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Abstract

Technological advances in genomics and imaging have led to an
explosion of molecular and cellular profiling data from large
numbers of samples. This rapid increase in biological data dimen-
sion and acquisition rate is challenging conventional analysis
strategies. Modern machine learning methods, such as deep learn-
ing, promise to leverage very large data sets for finding hidden
structure within them, and for making accurate predictions. In this
review, we discuss applications of this new breed of analysis
approaches in regulatory genomics and cellular imaging. We
provide background of what deep learning is, and the settings in
which it can be successfully applied to derive biological insights. In
addition to presenting specific applications and providing tips for
practical use, we also highlight possible pitfalls and limitations to
guide computational biologists when and how to make the most
use of this new technology.
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Introduction

Machine learning methods are general-purpose approaches to learn

functional relationships from data without the need to define them a

priori (Hastie et al, 2005; Murphy, 2012; Michalski et al, 2013). In

computational biology, their appeal is the ability to derive predictive

models without a need for strong assumptions about underlying

mechanisms, which are frequently unknown or insufficiently

defined. As a case in point, the most accurate prediction of gene

expression levels is currently made from a broad set of epigenetic

features using sparse linear models (Karlic et al, 2010; Cheng et al,

2011) or random forests (Li et al, 2015); how the selected features

determine the transcript levels remains an active research topic.

Predictions in genomics (Libbrecht & Noble, 2015; Märtens et al,

2016), proteomics (Swan et al, 2013), metabolomics (Kell, 2005) or

sensitivity to compounds (Eduati et al, 2015) all rely on machine

learning approaches as a key ingredient.

Most of these applications can be described within the canonical

machine learning workflow, which involves four steps: data clean-

ing and pre-processing, feature extraction, model fitting and evalua-

tion (Fig 1A). It is customary to denote one data sample, including

all covariates and features as input x (usually a vector of numbers),

and label it with its response variable or output value y (usually a

single number) when available.

A supervised machine learning model aims to learn a function

f(x) = y from a list of training pairs (x1,y1), (x2,y2), . . . for which data

are recorded (Fig 1B). One typical application in biology is to predict

the viability of a cancer cell line when exposed to a chosen drug

(Menden et al, 2013; Eduati et al, 2015). The input features (x) would

capture somatic sequence variants of the cell line, chemical make-up

of the drug and its concentration, which together with the measured

viability (output label y) can be used to train a support vector

machine, a random forest classifier or a related method (functional

relationship f). Given a new cell line (unlabelled data sample x*) in

the future, the learnt function predicts its survival (output label y*) by

calculating f(x*), even if f resemblesmore of a black box, and its inner

workings of why particular mutation combinations influence cell

growth are not easily interpreted. Both regression (where y is a real

number) and classification (where y is a categorical class label) can be

viewed in this way. As a counterpart, unsupervised machine learning

approaches aim to discover patterns from the data samples x them-

selves, without the need for output labels y. Methods such as cluster-

ing, principal component analysis and outlier detection are typical

examples of unsupervisedmodels applied to biological data.

The inputs x, calculated from the raw data, represent what the

model “sees about the world”, and their choice is highly problem-

specific (Fig 1C). Deriving most informative features is essential for

performance, but the process can be labour-intensive and requires

domain knowledge. This bottleneck is especially limiting for high-

dimensional data; even computational feature selection methods do

not scale to assess the utility of the vast number of possible input

combinations. A major recent advance in machine learning is

automating this critical step by learning a suitable representation of

the data with deep artificial neural networks (Bengio et al, 2013;

LeCun et al, 2015; Schmidhuber, 2015) (Fig 1D). Briefly, a deep

neural network takes the raw data at the lowest (input) layer and

transforms them into increasingly abstract feature representations by

successively combining outputs from the preceding layer in a data-

driven manner, encapsulating highly complicated functions in the

1 European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
2 Department of Computer Science, University of Tartu, Tartu, Estonia
3 Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK

*Corresponding author. Tel: +44 1223 834 244; E-mail: leopold.parts@sanger.ac.uk
**Corresponding author. Tel: +44 1223 494 101; E-mail: oliver.stegle@ebi.ac.uk
†These authors contributed equally to this work

ª 2016 The Authors. Published under the terms of the CC BY 4.0 license Molecular Systems Biology 12: 878 | 2016 1



process (Box 1). Deep learning is now one of the most active fields in

machine learning and has been shown to improve performance

in image and speech recognition (Hinton et al, 2012; Krizhevsky et al,

2012; Graves et al, 2013; Zeiler & Fergus, 2014; Deng & Togneri, 2015),

natural language understanding (Bahdanau et al, 2014; Sutskever

et al, 2014; Lipton, 2015; Xiong et al, 2016), and most recently, in

computational biology (Eickholt & Cheng, 2013; Dahl et al, 2014;

Leung et al, 2014; Sønderby & Winther, 2014; Alipanahi et al, 2015;

Wang et al, 2015; Zhou & Troyanskaya, 2015; Kelley et al, 2016).

The potential of deep learning in high-throughput biology is

clear: in principle, it allows to better exploit the availability of

increasingly large and high-dimensional data sets (e.g. from DNA

sequencing, RNA measurements, flow cytometry or automated

microscopy) by training complex networks with multiple layers that

capture their internal structure (Fig 1C and D). The learned

networks discover high-level features, improve performance over

traditional models, increase interpretability and provide additional

understanding about the structure of the biological data.

In this review, we discuss recent and forthcoming applications of

deep learning, with a focus on applications in regulatory genomics

and biological image analysis. The goal of this review was not to

provide comprehensive background on all technical details, which

can be found in the more specialized literature (Bengio, 2012;

Bengio et al, 2013; Deng, 2014; Schmidhuber, 2015; Goodfellow

et al, 2016). Instead, we aimed to provide practical pointers and the

necessary background to get started with deep architectures, review

current software solutions and give recommendations for applying

them to data. The applications we cover are deliberately broad to

illustrate differences and commonalities between approaches;

reviews focusing on specific domains can be found elsewhere (Park

& Kellis, 2015; Gawehn et al, 2016; Leung et al, 2016; Mamoshina

et al, 2016). Finally, we discuss both the potential and possible

pitfalls of deep learning and contrast these methods to traditional

machine learning and classical statistical analysis approaches.

Deep learning for regulatory genomics

Conventional approaches for regulatory genomics relate sequence

variation to changes in molecular traits. One approach is to leverage

variation between genetically diverse individuals to map quantitative

trait loci (QTL). This principle has been applied to identify regulatory

variants that affect gene expression levels (Montgomery et al, 2010;

Pickrell et al, 2010), DNA methylation (Gibbs et al, 2010; Bell et al,

2011), histone marks (Grubert et al, 2015; Waszak et al, 2015) and

proteome variation (Vincent et al, 2010; Albert et al, 2014; Parts et al,

2014; Battle et al, 2015) (Fig 2A). Better statistical methods have

helped to increase the power to detect regulatory QTL (Kang et al,

2008; Stegle et al, 2010; Parts et al, 2011; Rakitsch & Stegle, 2016);

however, any mapping approach is intrinsically limited to variation that

is present in the training population. Thus, studying the effects of rare

mutations in particular requires data sets with very large sample size.

An alternative is to train models that use variation between

regions within a genome (Fig 2A). Splitting the sequence into

windows centred on the trait of interest gives rise to tens of thou-

sands of training examples for most molecular traits even when

using a single individual. Even with large data sets, predicting molec-

ular traits from DNA sequence is challenging due to multiple layers
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Figure 1. Machine learning and representation learning.
(A) The classical machine learning workflow can be broken down into four steps: data pre-processing, feature extraction, model learning and model evaluation. (B) Supervised
machine learning methods relate input features x to an output label y, whereas unsupervised method learns factors about x without observed labels. (C) Raw input data are
often high-dimensional and related to the corresponding label in a complicated way, which is challenging for many classical machine learning algorithms (left plot).
Alternatively, higher-level features extracted using a deep model may be able to better discriminate between classes (right plot). (D) Deep networks use a hierarchical
structure to learn increasingly abstract feature representations from the raw data.
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of abstraction between the effect of individual DNA variants and the

trait of interest, as well as the dependence of the molecular traits on

a broad sequence context and interactions with distal regulatory

elements.

The value of deep neural networks in this context is twofold.

First, classical machine learning methods cannot operate on the

sequence directly, and thus require pre-defining features that can be

extracted from the sequence based on prior knowledge (e.g. the

presence or absence of single-nucleotide variants (SNVs), k-mer

frequencies, motif occurrences, conservation, known regulatory

variants or structural elements). Deep neural networks can help

circumventing the manual extraction of features by learning them

from data. Second, because of their representational richness, they

can capture nonlinear dependencies in the sequence and interaction

effects and span wider sequence context at multiple genomic scales.

Attesting to their utility, deep neural networks have been success-

fully applied to predict splicing activity (Leung et al, 2014; Xiong

et al, 2015), specificities of DNA- and RNA-binding proteins

Box 1: Artificial Neural Network

An artificial neural network, initially inspired by neural networks in the brain (McCulloch & Pitts, 1943; Farley & Clark, 1954; Rosenblatt, 1958), consists of
layers of interconnected compute units (neurons). The depth of a neural network corresponds to the number of hidden layers, and the width to the
maximum number of neurons in one of its layers. As it became possible to train networks with larger numbers of hidden layers, artificial neural networks
were rebranded to “deep networks”.
In the canonical configuration, the network receives data in an input layer, which are then transformed in a nonlinear way through multiple hidden
layers, before final outputs are computed in the output layer (panel A). Neurons in a hidden or output layer are connected to all neurons of the previous
layer. Each neuron computes a weighted sum of its inputs and applies a nonlinear activation function to calculate its output f(x) (panel B). The most
popular activation function is the rectified linear unit (ReLU; panel B) that thresholds negative signals to 0 and passes through positive signal. This type
of activation function allows faster learning compared to alternatives (e.g. sigmoid or tanh unit) (Glorot et al, 2011).
The weights w(i) between neurons are free parameters that capture the model’s representation of the data and are learned from input/output samples.
Learning minimizes a loss function L(w) that measures the fit of the model output to the true label of a sample (panel A, bottom). This minimization is
challenging, since the loss function is high-dimensional and non-convex, similar to a landscape with many hills and valleys (panel C). It took several
decades before the backward propagation algorithm was first applied to compute a loss function gradient via chain rule for derivatives (Rumelhart et al,
1988), ultimately enabling efficient training of neural networks using stochastic gradient descent. During learning, the predicted label is compared with
the true label to compute a loss for the current set of model weights. The loss is then backward propagated through the network to compute the gradi-
ents of the loss function and update (panel A). The loss function L(w) is typically optimized using gradient-based descent. In each step, the current
weight vector (red dot) is moved along the direction of steepest descent dw (direction arrow) by learning rate g (length of vector). Decaying the learning
rate over time allows to explore different domains of the loss function by jumping over valleys at the beginning of the training (left side) and fine-tune
parameters with smaller learning rates in later stages of the model training. While learning in deep neural networks remains an active area of research,
existing software packages (Table 1) can already be applied without knowledge of the mathematical details involved.
Alternative architectures to such fully connected feedforward networks have been developed for specific applications, which differ in the way neurons
are arranged. These include convolutional neural networks, which are widely used for modelling images (Box 2), recurrent neural networks for sequential
data (Sutskever, 2013; Lipton, 2015), or restricted Boltzmann machines (Salakhutdinov & Larochelle, 2010; Hinton, 2012) and autoencoders (Hinton &
Salakhutdinov, 2006; Alain et al, 2012; Kingma & Welling, 2013) for unsupervised learning. The choice of network architecture and other parameters can
be made in a data-driven and objective way by assessing the model performance on a validation data set.
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(Alipanahi et al, 2015) or epigenetic marks and to study the effect of

DNA sequence alterations (Zhou & Troyanskaya, 2015; Kelley et al,

2016).

Early applications of neural networks in
regulatory genomics

The first successful applications of neural networks in regulatory

genomics replaced a classical machine learning approach with a

deep model, without changing the input features. For example,

Xiong et al (2015) considered a fully connected feedforward neural

network to predict the splicing activity of individual exons. The

model was trained using more than 1,000 pre-defined features

extracted from the candidate exon and adjacent introns. Despite the

relatively low number of 10,700 training samples in combination

with the model complexity, this method achieved substantially

higher prediction accuracy of splicing activity compared to simpler

approaches, and in particular was able to identify rare mutations

implicated in splicing misregulation.

Convolutional designs

More recent work using convolutional neural networks (CNNs)

allowed direct training on the DNA sequence, without the need to

define features (Alipanahi et al, 2015; Zhou & Troyanskaya, 2015;

Angermueller et al, 2016; Kelley et al, 2016). The CNN architecture

allows to greatly reduce the number of model parameters compared

to a fully connected network by applying convolutional operations

to only small regions of the input space and by sharing parameters

between regions. The key advantage resulting from this approach is

the ability to directly train the model on larger sequence windows

(Box 2; Fig 2B).

Alipanahi et al (2015) considered convolutional network archi-

tectures to predict specificities of DNA- and RNA-binding proteins.
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Figure 2. Principles of using neural networks for predicting molecular traits from DNA sequence.
(A) DNA sequence and the molecular response variable along the genome for three individuals. Conventional approaches in regulatory genomics consider variations between
individuals, whereas deep learning allows exploiting intra-individual variations by tiling the genome into sequence DNA windows centred on individual traits, resulting
in large training data sets from a single sample. (B) One-dimensional convolutional neural network for predicting a molecular trait from the raw DNA sequence in a window.
Filters of the first convolutional layer (example shown on the edge) scan for motifs in the input sequence. Subsequent pooling reduces the input dimension, and
additional convolutional layers can model interactions between motifs in the previous layer. (C) Response variable predicted by the neural network shown in
(B) for a wild-type and mutant sequence is used as input to an additional neural network that predicts a variant score and allows to discriminate normal from deleterious
variants. (D) Visualization of a convolutional filter by aligning genetic sequences that maximally activate the filter and creating a sequence motif. (E) Mutation map of
a sequence window. Rows correspond to the four possible base pair substitutions, columns to sequence positions. The predicted impact of any sequence change is colour-coded.
Letters on top denote thewild-type sequencewith the height of each nucleotide denoting themaximumeffect acrossmutations (figure panel adapted fromAlipanahi et al, 2015).
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Their DeepBind model outperformed existing methods, was able to

recover known and novel sequence motifs, and could quantify the

effect of sequence alterations and identify functional SNVs. A key

innovation that enabled training the model directly on the raw

DNA sequence was the application of a one-dimensional convolu-

tional layer. Intuitively, the neurons in the convolutional layer

scan for motif sequences and combinations thereof, similar to

conventional position weight matrices (Stormo et al, 1982). The

learning signal from deeper layers informs the convolutional layer

which motifs are the most relevant. The motifs recovered by the

model can then be visualized as heatmaps or sequence logos

(Fig 2D).

Box 2: Convolutional Neural Network

Convolutional neural networks (CNNs) were originally inspired by cognitive neuroscience and Hubel and Wiesel’s seminal work on the cat’s visual cortex,
which was found to have simple neurons that respond to small motifs in the visual field, and complex neurons that respond to larger ones (Hubel &
Wiesel, 1963, 1970).
CNNs are designed to model input data in the form of multidimensional arrays, such as two-dimensional images with three colour channels (LeCun
et al, 1989; Jarrett et al, 2009; Krizhevsky et al, 2012; Zeiler & Fergus, 2014; He et al, 2015; Szegedy et al, 2015a) or one-dimensional genomic sequences
with one channel per nucleotide (Alipanahi et al, 2015; Wang et al, 2015; Zhou & Troyanskaya, 2015; Angermueller et al, 2016; Kelley et al, 2016). The
high dimensionality of these data (up to millions of pixels for high-resolution images) renders training a fully connected neural network challenging, as
the number of parameters of such a model would typically exceed the number of training data to fit them. To circumvent this, CNNs make additional
assumptions on the structure of the network, thereby reducing the effective number of parameters to learn.
A convolutional layer consists of multiple maps of neurons, so-called feature maps or filters, with their size being equal to the dimension of the input
image (panel A). Two concepts allow reducing the number of model parameters: local connectivity and parameter sharing. First, unlike in a fully
connected network, each neuron within a feature map is only connected to a local patch of neurons in the previous layer, the so-called receptive field.
Second, all neurons within a given feature map share the same parameters. Hence, all neurons within a feature map scan for the same feature in the
previous layer, however at different locations. Different feature maps might, for example, detect edges of different orientation in an image, or sequence
motifs in a genomic sequence. The activity of a neuron is obtained by computing a discrete convolution of its receptive field, that is computing the
weighted sum of input neurons, and applying an activation function (panel B).
In most applications, the exact position and frequency of features is irrelevant for the final prediction, such as recognizing objects in an image. Using this
assumption, the pooling layer summarizes adjacent neurons by computing, for example, the maximum or average over their activity, resulting in a
smoother representation of feature activities (panel C). By applying the same pooling operation to small image patches that are shifted by more than
one pixel, the input image is effectively down-sampled, thereby further reducing the number of model parameters.
A CNN typically consists of multiple convolutional and pooling layers, which allows learning more and more abstract features at increasing scales from
small edges, to object parts, and finally entire objects. One or more fully connected layers can follow the last pooling layer (panel A). Model hyper-para-
meters such as the number of convolutional layers, number of feature maps or the size of receptive fields are application-dependent and should be
strictly selected on a validation data set.
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In silico prediction of mutation effects

An important application of deep neural networks trained on the

raw DNA sequence is to predict the effect of mutations in silico.

Such model-based assessments of the effect of sequence changes

complement methods based on QTL mapping, and can in particular

help to uncover regulatory effects of rare SNVs or to fine-map likely

causal genes. An intuitive approach for visualizing such predicted

regulatory effects is mutation maps (Alipanahi et al, 2015), whereby

the effect of all possible mutations for a given input sequence is

represented in a matrix view (Fig 2E). The authors could further

reliably identify deleterious SNVs by training an additional neural

network with predicted binding scores for a wild-type and mutant

sequence (Fig 2C).

Joint prediction of multiple traits and further extensions

Following their initial successes, convolutional architectures have

been extended and applied to a range of tasks in regulatory geno-

mics. For example, Zhou and Troyanskaya (2015) considered these

architectures to predict chromatin marks from DNA sequence. The

authors observed that the size of the input sequence window is a

major determinant of model performance, where larger windows

(now up to 1 kb) coupled with multiple convolutional layers

enabled capturing sequence features at different genomic length

scales. A second innovation was to use neural network architectures

with multiple output variables (so-called multitask neural networks)

to predict multiple chromatin states in parallel. Multitask architec-

tures allow learning shared features between outputs, thereby

improving generalization performance, and markedly reducing the

computational cost of model training compared to learning indepen-

dent models for each trait (Dahl et al, 2014).

In a similar vein, Kelley et al (2016) developed the open-source

deep learning framework Basset, to predict DNase I hypersensitivity

across multiple cell types and to quantify the effect of SNVs on chro-

matin accessibility. Again, the model improved prediction perfor-

mance compared to conventional methods and was able to retrieve

both known and novel sequence motifs that are associated with

DNase I hypersensitivity. A related architecture has also been

considered by Angermueller et al to predict DNA methylation states

in single-cell bisulphite sequencing studies (Angermueller et al,

2016). This approach combined convolutional architectures to

detect informative DNA sequence motifs with additional features

derived from neighbouring CpG sites, thereby accounting for methy-

lation context. Most recently, Koh, Pierson and Kundaje applied

CNNs to de-noise genomewide chromatin immunoprecipitation

followed by sequencing data in order to obtain a more accurate

prevalence estimate for different chromatin marks (Koh et al, 2016).

At present, CNNs are among the most widely used architectures

to extract features from fixed-size DNA sequence windows. However,

alternative architectures could also be considered. For example,

recurrent neural networks (RNNs) are suited to model sequential

data (Lipton, 2015) and have been applied for modelling natural

language and speech (Hinton et al, 2012; Graves et al, 2013;

Sutskever et al, 2014; Che et al, 2015; Deng & Togneri, 2015; Xiong

et al, 2016), protein sequences (Agathocleous et al, 2010; Sønderby

& Winther, 2014), clinical medical data (Che et al, 2015; Lipton et al,

2015) and to a limited extent DNA sequences (Xu et al, 2007; Lee

et al, 2015). RNNs are appealing for applications in regulatory geno-

mics, because they allow modelling sequences of variable length, and

to capture long-range interactions within the sequence and across

multiple outputs. However, at present, RNNs are more difficult to

train than CNNs, and additional work is needed to better understand

the settings where one should be preferred over the other.

Complementary to supervised methods, unsupervised deep learn-

ing architectures learn low-dimensional feature representations from

high-dimensional unlabelled data, similarly to classical principal

component analysis or factor analysis, but using a nonlinear model.

Examples of such approaches are stacked autoencoders (Vincent

et al, 2010), restricted Boltzmann machines and deep belief networks

(Hinton et al, 2006). The learnt features can be used to visualize data

or as input for classical supervised learning tasks. For example,

sparse autoencoders have been applied to classify cancer cases using

gene expression profiles (Fakoor et al, 2013) or to predict protein

backbones (Lyons et al, 2014). Restricted Boltzmann machines can

also be used for unsupervised pre-training of deep networks to subse-

quently train supervised models of protein secondary structures

(Spencer et al, 2015), disordered protein regions (Eickholt & Cheng,

2013) or amino acid contacts (Eickholt & Cheng, 2012). Skip-gram

neural networks have been applied to learn low-dimensional repre-

sentations of protein sequences and improve protein classification

(Asgari & Mofrad, 2015). In general, unsupervised models are a

powerful approach if large quantities of unlabelled data are available

to pre-train complex models. Once trained, these models can help to

improve performance on classification tasks, for which smaller

numbers of labelled examples are typically available.

Deep learning for biological image analysis

Historically, perhaps the most important successes of deep neural

networks have been in image analysis. Deep architectures trained

on millions of photographs can famously detect objects in pictures

better than humans do (He et al, 2015). All current state-of-the-art

models in image classification, object detection, image retrieval and

semantic segmentation make use of neural networks.

The convolutional neural network (Box 2) is the most common

network architecture for image analysis. Briefly, a CNN performs

pattern matching (convolution) and aggregation (pooling) opera-

tions (Box 2). At a pixel level, the convolution operation scans the

image with a given pattern and calculates the strength of the match

for every position. Pooling determines the presence of the pattern in

a region, for example by calculating the maximum pattern match in

smaller patches (max-pooling), thereby aggregating region informa-

tion into a single number. The successive application of convolution

and pooling operations is at the core of most network architectures

used in image analysis (Box 2).

First applications in computational biology—pixel-
level classification

The early applications of deep networks for biological images

focused on pixel-level tasks, with additional models building on the

network outputs. For example, Ning et al (2005) applied
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convolutional neural networks in a study that predicted abnormal

development in C. elegans embryo images. They trained a CNN on

40 × 40 pixel patches to classify the centre pixel to cell wall, cyto-

plasm, nucleus membrane, nucleus or outside medium, using three

convolutional and pooling layers, followed by a fully connected

output layer. The model predictions were then fed into an energy-

based model for further analysis. CNNs have outperformed standard

methods, for example Markov random fields and conditional

random fields (Li, 2009) in such raw data analysis tasks, for exam-

ple restoring noisy neural circuitry images (Jain et al, 2007).

Adding layers allows moving from clearing up pixel noise to

modelling more abstract image features. Ciresan et al (2013) used

five convolutional and pooling layers, followed by two fully

connected layers, to find mitosis in breast histology images. This

model won the mitosis detection challenge at the International

Conference of Pattern Recognition 2012, outperforming competitors

by a substantial margin. The same approach was also used to

segment neuronal structures in electron microscopy images, classi-

fying each pixel as membrane or non-membrane (Ciresan et al,

2012). In these applications, while the CNNs were trained in an

end-to-end manner, additional post-processing was required to

obtain class probabilities from the outputs for new images.

Successive pooling operations lose information on localization,

as only summaries are retained from larger and larger regions. To

avoid this, skip links can be added to carry information from early,

fine-grained layers forward to deeper ones. The currently best-

performing pixel-level classification method for neuronal structures

(U-Net; Ronneberger et al, 2015) employs an architecture in which

neurons take inputs from lower layers to localize high-resolution

features, as well as to overcome the arbitrary choice of context size.

Analysis of whole cells, cell populations and tissues

In many cases, pixel-level predictions are not required. For example,

Xu et al directly classified colon histopathology images into cancer-

ous and non-cancerous, finding that supervised feature learning

with deep networks was superior to using handcrafted features (Xu

et al, 2014). Pärnamaa and Parts used CNNs to classify pre-

segmented image patches of individual yeast cells carrying a fluores-

cent protein to different subcellular localization patterns (Pärnamaa

& Parts, 2016). Again, deep networks outperformed methods based

on traditional features. Further, Kraus et al combined the segmenta-

tion and classification tasks into a single architecture that can be

learned end-to-end and applied the model to full resolution yeast

microscopy images (Kraus et al, 2015). This approach allowed clas-

sifying entire images without performing segmentation as a pre-

processing step. CNNs have even been applied to count bacterial

colonies in agar plates (Ferrari et al, 2015). Since the early de-

noising applications on the pixel level, the field has been moving

towards end-to-end image analysis pipelines that make use of large

bioimage data sets, and the representational power of CNNs.

Reusing trained models

Training convolutional neural networks requires large data sets.

While biological data acquisition can be expensive, this does not

mean that deep neural networks cannot be used when millions of

images are not available. Regardless of image source, lower levels

of the network tend to capture similar signal (edges, blobs) that are

not specific to the training data and the application, but instead

recur in perceptual tasks in general. Thus, convolutional neural

networks can reuse pictures from a similar domain to help with

learning, or even be pre-trained on other data, thereby requiring

fewer images to fine-tune the model for the task of interest. Indeed,

Donahue et al (2013) and Razavian et al (2014) showed that

features learned from millions of images to classify objects, can

successfully be used in image retrieval, detection or classification on

new domains where only hundreds of images are labelled. The

effectiveness of such an approach depends on the similarity between

the training data and the new domain (Yosinski et al, 2014).

The concept of transferring model parameters has also been

successful in bioimage analysis. For example, Zhang et al (2015)

showed that features learned from natural images can be transferred

to biological data, improving the prediction of Drosophila melanoga-

ster developmental stages from in situ hybridization images. The

model was first pre-trained on data from the ImageNet

(Russakovsky et al, 2015), an open corpus of more than one million

diverse images, to extract rich features at different scales. Xie et al

(2015) further used synthetic images to train a CNN for automatic

cell counting in microscopy images. We expect that network reposi-

tories that host pre-trained models will emerge for biological image

analysis; such efforts already exist for general image processing

tasks (see learning section below). These trained models could be

downloaded and used as feature extractors (Fig 3), or further fine-

tuned and adapted to a particular task on small-scale data.

Interpreting and visualizing convolutional networks

Convolutional neural networks have been successful across many

domains. In interpreting their performance, it is useful to under-

stand the features they capture.

Visualizing input weights

One way to understand what a particular neuron represents is to

look for inputs that maximally activate it. Under some mathematical

constraints, these patterns are proportional to the incoming weights

(see also Box 1). Krizhevsky et al visualized weights in the first

convolutional layer (Krizhevsky et al, 2012) and found that these

maximally activating patterns correspond to colour blobs, edges at

different orientations and Gabor-like filters (Fig 4). Gabor filters are

widely used pre-defined features in image analysis; neural networks

rediscover them in a data-driven way as a useful component of the

image model. Higher layer weights can be visualized as well, but as

the inputs are not pixels, their weights are more difficult to interpret.

Finding images that maximize neuron activity

To understand the deeper layers in terms of input pixels, Girshick

et al (2014) retrieved and Simonyan et al (2013) generated images

that maximize the output of individual neurons (Fig 4). While this

approach yields no explicit representation, it can provide an over-

view of the type of features that differentiate images with large

neuron activity from all others. Such visualizations tend to show

that second-layer features combine edges from the first layer,
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thereby detecting corners and angles; deeper layer neurons activate

for specific object parts (e.g. noses, eyes); and the deepest layers

detect whole objects (e.g. faces, cars). It is complicated to hand-

engineer features that look specifically for noses, eyes or faces, but

neural networks can learn these features solely from input–output

examples.

Hiding important image parts

To understand which image parts are important for determining the

value of each feature, Zeiler and Fergus (2014) occluded images

with smaller grey boxes. The parts that are most influential will

drastically change the feature value when occluded. In a similar

vein, Simonyan et al (2013) and Springenberg et al (2014) visual-

ized which individual pixels make the most difference in the feature,

and Bach, Binder and colleagues developed pixel relevance for indi-

vidual classification decisions in a more general framework (Bach

et al, 2015). This information can also be used for object localiza-

tion or segmentation, as the sensitive image pixels usually correctly

correspond to the true object. Kraus et al (2015) used this idea to

effectively localize cells in large microscopy images.

Visualizing similar inputs in two dimensions

Visualizing the CNN representations can help gauge what inputs get

mapped to similar feature vectors, and hence understand what the

model has learned. Donahue et al (2013) projected CNN features

into two dimensions to show that each subsequent layer transforms

data to be more and more separable by a linear classifier. In general,

different CNN visualization methods show that higher layer features

are more specific to the learning task, while low-level features tend

to capture general aspects of images, such as edges and corners.

Off-the-shelf tools and practical considerations

Deep learning frameworks

Deep learning frameworks have been developed to easily build

neural networks from existing modules on a high level. The most

popular ones are Caffe (Jia et al, 2014), Theano (Bastien et al, 2012),

Torch7 (Collobert et al, 2011) and TensorFlow (Abadi et al, 2016;

Rampasek & Goldenberg, 2016) (Table 1), which differ in modular-

ity, ease of use and the way models are defined and trained.

Caffe (Jia et al, 2014) is developed by the Berkeley Vision and

Learning Center and is written in C++. The network architecture is

specified in a configuration file and models can be trained and used

via command line, without writing code at all. Additionally, Python

and MATLAB interfaces are available. Caffe offers one of the most

efficient implementations for CNNs and provides multiple pre-

trained models for image recognition, making it well suited for

computer vision tasks. As a downside, custom models need to be

implemented in C++, which can be difficult. Additionally, Caffe is

not optimized for recurrent architectures.

Theano (Bastien et al, 2012; Team et al, 2016) is developed and

maintained by the University of Montreal and written in Python and

C++. Model definitions follow a declarative instead of an imperative

programing paradigm, which means that the user specifies what

needs to be done, not in which order. A neural network is declared

as a computational graph, which is then compiled to native code

and executed. This design allows Theano to optimize computational

steps and to automatically derive gradients—one of its main

strengths. Consequently, Theano is well suited for building custom

models and offers particularly efficient implementations for RNNs.

Software wrappers such as Keras (https://github.com/fchollet/

keras) or Lasagne (https://github.com/Lasagne/Lasagne) provide

additional abstraction and allow building networks from existing

components, and reusing pre-trained networks. The major draw-

back of Theano is frequently long compile times when building

larger models.

Torch7 (Collobert et al, 2011) was initially developed at the

University of New York and is based on the scripting language

LuaJIT. Networks can be easily built by stacking existing modules

and are not compiled, hence making it more suited for fast prototyp-

ing than Theano. Torch7 offers an efficient CNN implementation and

access to a range of pre-trained models. A possible downside is the

need of the user to be familiar with the LuaJIT scripting language.

Also, LuaJIT is less suited for building custom recurrent networks.

TensorFlow (Abadi et al, 2016) is the most recent deep learning

framework developed by Google. The software is written in C++ and

offers interfaces to Python. Similar to Theano, a neural network is

declared as a computational graph, which is optimized during

compilation. However, the shorter compile time makes it more

suited for prototyping. A key strength of TensorFlow is native

support for parallelization across different devices, including CPUs

and GPUs, and using multiple compute nodes on a cluster. The

accompanying tool TensorBoard allows to conveniently visualize

networks in a web browser and to monitor training progress, for

example learning curves or parameter updates. At present,
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Figure 3. Convolution and pooling operators are stacked, thereby creating a deep network for image analysis.
In standard applications, convolution layers are followed by a pooling layer (Box 2). In this example, the lowest level convolutional units operate on 3 × 3 patches, but deeper
ones use and capture information from larger regions. These convolutional pattern-matching layers are followed by one or multiple fully connected layers to learn
which features are most informative for classification. For each layer with learnable weights, three example images that maximize some neuron output are shown.
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TensorFlow provides the most efficient implementation for RNNs.

The software is recent and under active development; hence, only

few pre-trained models are currently available.

Data preparation

Training data are key for every machine learning application. Since

more data with informative features usually result in better perfor-

mance, effort should be spent on collecting, labelling, cleaning and

normalizing data.

Required data set sizes

Most of the successful applications of deep learning have been in

supervised learning settings, where sufficient labelled training

samples are available to fit complex models. As a rule of thumb, the

number of training samples should be at least as high as the number

of model parameters, although special architectures and model regu-

larization can help to avoid overfitting if training data are scarce

(Bengio, 2012).

Central problems in regulatory genomics, for example predicting

molecular traits from genotype, are limited in the number of training

instances; hundreds to at most tens of thousands of training exam-

ples are typical. The strategy of considering sequence windows

centred on the trait of interest (e.g. splice site, transcription factor

binding site or epigenetic marks; see Fig 2A) is now a widely used

approach and helps increasing the number of input–output pairs

from a single individual.

In image analysis, data can be abundant, but manually curated

and labelled training examples are typically difficult to obtain. In

such instances, the training set can be augmented by scaling, rotat-

ing or cropping the existing images, an approach that also enhances

robustness (Krizhevsky et al, 2012). Another strategy is to reuse a

network that was pre-trained on a large data set for image recogni-

tion [e.g. AlexNet (Krizhevsky et al, 2012), VGG (Simonyan &

Zisserman, 2014), GoogleNet (Szegedy et al, 2015b) or ResNet (He

et al, 2015)], and to fine-tune its parameters on the data set of

interest (e.g. microscopy images for a particular segmentation

task). Such an approach exploits the fact that different data sets

share important characteristics and features, such as edges or

curves, which can be transferred between them. Caffe, Lasagne,

Torch and to a limited extend TensorFlow provide repositories with

pre-trained models.

Partitioning data into training, validation and test sets

Machine learning models need to be trained, selected and tested on

independent data sets to avoid overfitting and assure that the model

will generalize to unseen data. Holdout validation, partitioning the

data into a training, validation and test sets, is the standard for deep

neural networks (Fig 5C). The training set is used to learn models

with different hyper-parameters, which are then assessed on the

validation set. The model with best performance, for example

prediction accuracy or mean-squared error, is selected and further

evaluated on the test set to quantify the performance on unseen data

and for comparison to other methods. Typical data set proportions

are 60% for training, 10% for validation and 30% for model testing.

If the data set is small, k-fold cross-validation or bootstrapping can

be used instead (Hastie et al, 2005).

Normalization of raw data

Appropriate choices for data normalization can help to accelerate

training and the identification of a good local minimum.

Categorical features such as DNA nucleotides first need to be

encoded numerically. They are typically represented as binary

vectors with all but one entry set to zero, which indicates the cate-

gory (one-hot coding). For example, DNA nucleotides (categories)

Table 1. Overview of existing deep learning frameworks, comparing four widely used software solutions.

Caffe Theano Torch7 TensorFlow

Core language C++ Python, C++ LuaJIT C++

Interfaces Python, Matlab Python C Python

Wrappers Lasagne, Keras, sklearn-theano Keras, Pretty Tensor, Scikit Flow

Programming paradigm Imperative Declarative Imperative Declarative

Well suited for CNNs, Reusing existing
models, Computer vision

Custom models, RNNs Custom models, CNNs,
Reusing existing models

Custom models, Parallelization,
RNNs

First layer features Third layer features

…In top left? In top right? In bottom right?

0.250.02 0.01

0.01 0.03 0.19

0.21 0.24 0.01

…In left? In right? In bottom?

0.020.03 0.01

0.02 0.01 0.01

2.51 0.02 2.92

Figure 4. A pre-trained network can be used as a generic feature extractor.
Feeding input into the first layer (left) gives a low-level feature representation in terms of patterns (left to right) present in smaller patches in every cell (top to bottom). Neuron
activations extracted from deeper layers (right) give rise to more abstract features that capture information from a larger segment of the image.
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are commonly encoded as A = (1 0 0 0), G = (0 1 0 0), C = (0 0 1 0)

and T = (0 0 0 1) (Fig 5A). A DNA sequence can then be repre-

sented as a binary string by concatenating the encoding nucleotides,

and treating each nucleotide as an independent input feature of a

feedforward neural network. In a CNN, the four bits of each

encoded base are commonly considered analogously to colour chan-

nels of an image to preserve the entity of a nucleotide.

Numerical features are typically zero-centred by subtracting their

mean value. Image pixels are usually not zero-centred individually,

but jointly by subtracting the mean pixel intensity per colour chan-

nel. An additional common normalization step is to standardize

features to unit variance. Whiting can be used to decorrelate

features (Fig 5B), but can be computationally involved, since it

requires computing the feature covariance matrix (Hastie et al,

2005). If the distribution of features is skewed due to a few extreme

values, log transformations or similar processing steps may be

appropriate. Validation and test data need to be normalized consis-

tently with the training data. For example, features of the validation

data need to be zero-centred by subtracting the mean computed on

the training data, not on the validation data.

Model building

Choice of model architecture

After preparing the data, design choices about the model architec-

tures need to be made. The default architecture is a feedforward

neural network with fully connected hidden layers, which is an

appropriate starting point for many problems. Convolutional archi-

tectures are well suited for multi- and high-dimensional data, such

as two-dimensional images or abundant genomic data. Recurrent

neural networks can capture long-range dependencies in sequential

data of varying lengths, such as text, protein or DNA sequences.

More sophisticated models can be built by combining different

architectures. To describe the content of an image, for example, a

CNN can be combined with an RNN, where the CNN encodes the

image and the RNN generates the corresponding image description

(Vinyals et al, 2015; Xu et al, 2015). Most deep learning frame-

works provide modules for different architectures and their

combinations.

Determining the number of neurons in a network

The optimal number of hidden layers and hidden units is problem-

dependent and should be optimized on a validation set. One

common heuristic is to maximize the number of layers and units

without overfitting the data. More layers and units increase the

number of representable functions and local optima, and empirical

evidence shows that it makes finding a good local optimum less

sensitive to weight initialization (Dauphin et al, 2014).

Model training

The goal of model training is to find parameters w that minimize an

objective function L(w), which measures the fit between the predic-

tions the model parameterized by w and the actual observations.
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Figure 5. Data normalization for and pre-processing for deep neural networks.
(A) DNA sequence one-hot encoded as binary vectors using codes A = 1 0 0 0, G = 0 1 0 0, C = 0 0 1 0 and T = 0 0 0 1. (B) Continuous data (green) after zero-centring (orange),
scaling to unit variance (blue) and whiting (purple). (C) Holdout validation partitions the full data set randomly into training (~60%), validation (~10%) and test set (~30%).
Models are trained with different hyper-parameters on the training set, from which the model with the highest performance on the validation set is selected. The
generalization performance of the model is assessed and compared with other machine learning methods on the test set. (D) The shape of the learning curve indicates if the
learning rate is too low (red, shallow decay), too high (orange, steep decay followed by saturation) or appropriate for a particular learning task (green, gradual decay). (E) Large
differences in the model performance on the training set (blue) and validation set (green) indicate overfitting. Stopping the training as soon as the validation set performance
starts to drop (early stopping) can prevent overfitting. (F) Illustration of the dropout regularization. Shown is a feedforward neural network after randomly dropping out
neurons (crossed out), which reduces the sensitivity of neurons to neurons in the previous layer due to non-existent inputs (greyed edges).
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The most common objective functions are the cross-entropy for clas-

sification and mean-squared error for regression. Minimizing L(w)

is challenging since it is high-dimensional and non-convex (Fig 5C);

see also Box 1 and Fig 2.

Stochastic gradient descent

Stochastic gradient descent is widely used to train deep models.

Starting from an initial set of parameters w0, the gradient dw of L

with respect to w is computed for a random batch of only few, for

example 128, training samples. dw points to the direction of steepest

descent, towards which w is updated with step size eta, the learning

rate (Fig 1C). At each step, the parameters are updated into the

direction of steepest descent until a minimum is reached, analo-

gously to a ball running down a hill to a valley (Bengio, 2012). The

training performance strongly depends on parameter initialization,

learning rate and batch size.

Parameter initialization

In general, model parameters should be initialized randomly to

avoid local optima determined by a fixed initialization. Starting

points for model parameters can be sampled independently from a

normal distribution with small variance, or more commonly from a

normal distribution with its variance scaled inversely by the number

of hidden units in the input layer (Glorot & Bengio, 2010; He et al,

2015).

Learning rate and batch size

The learning rate and batch size of stochastic gradient descent need

to be chosen with care, since they can strongly impact training

speed and model performance. Different learning rates are usually

explored on a logarithmic scale such as 0.1, 0.01 or 0.001, with 0.01

as the recommended default value (Bengio, 2012). A batch size of

128 training samples is suitable for most applications. The batch

size can be increased to speed up training or decreased to reduce

memory usage, which can be important for training complex models

on memory-limited GPUs. The optimum learning rate and batch size

are connected, with larger batch sizes typically requiring smaller

learning rates.

Learning rate decay

The learning rate can be gradually reduced during training, which is

based on the idea that larger steps may be helpful in early training

stages in order to overcome possible local optima, whereas smaller

step sizes allow exploring narrow parameter regions of the loss

function in advanced stages of training. Common approaches

include to linearly reduce the learning rate by a constant factor such

as 0.5 after the validation loss stops improving, or exponentially

after every training iteration or epoch (Bengio, 2012; Gawehn et al,

2016).

Momentum

Vanilla stochastic gradient descent can be extended by “momen-

tum”, which usually improves training (Sutskever et al, 2013).

Instead of updating the current parameter vector wt at time t by the

gradient vector dwt+1 directly, a fraction of the previous update is

added to the current one. With momentum rate v, weights are

updated by a momentum vector mt+1 = m � mt - 2 dWt+1. This

approach can help to take larger steps in directions where gradients

point consistently, and therefore speed up the convergence. The

momentum rate v can be set between [0, 1], and a typical value

is 0.9. Nesterov momentum (Nesterov, 1983, 2013) is a special

form of the same concept, which sometimes provides additional

advantages.

Per-parameter adaptive learning rate methods

To reduce the sensitivity to the specific choice of the learning rate,

adaptive learning rate methods, such as RMSprop, Adagrad

(Srivastava et al, 2014) and Adam (Kingma & Ba, 2014), have been

developed in order to appropriately adapt the learning rate per

parameter during training. The most recent method, Adam, combi-

nes the strengths of previous methods RMSprop and Adagrad and is

generally recommended for many applications.

Batch normalization

Batch normalization (Ioffe & Szegedy, 2015) is a recently described

approach to reduce the dependency of training to the parameter

initialization, speed up training and reduce overfitting. It is easy to

implement, has marginal additional compute costs and has hence

become common practice. Batch normalization zero centres and

normalizes data not only at the input layer, but also at hidden layers

before the activation function. This approach allows using higher

learning rates and hence also accelerates training.

Analysing the learning curve

To validate the learning process, the loss should be monitored as a

function of the number of training epochs, that is the number of

times the full training set has been traversed (Fig 5D). If the learn-

ing curve decreases slowly, the learning rate may be too small and

should be increased. If the loss decreases steeply at the beginning

but saturates quickly, the learning rate may be too high. Extreme

learning rates can result in an increasing or fluctuating learning

curve (Bengio, 2012).

Monitoring training and validation performance

In parallel with the training loss, it is recommended to monitor the

target performance such as the accuracy for both the training and

validation set during training (Fig 5E). A low or decreasing valida-

tion performance relative to the training performance indicates over-

fitting (Bengio, 2012).

Avoiding overfitting

Deep neural networks are notoriously difficult to train, and overfit-

ting to data is a major challenge, since they are nonlinear and have

many parameters. Overfitting results from a too complex model

relative to the size of the training set, and can thus be reduced by

decreasing the model complexity, for example the number of hidden

layers and units, or by increasing the size of the training set, for

example via data augmentation. The following training guidelines

can help to avoid overfitting.

Dropout (Srivastava et al, 2014) is the most common regulariza-

tion technique and often one of the key ingredients to train deep

models. Here, the activation of some neurons is randomly set to

zero (“dropped out”) during training in each forward pass, which

intuitively results in an ensemble of different networks whose
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predictions are averaged (Fig 5E). The dropout rate corresponds to

the probability that a neuron is dropped out, where 0.5 is a sensible

default value. In addition to dropping out hidden units, input units

can be dropped, however usually at a lower rate. Dropout is often

combined with regularizing the magnitude or parameter values by

the L2 norm, and less commonly the L1 norm.

Another popular regularization method is “early stopping”. Here,

training is stopped as soon as the validation performance starts to

saturate or deteriorate, and the parameters with the best perfor-

mance on the validation set chosen.

Layerwise pre-training (Bengio et al, 2007; Salakhutdinov &

Hinton, 2012) should be considered if the model overfits despite the

mentioned regularization techniques. Instead of training the entire

network at once, layers are first pre-trained unsupervised using

autoencoders or restricted Boltzmann machines. Afterwards, the

entire network is fine-tuned using the actual supervised learning

objective.

Hyper-parameter optimization

Table 2 summarizes recommendations and starting points for the

most common hyper-parameters, excluding architecture-dependent

hyper-parameters such as the size and number of filters of a

CNN. Since the best hyper-parameter configuration is data- and

application-dependent, models with different configurations

should be trained and their performance be evaluated on a valida-

tion set. As the number of configurations grows exponentially

with the number of hyper-parameters, trying all of them is impos-

sible in practice (Bengio, 2012). It is therefore recommended to

optimize the most important hyper-parameters such as the learn-

ing rate, batch size or length of convolutional filters indepen-

dently via line search, which is exploring different values while

keeping all other hyper-parameters constant. The refined hyper-

parameter space can then be further explored by random

sampling, and settings with the best performance on the

validation set are chosen. Frameworks such as Spearmint (Snoek

et al, 2012), Hyperopt (Bergstra & Cox, 2013) or SMAC (Hutter

et al, 2011) allow to automatically explore the hyper-parameter

space using Bayesian optimization. However, although conceptu-

ally more powerful, they are at present more difficult to apply

and parallelize than random sampling.

Training on GPUs

Training neural networks is more time-consuming compared to

shallow models and can take hours, days or even weeks, depending

on the size of training set and model architecture. Training on GPUs

can considerably reduce the training time (commonly by tenfold or

more) and is therefore crucial for evaluating multiple models effi-

ciently. The reason for this speedup is that learning deep networks

requires large numbers of matrix multiplications, which can be

parallelized efficiently on GPUs. All state-of-the-art deep learning

frameworks provide support to train models on either CPUs or GPUs

without requiring any knowledge about GPU programming. On

desktop machines, the local GPU card can often be used if the

framework supports the specific brand. Alternatively, commercial

providers provide GPU cloud compute clusters.

Pitfalls

No single method is universally applicable, and the choice of

whether and how to use deep learning approaches will be problem-

specific. Conventional analysis approaches will remain valid and

have advantages when data are scarce or if the aim is to assess

statistical significance, which is currently difficult using deep learn-

ing methods. Another limitation of deep learning is the increased

training complexity, which applies both to model design and the

required compute environment.

Conclusion

Deep learning methods are a powerful complement to classical

machine learning tools and other analysis strategies. Already, these

approaches have found use in a number of applications in computa-

tional biology, including regulatory genomics and image analysis.

The first publicly available software frameworks have helped to

reduce the overhead of model development and provided a rich,

accessible toolbox to practitioners. We expect that continued

improvement of software infrastructure will make deep learning

applicable to a growing range of biological problems.

Acknowledgements
OS and CA were funded by the European Molecular Biology Laboratory. TP was

supported by the European Regional Development Fund through the BioMedIT

project, and Estonian Research Council (IUT34-4). LP was supported by the

Wellcome Trust and Estonian Research Council (IUT34-4). OS was supported

by the European Research Council (agreement N635290).

Conflict of interest
The authors declare that they have no conflict of interest.

Table 2. Central parameters of a neural network and recommended
settings.

Name Range Default value

Learning rate 0.1, 0.01, 0.001,
0.0001

0.01

Batch size 64, 128, 256 128

Momentum rate 0.8, 0.9, 0.95 0.9

Weight initialization Normal, Uniform,
Glorot uniform

Glorot uniform

Per-parameter adaptive
learning rate methods

RMSprop, Adagrad,
Adadelta, Adam

Adam

Batch normalization Yes, no Yes

Learning rate decay None, linear,
exponential

Linear (rate 0.5)

Activation function Sigmoid, Tanh, ReLU,
Softmax

ReLU

Dropout rate 0.1, 0.25, 0.5, 0.75 0.5

L1, L2 regularization 0, 0.01, 0.001
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