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ABSTRACT

Summary: More and more cancer studies use next-generation
sequencing (NGS) data to detect various types of genomic
variation. However, even when researchers have such data at
hand, single-nucleotide polymorphism arrays have been considered
necessary to assess copy number alterations and especially loss
of heterozygosity (LOH). Here, we present the tool Control-FREEC
that enables automatic calculation of copy number and allelic
content profiles from NGS data, and consequently predicts regions
of genomic alteration such as gains, losses and LOH. Taking as input
aligned reads, Control-FREEC constructs copy number and B-allele
frequency profiles. The profiles are then normalized, segmented and
analyzed in order to assign genotype status (copy number and allelic
content) to each genomic region. When a matched normal sample
is provided, Control-FREEC discriminates somatic from germline
events. Control-FREEC is able to analyze overdiploid tumor samples
and samples contaminated by normal cells. Low mappability regions
can be excluded from the analysis using provided mappability
tracks.
Availability: C++ source code is available at: http://bioinfo.curie.fr/
projects/freec/
Contact: freec@curie.fr
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Cancer genomes often display copy number alterations (CNAs)
and/or losses of heterozygosity (LOH) (Hanahan and Weinberg,
2011). Genetic abnormalities in specific regions may be related to the
aggressiveness of a cancer and be associated with clinical outcomes
(Caren et al., 2010; Suzuki et al., 2000).

To detect CNA and LOH regions, single-nucleotide
polymorphism (SNP) arrays have been recently much in use
(Popova et al., 2009). Furthermore, next-generation sequencing
(NGS) has been moving to replace SNP-arrays in prediction of
CNAs (Boeva et al., 2010). A recent study presented ExomeCNV,
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a tool to predict CNAs and LOH using exome sequencing data
(Sathirapongsasuti et al., 2011). However, detection of LOH regions
and, more generally, prediction of genotype status (copy number
and allelic content) of an altered region using whole-genome
sequencing data has remained unsolved. The main challenges to
doing so are non-uniform read coverage of genomic positions
[for example, due to different mappability and GC-content (Boeva
et al., 2010)] and alignment bias (reference allele coverage is
usually higher than the coverage of the alternative allele). Thus, the
resulting signal is noisier and more difficult to process than in the
case of SNP arrays.

Here, we present Control-FREEC (Control-FREE Copy number
and allelic content caller)—a tool that annotates genotypes and
discovers CNAs and LOH. Control-FREEC inherits many features
from FREEC (Boeva et al., 2010) (assessment of copy number
variation and evaluation of contamination by normal cells) as
well as the general methodology of the GAP algorithm for
SNP arrays (Popova et al., 2009). Control-FREEC takes as an
input aligned reads, then constructs and normalizes the copy
number profile, constructs the B-allele frequency (BAF) profile,
segments both profiles, ascribes the genotype status to each segment
using both copy number and allelic frequency information, then
annotates genomic alterations. If a control (matched normal)
sample is available, Control-FREEC discerns somatic variants from
germline ones.

2 METHODS
Workflow: the workflow of Control-FREEC consists of three steps:
(i) calculation and segmentation of copy number profiles; (ii) calculation
and segmentation of smoothed BAF profiles; (iii) prediction of final genotype
status, i.e. copy number and allelic content for each segment (for example,
A, AB, AAB, etc.).

(i) Calculation of copy number profiles is mainly done as described in
our previous publication (Boeva et al., 2010). The most important
features of the procedure are: (a) possibility to use GC-content and
mappability profiles to normalize read count if a control sample
is unavailable; (b) proper characterization of overdiploid genomes;
(c) correction for possible contamination by normal cells when
constructing the copy number profile of a tumor genome. The
new tool Control-FREEC can also be used on non-mammalian
genomes and includes many new user control settings, such as
(a) defining the program’s behavior in low mappability regions
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Fig. 1. Control-FREEC calculates copy number and BAF profiles and detects regions of copy number gain/loss and LOH regions. Tumor chromosomes 17 and
19 (bottom panels) versus ‘normal’ chromosomes (top panels; unpublished data). Predicted BAF and copy number profiles are shown in black. Gains, losses
(left panels) and LOH (right panels) are shown in red, blue and light blue, respectively.

(http://bioinfo.curie.fr/projects/freec/tutorial.html); (b) choosing the
minimal number of consecutive windows required to call a CNA.

(ii) We characterize the allelic content via the BAF introduced previously
for SNP arrays (Popova et al., 2009). We limit the list of genomic
positions that we consider to evaluate allelic content to known SNPs
only (Sherry et al., 2001). By the B allele, we mean the alternative
variant in SNP database (dbSNP). SNPs that are homozygous in
the genome being considered give no information about allelic
content (in SNP arrays they are denoted as non-informative);
therefore putatively homozygous positions are discarded. A position
is discarded if the probability of having variation due to sequencing
errors under the condition of actual homozygosity is greater than a
specified threshold (Supplementary Materials).
We calculate the total coverage and B-allele coverage for
each known putatively heterozygous SNP position. For each
window i, we calculate the median of the BAF values: Medj=
median(abs(xij −0.5)), where {xij} are BAF values of the remaining
SNP positions. We segment {Medj} using the same lasso-based
algorithm as used for copy numbers (Harchaoui and Lévy-Leduc,
2008).

(iii) We predict genotype status for each genomic segment independently,
by choosing the allelic content that corresponds to the maximal
log-likelihood, given the copy number detected previously.

First, we combine breakpoints issued from both copy number and median
BAF segmentations to get genomic segments with presumably one status.
Second, copy number status of each segment is detected as described
previously (Boeva et al., 2010). If the CNA is present in most of the cells,
there is no ambiguity in determining exact copy number of the region
(see Supplementary Materials for more details on the strategy in the case
of presence of subclones or normal contamination). Third, given the copy
number of the region, we fit Gaussian mixture models (GMMs) with fixed
means to the observed BAF values and select the model that provides the
highest log-likelihood. For example, for a region with a copy number of two,
we fit a two component model (mixture of ‘AA’ and ‘BB’ alleles) and a three
component model (‘AA’, ‘AB’ and ‘BB’, with a condition on the minimal
weight of ‘AB’). The component means in the GMM depend on the level of
contamination by normal DNA (Supplementary Materials).

Input and output: the input consists of a SAM pileup
(http://samtools.sourceforge.net/pileup.shtml) and a dbSNP file. The
control dataset is optional if a reference genome is provided. The output
contains a list of CNAs and LOH regions as well as read count, copy

number, BAF and genotype information for each window. If a control
(matched normal) dataset is available, each event is annotated as somatic or
germline.

3 RESULTS
We applied Control-FREEC to detect CNAs and LOH regions in a
tumor/normal dataset for a neuroblastoma patient (∼30x-coverage,
unpublished data). Control-FREEC detected somatic CNA and LOH
regions covering 75% of the tumor genome (Fig. 1) and was able
to identify the genotype status despite contamination of the tumor
sample by normal cells (estimated percent of tumor cells was 60%).

Our results agreed with the SNP-array analysis output. We
obtained 95.4% consistency between the results of Control-FREEC
and GAP (Popova et al., 2009), which we applied to SNP array data
generated for the same tumor sample (Supplementary Materials).

4 CONCLUSION
Control-FREEC is a tool for automatic detection of CNAs and
LOH regions using NGS data. It accurately calls genotype status
even when no control experiment is available and/or the genome is
polyploid. It corrects for GC-content and mappability biases. In the
case of tumor samples, Control-FREEC is able to evaluate the level
of contamination by normal cells. The software is written in C++
and freely available.
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