14 plots of 10 x 50 m in both habitats, seven of which on either side of each transect (S1

Fig), which amounted to a total of 224 plots. Within each plot, we measured all trees larger

than 5 cm DBH (Diameter at Breast Height) and calculated the forest basal area (BA, in m2/

ha) using the equation BA = π.DBH2/4. Oil palm trees within OP sites were excluded from this

measure, as we aimed to restrict our sampling to native vegetation features.

In addition, using the QGis (v. 2.14) software, we measured the nearest distance from each

sampling point to any perennial stream and to the nearest edge bordering the adjacent matrix

(OP in the case of PF, or vice-versa). We also calculated the habitat patch area (ha) of all sam-

pling sites, selecting shape polygons using the Field Calculator function in QGis. In addition to

habitat type, we therefore also considered as environmental predictors of mammal community

structure the (i) distance from each sampling point to the nearest OP-PF habitat interface

(EDGE); (ii) basal area of native trees (BA); (iii) nearest distance to any permanent watercourse

(STREAM); and (iv) forest patch area (AREA).

Data analysis

We analysed the line-transect census (LTC) and camera-trapping (CT) data separately, as

these two techniques target different components of the mammal fauna, some of which are
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mutually exclusive, with diurnal/arboreal and nocturnal/terrestrial vertebrates sampled pri-

marily by LTC and CT, respectively. All LTC data analyses considered individual species rec-

ords per 10-km of census walks, whereas CT data were treated as independent photographic

records per 100 FCTNs. We first used Student´s paired t-tests to examine differences in total

species richness, total numerical abundance, total biomass, and evenness values of the mam-

mal fauna between habitat types on paired transects in either OP or PF, considering each

survey technique separately. To standardize the differences in sample sizes (i.e. number of

detection events in either LTC or CT), we estimated the species richness per transect based on

abundance-based rarefaction curves using Chao 1 estimator, considering the lowest number of

detections[50]. Evenness values were calculated as the Pielou index (J’), which was derived

from the Shannon index, using the Diversity package within R. We selected this evenness mea-

sure because it is the most widely used in ecology, and is an excellent species abundance pre-

dictor of species richness in tropical forests[51]. J’ values range from 0.0 to 1.0, with higher

values representing more even species distributions.

We examined the multivariate patterns of species composition in either OP or PF sites

using Principal Coordinates Analysis (PCoA) based on species abundances, Bray-Curtis

dissimilarity distances, and 1000 randomizations using the vegan R package. An analysis of

species assemblage similarity between samples was then conducted using Permutational Multi-

variate Analysis of Variance (PERMANOVA), in which each transect was segmented at every

700-m. This allowed us to examine differences in mammal assemblage structure along tran-

sects as a function of local landscape context. We used Similarity Percentages Analysis (SIM-

PER) to break down the contribution of each species to the overall observed similarity between

samples. We also calculated the mean (± SE) detection rate per transect to consider individual

species responses to each habitat type. To assess the importance of habitat edge effects to dif-

ferences in assemblage structure within each habitat type, we used Analysis of Covariance

(ANCOVA). We compared the species composition and abundance across neighbouring habi-

tats, using distances from the nearest edge (within either OP or PF) as a covariate.

To understand the effect of mammal life-history traits on patterns of species occupancy in

either habitat type, we used Multiple Regression Matrices (MRM). This approach combines a

response matrix, which in this case represented the species-by-site matrix weighed in terms of

local abundance, with other dissimilarity matrices calculated from explanatory species data,

including body mass, locomotion habit, degree of dietary specialization, phylogenetic distance,

and degree of primary forest habitat dependence or specialization. These morpho-ecological

traits, which included categories, ranks and continuous values, are described in S1 Table. To

assess the relative importance of different environmental predictors on mammal species rich-

ness and abundance, considering the LTC and CT data separately, we applied Generalized Lin-

ear Mixed Models (GLMM) using the glmmPQL function within the mass R package. GLMMs

were structured using a spatially hierarchical design, whereby census walks on transect seg-

ments or CT deployments were nested within transects, which are here defined a random vari-

able. Environmental predictors (EDGE; BA; STREAM and AREA), defined above, were included in

the GLMMs models.

Results

Based on both line-transect censuses (LTC) and camera-trapping (CT), we recorded 1,059

observations of 36 medium and large-bodied terrestrial mammal species, including 310 sight-

ings during LTC surveys and 749 independent photos from CT. A total of 32 and 23 species

were recorded on the basis of either LTC or CT, respectively, in both primary forest and oil

palm plantations (S2–S6 Figs and S1 Table). Considering data from both survey techniques,

Oil palm monoculture and mammal fauna in Amazon forest
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overall species richness and abundance were significant higher in primary forest compared to

oil palm monoculture (Fig 2A and 2B; S2 Table). Aggregate biomass was also significantly

greater in PF, compared to OP (Fig 2C and S2 Table). However, there were no differences in

evenness estimates between the two habitat types (Fig 2D and S2 Table), suggesting similar rel-

ative abundance distributions of rare and common species.

Nocturnal terrestrial mammals (S1 Table) were most efficiently represented in CT samples

(Fig 3A and 3B), whereas arboreal and scansorial species were far more frequently recorded

during LTCs (Fig 3C and 3D). A total of 18 of all 36 mammal species recorded in this study

were detected by both LTC and CT, and these survey techniques revealed similar patterns of

relative abundance between PF and OP sites for 83% of those species (Fig 3).

Virtually all arboreal species, including sloths (Choloepus didactylus and Bradypus variega-
tus), squirrels (Guerlinguetus aestuans), kinkajous (Potos flavus), and particularly primates,

failed to be detected in oil palm plantations (Fig 3A and 3C). Considering primates, black-

handed tamarins (Saguinus ursulus) and brown capuchin monkeys (Sapajus apella) were the

only species observed using oil palm patches, but in all cases, they were detected within 300 m

of primary forest (Fig 4). Considering xenarthrans, the two sloths, giant anteater (Myrmeco-
phaga tridactyla) and giant armadillo (Priodontes maximus) were only recorded in primary

forest (Fig 3), whereas three species of generalist armadillos (Dasypus novemcinctus, Dasypus
septemcinctus and Cabassous unicinctus) were recorded in both habitats (Fig 3). Conversely,

crab-eating foxes (Cerdocyon thous), which rarely use forests and are typical of more open hab-

itats, were frequently and exclusively recorded in oil palm plantations. This was also the case of

greater grison (Galictis vittata), but this carnivore species was rarely detected (Fig 3). The crab-

Fig 2. Comparison between oil palm plantations and forest considering overall patterns of mammal

assemblage. Box and violin plots comparing the general patterns of mammal community structure between

primary forest (in green) and oil palm plantations (in yellow), based on either line transect censuses (left

panels) or camera trapping surveys (right panels). Four mammal assemblage properties were quantified: (A)

Rarefied species richness; (B) Aggregate abundance; (C) Aggregate biomass; and (D) Community evenness.

https://doi.org/10.1371/journal.pone.0187650.g002
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eating raccoon (Procyon cancrivorus) was also more frequently detected at oil palm patches

than at forest sites. These species, as well as jaguar (Panthera onca) and smaller cats (jaguarun-

dis, Puma yagouaroundi and ocelots, Leopardus pardalis) clearly indicate that all terrestrial car-

nivores were either tolerant of or preferred oil palm monoculture. Most other species detected

in both habitats were more abundant in primary forest, particularly ungulates (e.g. lowland

tapir, Tapirus terrestris, grey brocket deer, Mazama nemorivaga and collared peccary, Pecari
tajacu) and large-bodied rodents, such as pacas (Cuniculus paca) and agoutis (Dasyprocta
prymnolopha) (Fig 3 and S1 Table).

PCoA ordination showed clear differences between sample clusters within either primary

forest or oil palm plantations, considering the species composition on the basis of both LTC

(Fig 5A) and CT (Fig 5B), which was further confirmed by permutation tests (PERMANOVA;

LTC: F(80) = 19.84, p = 0.001; CT: F(79) = 24.91, p = 0.001). However, PCoA clusters derived

from the CT data show more overlap between samples in different habitats, suggesting that

several terrestrial mammal species detected in PF also used OP patches (Fig 5B). SIMPER anal-

ysis further showed that on the basis of CT, two terrestrial species (agouti and crab-eating fox)

had a significant contribution to the overall similarity between forest (23.0%) and oil palm

Fig 3. Relative abundance rates of terrestrial and arboreal mammal species observed in oil palm

plantations and primary forest. Relative abundance rates in oil palm plantations (left panels: A, C) and

primary forest (right panels: B, D) on the basis of camera trapping (upper panels: A, B) and line transect

censuses (lower panels: C, D). Mammal species are represented by the first four letters of each genus and

first four letters of each species, and ordered top to bottom in decreasing levels of abundance in primary

forest.

https://doi.org/10.1371/journal.pone.0187650.g003
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samples (17.3%), respectively. Considering the LTC data, SIMPER analysis showed that crab-

eating fox also had a significant contribution to the similarity between PF and OP samples

(14.4%). However, three primate species—black-handed tamarin, brown capuchin monkey

and red-handed howler monkey (Alouatta belzebul)—contributed with 11.8%, 9.1% and 8.4%,

respectively, and jointly with agoutis (11.7%), were the main contributors to the overall simi-

larity between PF samples (Fig 5A).

Distances to the nearest OP-PF edge interface had a significant effect on mammal assem-

blage structure within either habitat type considering both the LTC (ANCOVA; F(2,81) = 41.77,

p<0.001) and CT data (F(2.77) = 19.97, p<0.001; Fig 5). A total of 20 of all 23 (87%) species

recorded in oil palm plantations were never detected farther than 1300m from primary forest,

and excluding the only truly non-forest species (crab-eating fox), median distances from the

nearest forest edge for any mammal detected in oil palm was 960m for CT detections (N = 55

photos) and 927m for LTC detections (N = 47 sightings). Except for a few records of terrestrial

carnivores far for the forest edge (>2000m), such as crab-eating raccoon and jaguar, only

Fig 4. Relative abundance of terrestrial and arboreal mammal species along a distance gradient

intersecting both oil palm plantations and primary forest. Distance gradient of oil palm plantations

(yellow circles) and primary forest (green circles). Survey distances covered a gradient of up to 3500 m in oil

palm and over 12,000 m in primary forest. Vertical red dashed line represents a 0-m distance along the edge

interface between these two habitat types. Species are ordered according to their higher mammalian taxa

(orders). Panels on the left (A) and right (B) represent data based on camera trapping and line transect

censuses, respectively. Circle sizes are scaled according to log-transformed (ln x + 1) measures of local

abundance based on either sampling technique. Very small dots represent non-detections at any given

sampling point.

https://doi.org/10.1371/journal.pone.0187650.g004

Fig 5. Principal Coordinates Analysis (PCoA) ordination of the mammal assemblage structure in

primary forest and oil palm plantations across the study landscape. Mammal assemblage structure in

primary forest (PF, green circles) and oil palm plantations (OP, yellow circles). PCoA plots are based on the

dissimilarity matrix derived from the relative abundance data for each species based on either (A) line transect

censuses or (B) camera trapping.

https://doi.org/10.1371/journal.pone.0187650.g005
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crab-eating foxes were detected at high abundance in oil palm (N = 34 sightings from LTC and

N = 104 photos from CT; Fig 4).

On the basis of the first PCoA axis describing the mammal species composition, paired sites

along the same or neighboring transects cutting across neighboring oil palm and primary for-

est sites were not necessarily less dissimilar than sites sampled along transects farther apart

(ANOVA; LTC data: F1,80 = 282.6, P< 0.001; CT data: F1,78 = 266.2, P< 0.001). Transect iden-

tity had no effect (LTC data: P = 0.975; CT data: P = 0.601), indicating that habitat type was far

more important than the spatial effects of transect identity in differentiating the community

structure.

Multiple Regression Matrices analysis showed that species life-history traits had a signifi-

cant effect on the overall pattern of species composition in both habitat types (R2 = 0.17,

p = 0.001), and that this effect can be primarily attributed to species differences in the degree

of forest habitat specificity (R2 = 0.04, p = 0.001) (S1 Table). This suggests that generalist or

open countryside species that range widely into open habitat areas are tolerant of oil palm

plantations, whereas both arboreal and terrestrial forest specialists are not. This reinforces the

detrimental effect of oil palm habitat structure particularly on strictly arboreal species such as

primates and sloths, for example. Conversely, habitat generalists that are widely known to use

open areas, such as crab-eating fox, were clearly favored by oil palm plantations.

GLMMs revealed that forest basal area and distance to the nearest habitat interface were sig-

nificant predictors of mammal species richness, considering the LTC and CT data, respectively

(Fig 6A and 6B). On the other hand, considering the CT data alone, forest basal area was a sig-

nificant negative predictor of overall abundance, whereas distance to the interface between OP

and PF had the opposite effect (Fig 6D). Distance to neighboring streams and forest patch size

failed to explain either mammal species richness or abundance (Fig 6).

Discussion

We have shown that well-established oil palm plantations in Eastern Amazonia have clear det-

rimental effects on the assemblage of midsize to large-bodied mammals, and that some life-his-

tory traits were key determinants of species responses. Oil palm plantations were consistently

impoverished compared to neighboring native forests, in terms of the general patterns of

assemblage organization, including species richness, overall abundance and a measure of

aggregate biomass across all species. Of all 23 terrestrial, 11 arboreal and two scansorial mam-

mal species considered in this study, only three could be described as thriving in oil palm

monoculture; all other species may use oil palm patches in their immediate forest neighbor-

hood, but would likely be extirpated in the complete absence of primary forest within the

wider landscape mosaic.

This general pattern is consistent with comparable results on the local avifauna surveyed

within the same forest landscape, which showed that oil palm plantations were more impover-

ished in species composition than cattle pastures, secondary forests and primary forests within

the same region[23]. In another study in natural savannas of the Colombian Llanos, species

richness and abundance were severely reduced in areas converted into oil palm, and there

were marked difference in species composition between habitats[24]. In contrast, a study in

the Colombian Amazon showed that ants, dung beetles, and birds were more diverse in oil

palm plantations than in pasture areas, and that oil palm could support a wide range of forest

species[20]. However, studies using space-for-time substitution (i.e. those lacking “before and

after” data), should pay close attention to the nature of baseline forest sites inferred as controls

or pseudo-controls. In this study, the Agropalma study area has been historically embedded

within an old Amazonian deforestation frontier, where virtually all remaining primary forest
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patches had been selectively logged in the past[45]. In addition, occasional hunting of forest

vertebrates still occurs, despite the best efforts from the oil palm company to control access by

hunters. Both timber extraction and hunting are expected to reduce the abundance and/or

occupancy of several mammal species, thereby suggesting that assemblage-wide differences

Fig 6. Coefficient estimates (± 95% confidence intervals) showing the magnitude and direction of effects of different explanatory

variables. Effects of different explanatory variables considering either the line transect census data (A, C) or camera trapping data (B, D).

Top panels (A, B) show effect sizes for species richness; bottom panels (C, D) show effect sizes for overall abundance. Explanatory

variables included Edge(d): distance to the nearest edge between primary forest and adjacent oil palm plantation; Basal area of native

vegetation; Stream(d): distance to the nearest perennial stream; and Patch area: size of any given habitat patch (in ha).

https://doi.org/10.1371/journal.pone.0187650.g006
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between oil palm and adjacent primary forest were somewhat underestimated here. Con-

versely, oil palm patches next to a more pristine forest baseline would have likely provided an

even greater contrast in species habitat use.

Mammal species composition in oil palm was markedly different compared to adjacent pri-

mary forest. This was particularly the case of forest specialists, including most strictly arboreal

species, such as primates and sloths, which were likely most affected by the lack of horizontal

connectivity in the midstory and canopy layers, and severe simplification of habitat structure

and the resource spectrum in oil palm plantations. Oil palm plantations also exhibit a much

lower discontiguous canopy[18], which prevents most arboreal leapers and quadrupedal

climbers from moving in horizontal space. Habitat use studies on neotropical primates, which

are clearly more arboreal than their paleotropical counterparts of comparable size classes[52],

show strong positive selection for complex forest habitats[53]. However, terrestrial forest spe-

cialists were also substantially affected by oil palm plantations, as the habitat structure of this

oil-seed crop at the ground layer is also in marked contrast to that of native forest. This

includes elevated soil exposure, reduced leaf litter[15][16], lack of dead-wood substrates, and

lack of an understory[17], rendering several ungulates (e.g. Mazama americana and Tayassu
pecari), large rodents (Cuniculus paca and Dasyprocta prymnolopha), and xenarthrans (e.g.

Priodontes maximus and Myrmecophaga tridactyla) conspicuously absent from oil palm. Even

the high productivity and nearly year-round availability of oil palm fruits apparently fails to

compensate for the severe structural differences between this tree monoculture and a diverse

forest habitat.

The lower overlap in ordination (PCoA) space between LTC samples in different habitats

clearly indicates higher dissimilarity between site clusters in either OP or PF, again reinforcing

the notion that arboreal mammals, which were sampled almost exclusively by census walks,

were more affected by oil palm plantations. Despite differences in species selectivity between

camera-trapping and line-transect censuses, results based on either one of these methods were

still generally consistent in relation to overall community patterns.

We observed a large lateral spill-over effect in animal populations from primary forest to

adjacent oil palm plantations, which was clearly represented by several ungulate and large

rodent species, but particularly mid-sized carnivores. The general use of oil palm plantations

by wide-ranging carnivores is likely driven by the higher prey biomass density for at least

some apex predator species. In a parallel 1-year long study at the same landscape, we con-

ducted a systematic live-trapping effort to sample small mammals (rodents and marsupials) in

both vegetation types (ACMO et al., unpubl. data). We uncovered a very high density of

rodents in oil palm monoculture (65% of the total abundance including both oil palm and pri-

mary forest sites), which included particularly common species, such as Hylaeamys megace-
phalus and four species of Oecomys. These insectivore/frugivore rodents[54] are probably

attracted by the nearly year-round high yield of oil palm fruits, but also by the high abundance

of arthropods present along the parallel rows of residual vegetation necromass generated by

previous plantation cycles. This prey base likely attracted small cats, such as ocelots, jaguarun-

dis and margays (Leopardus wiedii), but also other small carnivores, including mustelids

(greater grison and tayra, Eira barbara) and a forest canid (bush dog, Speothos venaticus).
This spill-over effect can be considered unidirectional from a natural forest to an entirely

anthropogenic and intensively managed habitat[55]. Except for crab-eating raccoons, the only

other two species that were more abundant within oil palm were not detected in adjacent forest

patches. Of these, the greater grison is naturally rare[56], and although it may be considered a

forest affiliate, this species is a habitat-generalist that is highly tolerant of disturbed areas[57].

The only species that we can categorically interpret as clearly favored by oil palm plantations is

the crab-eating fox. This Brazilian Cerrado species specializes in open habitat areas[54], and
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has expanded its range and vastly increased its overall abundance throughout many anthropo-

genically disturbed parts of the Amazon[58].

A key discussion in the literature, which is partly motivated by bilateral agreements regu-

lated by the Roundtable on Sustainable Palm Oil (RSPO), has focussed on plantation manage-

ment standards that enhances native biodiversity retention within oil palm plantations[12][27]

[33]. In our study landscape, protecting large areas of natural forest remnants could clearly

minimize the negative landscape-wide effects of oil palm plantations, compared to protecting

small forest fragments. Large protected areas support larger populations that can operate as

source[59][60]. Many of these populations can take advantage of ecological subsidies from

neighboring anthropogenic habitats via small-scale spill-over, but are unlikely to meet their

metabolic requirements without sufficiently large forest areas. Although the spatial configura-

tion of forest fragments around a nuclear oil palm-dominated matrix could enhance vertebrate

dispersal across large cropland areas, this was only partly validated based on our observations

since lateral movements by virtually all mammal species never exceeded 1300 meters into oil

palm plantations. Distance thresholds from forest remnants of meaningful size are therefore

clearly important in defining mammal responses to oil palm plantations[30][33]. In this study,

local mammal diversity was rapidly reduced along increasingly greater distances from primary

forest. This is because spill-over effects were largely restricted to the immediate forest neigh-

borhood and most core areas of oil palm were rarely if ever used by most species. Furthermore,

native riparian forests along perennial streams, which were set aside within areas of oil palm

plantations, could act as corridors for wildlife if they could remain largely intact[61], but the

environmental heterogeneity of these riparian corridors was severely reduced in oil palm

areas, affecting even the aquatic biota[62]. In any case, several species that can use oil palm

plantations, such as crab-eating raccoon and jaguarundi, can still benefit from degraded forest

strips, as these species often use or disperse through riparian habitat[57]. The severe structural

and compositional simplification in habitat heterogeneity associated with oil palm plantations

is closely linked to the loss of vertical stratification, absence of an understory, and severe loss

in forest basal area, all of which can help explain the depauperate mammal assemblages

observed in oil palm.

We identified at least three “Vulnerable” mammal species according to the IUCN Red List,

which were never recorded in oil palm plantations (Priodontes maximus, Myrmecophaga tri-
dactyla and Tayassu pecari), in addition to two Critically Endangered primates (Cebus kaapori
and Chiropotes satanas) which rarely used plantations. Considering the prospect of oil palm

expansion in the Brazilian Amazonia[8][9], retaining large areas of primary forest within the

plantation matrix is, therefore, the only option of guarding the conservation interests of these

threatened species.

The Brazilian federal government enacted policies encouraging more benign forms of oil

palm production in the Amazon by banning low-interest investment loans granted to those

companies or smallholders who are likely to convert primary forest. However, more recent

state-level legislation has been sanctioned to regulate oil palm plantations in forest areas

(including secondary and logged primary forest) or on fallow land (e.g. Instrução Normativa
SEMAS/PA/2011). Environmental licensing applications to convert young secondary forests

into oil palm plantations can now be rubber-stamped as these areas are often considered highly

degraded and of little value in terms of their natural capital. Yet most of the remaining forest

area in Eastern Amazonia (~83%) is now comprised of secondary forests[47], most of which

are threatened by further forest conversion into more lucrative land uses.

In 2011, the state government of Pará revoked a law that defined oil palm plantations as a

reforestation option (Portaria SEMA/Pará 3872/2010), thereby signaling that this crop could

be accounted for in the calculation of the 80% mandatory Legal Forest Reserve set-aside within
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private landholdings across the Amazon (Brazilian Federal Law No. 12.651/2012). However,

the governance scenario in protecting native forests and biodiversity in private lands does not

bode well given the current direct and indirect policy incentives for oil palm expansion in both

old and new Amazonian deforestation frontiers, including facilitated rural credit for landown-

ers and government investments in ancillary infrastructure such as roads and power lines.

In summary, Amazonian forest mammal responses to oil palm plantations are modulated

by (1) severe differences in habitat structure and composition between species-rich primary

forests and species-poor conventional oil palm plantations; (2) the influence of functional

traits on individual species responses to novel habitat conditions; and (3) the effects of land-

scape structure, as well as the size, spatial arrangement and integrity of forest remnants in rela-

tion to the dominant matrix of oil palm. All these factors contributed to the drastic erosion of

the mammalian fauna in industrial scale oil palm plantations in Eastern Amazonia. Our study

therefore clearly reinforces the notion that oil palm plantations can be extremely hostile to

native tropical forest biodiversity, as has been shown in more traditional oil palm countries in

South-East Asia, such as Malaysia and Indonesia[12][21]. Our results paint a pessimistic sce-

nario considering the extremely high suitability of most Amazonian soils and climatic condi-

tions for oil palm monoculture and the rapidly growing demand for biofuels and vegetable oils

around the world[8][9]. We therefore strongly recommend caution in sanctioning future

direct or indirect government subsidies for the conversion of forest areas into oil palm

plantations.
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