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Abstract: Epidermal barrier integrity could be influenced by various factors involved in epidermal
cell differentiation and proliferation, cell-cell adhesion, and skin lipids. Dysfunction of this
barrier can cause skin disorders, including eczema. Inversely, eczema can also damage the
epidermal barrier. These interactions through vicious cycles make the mechanism complicated in
connection with other mechanisms, particularly immunologic responses. In this article, the molecular
mechanisms concerning epidermal barrier abnormalities are reviewed in terms of the following
categories: epidermal calcium gradients, filaggrin, cornified envelopes, desquamation, and skin
lipids. Mechanisms linked to ichthyoses, atopic dermatitis without exacerbation or lesion, and early
time of experimental irritation were included. On the other hand, the mechanism associated with
epidermal barrier abnormalities resulting from preceding skin disorders was excluded. The molecular
mechanism involved in epidermal barrier dysfunction has been mostly episodic. Some mechanisms
have been identified in cultured cells or animal models. Nonetheless, research into the relationship
between the causative molecules has been gradually increasing. Further evidence-based systematic
data of target molecules and their interactions would probably be helpful for a better understanding
of the molecular mechanism underlying the dysfunction of the epidermal barrier.

Keywords: primary barrier dysfunction; epidermal calcium gradients; filaggrin; cornified envelopes;
desquamation; skin lipids

1. Introduction

The skin functions as a barrier against the environment by protecting from mechanical insults,
microorganisms, chemicals, and allergens. Tight junctions contribute to the formation of the skin
barrier in the granular cell layer. However, the stratum corneum (SC), the outermost layer of skin,
plays a main role in the formation of the skin barrier. The SC consists of several layers of corneocytes
with cornified envelopes (CEs), corneodesmosomes, and intercellular lipid lamellae.

Structural and functional impairment of the epidermal barrier can allow irritants and allergens
to penetrate the SC, which could lead to various skin diseases, including atopic dermatitis, irritant
contact dermatitis, and allergic contact dermatitis [1-4]. The role of epidermal barrier disruption in
development and progression of these skin disorders has been demonstrated based on clinical findings
and/or non-invasive parameters for skin irritation evaluation. The parameters include transepidermal
water loss, electrical conductance, surface pH, lipid composition, skin blood flow, skin color, and skin
thickness [5,6]. However, these skin diseases could reversely damage the skin barrier, thereby resulting
in a vicious cycle [7]. It may be difficult to specify which portions of these diseases, particularly contact
dermatitis (either irritant or allergic), are the result of barrier disruption, not the cause. To determine the
role of the epidermal barrier in development and progression of skin disorders, barrier abnormalities
should be developed as primary events. Ichthyoses caused by monogenic defects are representative
skin diseases associated with primary barrier dysfunction [8]. In atopic dermatitis, barrier abnormalities
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may not be the primary events in lesional skin. However, they can play a role in part as primary
abnormalities because abnormalities in the epidermal barrier are already present in non-lesional skin
of atopic dermatitis [1]. Epidermal trauma from tape stripping or irritant application also leads to
initial disruption of the barrier, although the result at certain time points may be combined with
compensatory reactions followed by trauma.

Causative mechanisms involved in primary epidermal barrier dysfunction might be more
valuable for the prevention of skin diseases induced by barrier abnormalities. However, the underlying
mechanism has been discussed mainly in connection with immunologic responses, including cytokine
production [1,9,10]. Accordingly, this review covers molecular mechanisms of epidermal barrier
dysfunction as primary abnormalities by focusing on the causative factors of skin diseases (atopic
dermatitis and ichthyoses) and experimental skin conditions (tape stripping and irritant application)
associated with skin barrier abnormalities.

2. Molecular Mechanisms Related to Epidermal Barrier Dysfunction

Formation and maintenance of skin barrier integrity could be influenced by genetic and
environmental factors involved in epidermal cell differentiation and proliferation, cell-cell adhesion,
and skin lipids. Mechanisms related to epidermal barrier dysfunction at molecular levels have
commonly illustrated filaggrin mutations [3,11]. Regarding the mechanism behind skin barrier
integrity, the role of epidermal calcium gradients could be considered based on their influence on
keratinocyte proliferation and differentiation [12]. The roles of the structural components of the
epidermal barrier such as CEs and skin lipids in maintaining epidermal barrier integrity should be
considered. In addition, factors related to dynamic equilibrium, including desquamation, is probably
involved in maintaining epidermal barrier integrity.

2.1. Epidermal Calcium Gradients

The mammalian epidermis shows a characteristic calcium gradient formed mainly by Ca?* release
from endoplasmic reticulum stores and Ca?" influx from extracellular sources. Calcium gradients
are not confined to SC, but across the epidermis. Calcium levels are low in basal and spinous layers,
whereas the levels are increasing up to the granular layers. Calcium levels decline again in the SC.
The epidermal calcium gradient plays a crucial role in keratinocyte differentiation and epidermal
barrier formation. On the other hand, the gradient disappears after acute barrier disruption and
reforms with barrier function recovery, indicating that the epidermal barrier can inversely regulate the
formation of the calcium gradient [13]. Therefore, it may not be easy to determine whether the calcium
gradient disappearance or barrier disruption is the primary event under certain conditions.

The association between epidermal calcium gradients and epidermal barrier integrity and function
can be inferred by the keratitis-ichthyosis-deafness (KID) syndrome. As the name of the syndrome
suggests, ichthyosis is a main skin abnormality accompanied by palmoplantar keratoderma and
erythrokeratoderma. KID syndrome could be caused by heterozygous dominant missense mutations
in GJB2 (gap junction protein beta 2) and GJB6 (gap junction protein beta 6) genes, encoding connexin
26 (Cx26) and Cx30, respectively. These mutations increase the release of ATP and Ca?* influx,
which disturbs the epidermal calcium gradient leading to a barrier defect [14]. Hyperkeratosis such
as palmoplantar keratoderma and erythrokeratoderma in KID syndrome has been considered as a
compensatory reaction to the barrier defect. Results resembling human KID syndrome have been
exhibited by mice with heterozygous mutations of Cx26 (Cx26517F), which supports the association
between altered epidermal calcium gradients and defective epidermal barriers [15]. In addition to these
pathologic conditions, aging skin has been associated with a decreased epidermal barrier function.
The turnover rate of keratinocytes slows down with aging. A role for calcium in skin aging has been
demonstrated based on the epidermal calcium gradient collapse during the aging process [16].

As for the formation and homeostasis of the epidermal calcium gradient in keratinocytes, roles
of calcium-sensing receptor (CaR), epidermal calcium channels (transient receptor potential (TRP)
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channels, store-operated calcium entry (SOCE) channels, and voltage-gated calcium channels), and
calmodulin-like skin protein (CLSP) have been addressed [17-19]. The role of CaR in epidermal barrier
homeostasis could be elucidated by the results obtained from keratinocyte-specific CaR knockout
mice [20]. A defective epidermal barrier displayed in the knockout mice and abnormal Ca?* influx
with decreased differentiation in the keratinocytes cultured from these mice indicates that epidermal
calcium gradients altered by CaR deletion impair keratinocyte differentiation and epidermal barriers.
Growing evidence indicates that TRP channels can regulate skin barrier homeostasis with keratinocyte
differentiation and proliferation. TRP channels respond to changes in environmental factors, such as
activation of TRP vanilloid type 1 (TRPV1) by heat (42 °C), capsaicin or TRPV4 by heat (>30 °C),
and hypo-osmolarity [21]. In the case of TRPV1, blockade of activation using a TRPV1 antagonist
compound can suppress atopic dermatitis-like symptoms by accelerating skin barrier recovery in
atopic dermatitis murine models [22]. On the other hand, the blockade of TRPV4 activation by physical
and chemical stimuli has been reported to possibly disrupt epidermal barrier integrity and homeostasis
in human keratinocytes, ex vivo human skin, and TRPV4-null mice [23]. Two proteins, STIM1 (stromal
interaction moleculel) and Orail (ORAI calcium release-activated calcium modulator 1), have been
identified as essential components of SOCE in human keratinocytes. STIM1 as a calcium sensor
of endoplasmic reticulum can activate Orail when endoplasmic reticulum calcium levels decrease.
Orail downregulation can abolish the calcium-switch-induced calcium response, resulting in impaired
keratinocyte differentiation and epidermal barrier in human keratinocytes and in Orail-knockout
mice [24]. Orail activation can also cause atopic dermatitis with barrier dysfunction. However, the
mechanism involves that Orail activation has induced Th2- and Th22-deviated immune reactions
due to the release of a large amount of TSLP (thymic stromal lymphoprotein) from keratinocytes [25].
A new calcium-binding protein, CSLD, is particularly abundant in differentiated epidermises. It can
modulate calcium-dependent proteins involved in epidermal barrier formation [18,26]. Although
CLSP has been related to atopic dermatitis, the upregulation in the epidermis of acutely exacerbated
but not non-exacerbated atopic dermatitis [18] suggests that CSLP upregulation in atopic dermatitis is
the compensatory reaction for barrier homeostasis.

Calcium is a prerequisite for keratinocyte differentiation. In addition, it has been demonstrated
that calcium gradients could regulate skin lipid compositions through the formation and secretion
of lamellar bodies as revealed by a marked decrease in linoleoyl w-esterified ceramides in the KID
syndrome [14,15]. Calcium gradients are also involved in CE rearrangement through the synthesis of
CE components and cross-linking to the plasma membrane, as shown by chronological skin aging [17].
These findings indicate that epidermal calcium gradients may perhaps play a role in cooperation with
other mechanisms involved in epidermal barrier homeostasis.

Collectively, the findings identified in KID syndrome and chronological aging provide evidence
for the role of epidermal calcium gradients in epidermal barrier function. The data from experimental
skin conditions also suggest a potential role of molecules involved in epidermal calcium gradient
formation (CaR, TRPV1, TRPV4, and Orail) in epidermal barrier homeostasis (Figure 1), although
their clinical significance remains to be clarified.

2.2. Filaggrin and Cornified Envelopes

Filaggrin is produced as a polymer profilaggrin. Filaggrin as the major keratin-binding protein is
stored in keratohyaline granules in the form of the keratin—profilaggrin complex in the granular layer.
During cornification, profilaggrin is cleaved into filaggrin monomers by several proteases. SASPase
(skin aspartic protease) is a candidate protease of profilaggrin linker-cleavage [27]. In addition to
binding to keratin filaments inside corneocytes, filaggrin also cross links to CEs [28].

The best known molecular mechanisms related to defective barrier function are mutations in
filaggrin (Figure 2). In addition to cross-linking to CE, filaggrin monomers degrade to form urocanic
acid and pyrrolidine carboxylic acid, which contribute to an acidic skin pH and water-holding capacity.
Skin pH influences multiple factors involved in epidermal barrier integrity, such as lipid synthesis
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and desquamation by the regulation of enzymatic activity [29,30]. It has been demonstrated that
a chain of these filaggrin functions are involved in defective barrier function induced by filaggrin
deficiency. Loss-of-function mutations in FLG, which encodes filaggrin, have been verified in atopic
dermatitis [28,31]. FLG mutations have also been associated with other skin disorders, such as
ichthyosis vulgaris [11], occupational contact dermatitis [3,32], and chronic hand eczema [33]. Filagrin
monomers are formed by SASPase. Loss-of-function mutations in Asprv1 encoding aspartic peptidase,
retroviral-like 1, which is also known as SASPase, cannot form filaggrin thereby leading to a filaggrin
deficiency with dry skin in mice [34]. Although the finding suggests the role of filaggrin metabolic
process in atopic dermatitis, ASPRV1 mutations are not associated with atopic dermatitis or dry skin in
humans [35]. Instead, ASPRV1 mutations are associated with ichthyosis in dogs [36].

Epidermal calcium gradients formation/homeostasis

GJBZ/GJB6‘ Aging CaR ‘ TRP channels SOCE channels
TRPV4 § || TRPV1 4| | STIM1 § | Orait §

v v v \ 4 v v
KID syndrome Defective Defective AD-like Impaired keratinocyte
epidermal | | epidermal barrier differentiation
barrier Impaired
barrier

Figure 1. An evidence-based or potential association between epidermal calcium gradients and the
epidermal barrier. Epidermal calcium gradients have been altered in keratitis-ichthyosis-deafness
(KID) syndrome induced by gap junction protein beta 2 (GJB2) or GJB6 missense mutations and in
chronological skin aging. The formation and homeostasis of the epidermal calcium gradients could
be regulated by the calcium-sensing receptor (CaR), transient receptor potential (TRP) channels, and
store-operated calcium entry (SOCE) channels. CaR deletion, which inhibits Ca* influx, impairs
the epidermal barrier in mice. In TRP channels, TRP vanilloid 4 (TRPV4) activation, which could be
induced by heat (>30 °C) and hypo-osmolarity, plays an important role in epidermal barrier formation
and recovery in mice. On the other hand, the blockade of TRPV1 activation by physical and chemical
stimuli such as heat (42 °C) and capsaicin can suppress atopic dermatitis (AD)-like symptoms in mice.
Two essential components of SOCE, STIM1 (stromal interaction moleculel) and Orail (ORAI calcium
release-activated calcium modulator 1), are activated by endoplasmic reticulum (ER) calcium store
depletion. Downregulation of Orail can impair keratinocyte differentiation and barrier homeostasis
in mice.

Well-established mechanisms of the action of filaggrin on the maintenance of structural and
functional epidermal barrier homeostasis may contribute to the gradual expansion of the role of
filaggrin in skin disorders other than atopic dermatitis (Figure 2). Interest in research on the filaggrin
metabolic process has also been increasing.
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Figure 2. Downregulation of filaggrin in skin diseases and experimental conditions related to epidermal

barrier dysfunction. Loss-of-function mutations of FLG (encoding filaggrin) are associated with skin
disorders related to barrier dysfunction, including atopic dermatitis (AD) and ichthyoses. Expression
levels of filaggrin have also been reported to be reduced in experimental conditions of the disrupted
epidermal barrier by tape stripping or retinoic acid (RA) application. SASPase (skin aspartic protease)
generates filaggrin monomers from profilaggrin. Loss-of-function mutations of SASPase are associated
with ichthyosis in dogs.

2.3. Cornified Envelopes

CEs are the most insoluble components formed beneath the plasma membrane of corneocytes. CEs
are composed of various molecules, such as involucrin, loricrin, small proline-rich proteins (SPRRs),
envoplakin, periplakin, and cysteine protease inhibitor A (cystatin A). The molecules are crossed-linked
by transglutaminases (TGases).

Associations between mutations in CE precursor SPRR and SPRR3 genes and atopic dermatitis
have been reported [37,38]. Mutations in loricrin, a major component of CE making up to 70% of
the SC protein, are most frequently associated with loricrin keratoderma. Downregulation of loricrin
is also frequently associated with atopic dermatitis [39]. However, only mild symptoms develop
with normal-looking CEs in loricrin knock-out mice [40]. Envoplakin and periplakin play a role in
linking them to intermediate filaments [41]. However, triple knocking-out of envoplakin, periplakin,
and involucrin is required to induce abnormal CEs [42]. Mutations or deficiencies of involucrin,
despite being a major component of CE, may not be enough for the development of atopic dermatitis.
Only a subtle phenotype by mutations or deficiencies of these major CE components may indicate the
existence of strong compensatory mechanisms. Loss-of-function mutation in CSTA, a gene encoding
cystatin A, can induce autosomal recessive exfoliative ichthyosis with reduced thickness of CE and
abnormalities in the lamellar body [43]. Acral peeling skin syndrome, which is an autosomal recessive
genodermatosis, characterized by asymptomatic peeling of the hands and feet, can be caused by the
loss-of-function mutation in CSTA as well [44].

Acral peeling skin syndrome can also be induced by missense mutations in TGase5 [45]. TGasel
deficiency from a mutation in TGM1 (transglutaminase 1) encoding the TGasel enzyme can cause
lamellar ichthyosis, an autosomal recessive congenital ichthyosis [46,47]. The role of Tgasel or Tgaseb
in epidermal barrier function based on CE formation has also been identified in mice. However,
the disruption of the CEs induced by the loss of Tgm1 expression in embryos does not develop in
adults due to compensatory upregulation of Tgmb5 expression. For perturbation of the CEs, loss of both
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Tgm1 and Tgmb expression is considered essential in adult mice [48]. Although it is unclear whether
different effects of TGase deficiencies on CE disruption could be dependent on the time required to
develop the deficiency, their genetic variations have not been associated with atopic dermatitis. Instead,
a significant increase in TGM3 mRNA expression has been observed in atopic dermatitis [49].

Reduced CE components can also be induced by prevailing experimental conditions of epidermal
barrier disruption. Retinoic acid has been frequently used to induce dryness and scaling in the applied
skin [50]. It can reduce levels of loricrin and SPRRs in human keratinocytes and mice skin in a
dose-dependent manner [51]. Different from these results on atopic dermatitis, ichthyoses, and retinoic
acid applications, expression levels of several CE proteins have been found to be increased in epidermal
barrier disruption of human skin by tape stripping and in skin irritation by sodium dodecyl sulfate
application [52]. However, such findings are considered as a compensatory reaction for barrier repair.

As reviewed here, the evidence-based or potential association of several CE components with skin
disorders and experimental conditions showing barrier disruption indicates the role of CE components
in barrier homeostasis (Figure 3). However, minimal changes are induced by ablation of specific single
CE structural components.

Cornified envelope

Loricrin ‘ 222% Cystatin A ; Involucrin, Envoplakin, Periplakin ‘ TGase 1/5 ‘
\ 4 v \ 4
Keratoderma | Exfoliative ichthyosis (AR) Lamellar ichthyosis
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Figure 3. Downregulation of cornified envelope components in skin diseases and experimental
conditions related to epidermal barrier dysfunction. Cornified envelopes are composed of various
molecules, such as involucrin, loricrin, small proline-rich proteins (SPRRs), envoplakin, periplakin,
and cysteine protease inhibitor A (cystatin A), crossed-linked by transglutaminases (TGases).
Loss-of-function mutations in SPRR/SPRR3, LOR (encoding loricrin), TGM1/TGM5 (encoding
transglutaminasel/5), and CSTA (encoding cystatin A) have been associated with atopic dermatitis (AD)
or ichthyoses. Expression levels of loricrin and SPRRs have been reduced in experimental conditions of
the disrupted epidermal barrier by retinoic acid (RA) application. Although triple knocking-out of
envoplakin, periplakin, and involucrin induces abnormal cornified envelopes, mutations or deficiencies
of involucrin alone do not cause atopic dermatitis.

2.4. Desquamation

Desquamation is the gradual invisible shedding of corneocytes, which is determined by the de
novo synthesis and degradation of corneodesmosomal proteins. Corneodesmosomes are modified
desmosomes formed while keratinocytes differentiate from granular cell layers into cornified cell layers.
They play a critical role in cell-cell adhesion of corneocytes. Corneodesmosomes are constituted with
desmoglein 1, desmocollin 1, and corneodesmosin. Degradation of corneodesmosomal proteins is
controlled by proteases and a variety of inhibitors. Kallikrein-related peptidases (KLKs) and cathepsins
are included in proteases. Protease inhibitors, cholesterol sulfate, and an acidic gradient are considered
as inhibitors of degradation. Fifteen different KLK family serine proteases have been detected in
normal human skin [53]. The activity of the serine proteases of the KLKs is controlled by serine
protease inhibitors, including anti-leukoprotease, elafin (skin-derived anti-leukoprotease; SKALP),
and lymphoepithelial-Kazal-type 5 inhibitor (LEKTI) [54,55].
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Defects in corneodesmosome components themselves have been involved in corneodesmosome
abnormality and lead to epidermal barrier impairment as follows: Abnormalities in genes encoding
corneodesmosin can cause a generalized inflammatory type of peeling skin syndrome and those
encoding desmoglein 1 can induce another generalized inflammatory type of peeling skin syndrome,
SAM syndrome (severe skin dermatitis, multiple allergies, and metabolic wasting) [56,57].

Corneodesmosome degradation is accelerated whenever protease activities overcome activities
of protease inhibitors, resulting in the premature breakdown of corneodesmosomes. One of the
well-known examples is the severe autosomal recessive form of ichthyosis, Netherton syndrome,
caused by a defect in the serine-specific inhibitor Kazal type 5 (SPINK5) gene encoding LEKTI. Netherton
syndrome has also been proposed as a generalized inflammatory type of peeling skin syndrome [56].
Lack of serine protease inhibition can increase activities of KLKs, thereby causing acceleration in
the degradation of the corneodesmosome [57,58]. Combined reduction of proteolytic activity by
KLK5 downregulation in the presence of loss-of-function SPINK5 mutation in an animal model or
an organotypic skin culture model has reversed the symptoms with restoration of corneodesmosome
structure and severe skin barrier defects [59,60]. These findings emphasize that corneodesmosome
degradation depends on the sum of protease and inhibitor activities. In addition to increased activity
of serine proteases, TGasel activity has been reported to increase in Netherton syndrome, which
contributes to the novel functional link between LEKTI and TGasel [61]. Considering that impaired
corneodesmosome degradation can lead to hyperkeratosis as a clinical symptom, hyperkeratosis is not
considered as a cause of barrier dysfunction related to desquamation. In fact, hyperkeratosis occurs in
lesional skin of atopic dermatitis due to an increase in LEKTI as a compensatory reaction to overcome
upregulated KLKY activities with reduced overall proteolytic activity [62]. However, hyperkeratosis
also develops in non-lesional skin of atopic dermatitis due to reduction in serine protease activity,
different from the mechanism of lesional skin of atopic dermatitis [63]. Similarly, in autosomal recessive
ichthyosis-hypotrichosis syndrome caused by a loss-of-function mutation of the ST14 gene encoding
matriptase, a type Il transmembrane serine protease, impairment of corneodesmosome degradation
has been reported [64,65]. Because barrier abnormalities in non-lesional skin of atopic dermatitis
and ichthyoses caused by monogenic defects are considered as primary events [1,8], desquamation
might not be a mechanism involved in barrier dysfunction in atopic dermatitis and a certain type
of ichthyoses.

Experimental conditions could affect skin barrier impairment via an imbalance in activities
between proteases and inhibitors. Retinoic acid may possibly facilitate penetration of applied agents by
loss of corneocyte cohesion [66]. Increased proteolytic activity from KLK upregulation without a change
in LEKTI has been identified as a mechanism of retinoic acid-induced accelerated desquamation [53].
Washing with soap or detergents and long-term application of topical corticosteroids could increase
KLK production [67].

Collectively, accelerated desquamation either by reduced corneodesmosome synthesis or increased
corneodesmosome degradation is linked to skin disorders and barrier dysfunction under experimental
conditions (Figure 4), suggesting an important role of desquamation in epidermal barrier integrity
and homeostasis.

2.5. Skin Lipids

Skin lipids that constitute the extracellular matrix of the SC are composed of cholesterol, free fatty
acids, and ceramides. These lipids are stacked to form densely packed lipid layers, lipid lamellae,
which depends on the composition of the lipids. Precursor lipids are synthesized in keratinocytes,
although sebaceous gland-derived lipids and extracutaneous sources could contribute to the epidermal
lipid pool [68,69]. SC lipids are secreted from keratinocytes into extracellular space via lamellar bodies,
which contain phosphoglycerides, sphingomyelin, and glucosylceramides. After secretion, these lipids
are further metabolized by enzymes co-secreted in lamellar bodies, which include glucocerebrosidase,
sphingomyelinase, and phospholipase A [68]. Peroxisome proliferating activated receptor (PPAR)
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isoforms (alpha, beta/delta, and gamma) and liver X receptor (LXR) isoforms are expressed in the
epidermis. Activation of these receptors can stimulate epidermal lipid metabolisms, such as epidermal
lipid synthesis, lamellar body formation and secretion, and activity of enzymes involved in extracellular
processing of lipids in the SC [70].

\ Desquamation
F 3

Corneodesmosome synthesis <= t} Corneodesmosome degradation ‘

a

Corneodesmosin ‘l Desmoglein 1 ‘I Desmocollin 1

1 J' Proteases (KLKs) ﬂﬂ——>| Inhibitors (LEKTI)H
Peeling skin SAM syndrome
syndrome RA Netherton
Soap/detergent syndrome
Long-term topical CS

Figure 4. Corneodesmosome defects in skin conditions associated with epidermal barrier dysfunction.
Desquamation is determined by de novo synthesis and degradation of corneodesmosomal proteins.
Mutations in GDSN encoding corneodesmosin and DSGI encoding desmoglein 1 can cause
an inflammatory type of peeling skin syndrome and SAM syndrome (severe skin dermatitis,
multiple allergies, and metabolic wasting), which is another inflammatory type of peeling skin
syndrome, respectively. Degradation of corneodesmosomal proteins depends on the sum of activities
from proteases, including kallikrein-related peptidases (KLKs) and protease inhibitors including
lymphoepithelial-Kazal-type 5 inhibitor (LEKTI). Experimental conditions, such as retinoic acid (RA)
application, soap and detergent washing, and long-term corticosteroid (CS) application, could also
accelerate desquamation mainly by increased production of KLKs.

Changes in lipid composition induce abnormal lipid organization leading to impaired epidermal
barrier function [71]. Most of the reports are related to abnormalities in ceramide synthesis. Ceramide
is a structural backbone of sphingolipids and demonstrates structural diversity particularly in the
epidermis. Changes in ceramides, including levels, composition, and chain-lengths, are the most
distinctive hallmark of atopic dermatitis [72,73]. An open-label clinical study [74] has shown that
application of ceramide-dominant lipid mixture can improve atopic dermatitis symptoms with a
decrease in transepidermal water loss, supporting the important role of ceramide in atopic dermatitis.
Sphingomyelin in the epidermis is a precursor of ceramide. Sphingomyelin synthase (SGMS) generates
sphingomyelin. Sphingomyelin and ceramide contents have been decreased in Sgms2-knockout
mice with barrier dysfunction [75]. Ceramides are derived from glucosylceramides, which are
synthesized by UDP-glucose ceramide glucosyltransferase (UGCG). UGCG deficiency induces depletion
of glucosylceramides and ichthyosis-like skin phenotype in mice [76]. Abnormal synthesis of ceramides,
particularly ultra-long-chain acylceramide, exists in the epidermis and has been involved in the
pathogenesis of various ichthyoses and ichthyosis syndromes. Loss-of-function mutations in NIPAL4
(NIPA like domain containing 4) cause autosomal recessive congenital ichthyosis. Acylceramide
levels are reduced with impaired lipid multilayer structure formation in Nipal4-knockout mice, which
indicates the role of NIPAL4 deficiency in epidermal barrier defects [77]. CYP4F22 is a fatty acid
w-hydroxylase involved in the synthesis of acylceramide. Loss-of-function mutations in CYP4F22
cause autosomal recessive congenital ichthyosis. Impaired lipid lamella formation with almost
complete loss of acylceramide and its precursor w-hydroxyceramide have been demonstrated in
knockout mice [78]. Loss-of-function mutations in ALOX12B and ALOXE3, which are essential for
the generation of w-hydroxyceramide, can cause autosomal recessive congenital ichthyosis [79,80].
Patatin-like phospholipase domain-containing lipase 1 (PNPLA1) is involved in the biosynthesis of
w-O-acylceramide, a particular class of sphingolipids, by catalyzing the w-O-esterification of linoleic
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acid [81]. PNPLA1 gene mutations also cause autosomal recessive congenital ichthyosis by a blockade
in the production of w-O-acylceramide with a concomitant accumulation of their precursors [82-84].
a/p hydrolase domain-containing protein 5 (ABHDD5) has been identified to interact with PNPLA1 as a
coactivator. It could be easily inferred that ABHD5 mutations can decrease epidermal w-O-acylceramide
synthesis, thereby causing ichthyosis [85]. Comparative gene identification-58 (CGI58) deficiency also
impairs w-0O-acylceramide synthesis with severe barrier defects in Cgi58-deficient mice [86]. Mutations
in SDRIC7, encoding a short-chain dehydrogenase/reductase family 9C member 7 (SDR9C7), have
been recently found in ichthyosis. Complete loss of a species of w-O-acylceramide esterified with
linoleate-9,10-trans-epoxy-11E-13-ketone has been proposed as the mechanism based on the result
from a knockout Sdr9¢7 mouse [87]. Long-term use of topical glucocorticoids could alter the SC lipid
profiles, particularly long-chain ester-linked ceramide, thereby leading to skin barrier defects [88].

Despite the fact that free fatty acids and cholesterol are the major constitutes of skin lipids, not
much has been reported about the association between altered synthesis of these lipids and skin barrier
dysfunction. Fatty acid elongases (ELOVL) are involved in the synthesis of very long-chain fatty acids.
A distinct set of ELOVL4 mutations can cause a neurocutaneous disorder characterized by ichthyosis,
seizures, spasticity, intellectual disability, and ichthyosis [89]. Inhibition of cholesterol synthesis possibly
due to loss-of-function mutations in the NADP dependent steroid dehydrogenase-like (NSDHL) gene
can cause CHILD syndrome (Congenital Hemidysplasia with Ichthyosiform Erythroderma and Limb
Defects) [90]. However, cholesterol depletion, which reduces the content of incorporated cholesterol to
approximately half of the normal value, has shown a negligible effect on the lipid chain order without
compromising the barrier function in isolated human SC [91]. Under the conditions of grouping of
depletion with Th2 cytokines, cholesterol depletion probably induces atopic dermatitis-like alteration
with epidermal barrier impairment [92].

Concerning lamellar body formation and secretion, some evidence-based data have been reported.
Ceramides are derived from glucosylceramides after the secretion of lamellar bodies. ATP-binding
cassette transporter A12 (ABCA12) can facilitate the delivery of glucosylceramides to lamellar bodies
in keratinocytes. A loss-of-function mutation in ABCA12 impairs lipid lamellar membrane formation
in the SC, causing harlequin ichthyosis, which is the most severe phenotype of autosomal recessive
congenital ichthyosis [93,94]. Although ABCA12 deficiency has not been identified in atopic dermatitis,
their association may be deduced from the result showing that ceramides can upregulate ABCA12
expression via the PPAR-mediated signaling pathway [95]. Mutations in VPS33B and VIPAS39 cause
ARS syndrome (arthrogryposis, renal dysfunction, and cholestasis). Mice knockout either of VPS33B or
VIPAS39 have shown abnormal morphology and localization of lamellar body with reduced thickness
of CEs and deposition of lipids in the SC [96]. Loss-of-function mutation in CSTA as described in
Section 2.5 (Cornified Envelopes) has displayed premature secretion of the lamellar body and a delayed
processing of the secreted lamella body contents [43]. The result from Rab11a silencing in reconstituted
human epidermis suggests that Rabl1a GTPase could regulate lamellar body biogenesis [97]. Deficiency
of fatty acid transport protein 4 (FATP4) can cause ichthyosis prematurity syndrome. FATP4 is an
acyl-CoA synthetase, one of the proteins involved in the uptake of long-chain fatty acids by regulating
fatty acyl moieties. Abnormalities in the lamellar body are detected in Fatp4-knockout mice with an
altered skin lipid composition [98]. Although alteration in lipid transporters has been mostly associated
with ichthyoses, FATP4 mutation has also induced atopic dermatitis [31].

These evidence-based data indicate that most of the skin disorders showing skin lipid defects
have been reported in connection with abnormalities in lipid composition. There have been only a
few reports on lamellar body formation and secretion, or activity of enzymes involved in extracellular
processing of lipids in the SC (Figure 5a,b).
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Figure 5. Skin lipid alteration in skin conditions showing epidermal barrier dysfunction. (a) Skin
lipids are composed of ceramides, free fatty acids, and cholesterol. Abnormalities in lipid composition,
transport, and extracellular organization induce abnormal lipid organization. Most of the reports are
related to abnormalities in ceramides, which are associated with ichthyoses, ichthyosis syndromes, and
atopic dermatitis (AD). Loss-of-function mutations in ABCA12 (ATP-binding cassette transporter
A12) cause harlequin ichthyosis, the most severe phenotype of autosomal recessive congenital
ichthyosis (ARCI). Loss-of-function mutations in NIPAL4 (NIPA like domain containing 4), CYP4F22,
ALOX12B and ALOXE3, PNPLA1 (Patatin-like phospholipase domain-containing lipase 1), and
ABHDS5 (o/p hydrolase domain-containing protein 5) also cause ARCIL (b) Not much has been
reported about the association between altered synthesis of free fatty acid/cholesterol and skin barrier
dysfunction. Loss-of-function mutations in ELOVL4 (fatty acid elongase 4) and FATP4 (fatty acid
transport protein 4) reduce very long-chain (VLC) or LC fatty acids and cause neurocutaneous disorder
(characterized by ichthyosis, seizures, spasticity, intellectual disability, and ichthyosis) and ichthyosis
prematurity syndrome, respectively. Although loss-of-function mutations in NSDHL (NADP-dependent
steroid dehydrogenase-like) inhibit cholesterol synthesis and cause CHILD syndrome (Congenital
Hemidysplasia with Ichthyosiform Erythroderma and Limb Defects), cholesterol depletion is not
considered as adequate to induce atopic dermatitis-like alteration in the absence of Th2 cytokines.
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3. Conclusions

This review shows that abnormalities in factors involved in epidermal barrier integrity, such as
epidermal calcium gradients, filaggrin, cornified envelopes, desquamation of corneodesmosomes, and
skin lipids, are associated with epidermal barrier dysfunction. The data identified in skin disorders
caused by monogenic defects related to epidermal barrier dysfunction could provide reliable clues
or insight into the underlying mechanisms concerning epidermal barrier dysfunction as primary
events. Factors involved in ichthyoses, atopic dermatitis without exacerbation or lesion, and early time
of experimental irritation could be considered as causes and not results of skin barrier dysfunction.
A critical role of filaggrin and ceramides in skin barrier function has been elucidated from investigations
on ichthyoses, atopic dermatitis, and experimental conditions. Based on clinical and experimental data,
causative roles of a few molecules involved in epidermal calcium gradients formation and homeostasis,
some components of CEs, KLKs/LEKTI, and molecules involved in lipids synthesis/transport in barrier
homeostasis have been identified.

Under certain conditions, more than one abnormal finding is present. Examples include
abnormal lipid composition of the SC associated with impaired epidermal calcium gradients in KID
syndrome [14,15], altered calcium gradients accompanied by increased skin pH and CE rearrangement
in aging skin [16], loss-of-function mutations in filaggrin in atopic dermatitis [28], and increased activity
of TG1 and serine proteases in Netherton syndrome [61]. These accompanying findings could provide
a direction for future research to identify more organized mechanism involved in barrier dysfunction.

Most of these findings were episodic and some data were obtained from experimental conditions.
However, an increasing number of researches is being carried out on the molecular mechanisms of
target molecules identified based on clinical conditions. These approaches could be helpful to get
evidence-based systematic data on the exact mechanism of epidermal barrier dysfunction.
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ABCA12 ATP-binding cassette transporter A12

ABHD5 o/ hydrolase domain containing protein 5

ARS Syndrome arthrogryposis, renal dysfunction and cholestasis
LD Linear dichroism

ASPRV1 Aspartic peptidase, retroviral-like 1

CaR Calcium-sensing receptor

CE Cornified envelope

CGI58 Comparative gene identification-58

CHILD syndrome Congenital hemidysplasia with ichthyosiform erythroderma and limb defects
CLSP Calmodulin-like skin protein

Cystatin A Cysteine protease inhibitor A

Cx26 Connexin 26

ELOVL Fatty acid elongases

FATP4 Fatty acid transport protein 4

GJB2/GJB6 Gap junction protein beta 2/gap junction protein beta 6
KID Keratitis-ichthyosis-deafness

KLK Kallikrein-related peptidase

LEKTI Lymphoepithelial-Kazal-type 5 inhibitor

LXR Liver X receptor

NIPAL4 NIPA like domain containing 4

NSDHL NADP dependent steroid dehydrogenase-like

Orail ORAI calcium release-activated calcium modulator 1
PNPLA1 Patatin-like phospholipase domain-containing lipase 1
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PPAR Peroxisome proliferating activated receptor

SAM Syndrome severe skin dermatitis, multiple allergies, and metabolic wasting

SASPase Skin aspartic protease

SC Stratum corneum

SDR9C7 Short-chain dehydrogenase/reductase family 9C member 7

SGMS Sphingomyelin synthase

SOCE Store-operated calcium entry

SPINK5 Serine-specific inhibitor Kazal type 5

SPRR Small proline-rich protein

STIM1 Stromal interaction moleculel

TGases Transglutaminases

TSLP Thymic stromal lymphoprotein

TRP Transient receptor potential

TRPV TRP vanilloid type

UGCG UDP-glucose:ceramide glucosyltransferase
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