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Abstract 
Resistance in malaria is a growing concern affecting many areas of 
Sub-Saharan Africa and Southeast Asia. Since the emergence of 
artemisinin resistance in the late 2000s in Cambodia, research into the 
underlying mechanisms has been underway. 
The 2019 Malaria Challenge posited the task of developing 
computational models that address important problems in advancing 
the fight against malaria. The first goal was to accurately predict 
artemisinin drug resistance levels of Plasmodium falciparum isolates, 
as quantified by the IC50. The second goal was to predict the parasite 
clearance rate of malaria parasite isolates based on in vitro 
transcriptional profiles. 
In this work, we develop machine learning models using novel 
methods for transforming isolate data and handling the tens of 
thousands of variables that result from these data transformation 
exercises. This is demonstrated by using massively parallel processing 
of the data vectorization for use in scalable machine learning. In 
addition, we show the utility of ensemble machine learning modeling 
for highly effective predictions of both goals of this challenge. This is 
demonstrated by the use of multiple machine learning algorithms 
combined with various scaling and normalization preprocessing steps. 
Then, using a voting ensemble, multiple models are combined to 
generate a final model prediction.
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Introduction
Malaria is a serious disease caused by parasites belonging to the genus Plasmodium which are transmitted  
by Anopheles mosquitoes in the genus. The World Health Organization (WHO) reports that there were 219 
million cases of malaria in 2017 across 87 countries1. Plasmodium falciparum poses one of greatest health  
threats in Southeast Asia, being responsible for 62.8% of malaria cases in the region in 20171.

Artemisinin-based therapies are among the best treatment options for malaria caused by P. falciparum2. The use 
of artemisinin in combination with other drugs, called artemisinin combination therapies, are the  best  treatment   
options today against malaria infections.

However, emergence of artemisinin resistance in Thailand and Cambodia in 2007 has been cause for research3. 
While there are polymorphisms in the kelch domain–carrying protein K13 in P. falciparum that are known to be  
associated with artemisinin resistance, the underlying molecular mechanism that confers resistance remains  
unknown4. In early 2020, Birnbaum et al. discovered that the highly-conserved gene kelch13 is associated with a 
molecular mechanism that  allows the parasite to feed on host erythrocytes by endocytosis of hemoglobin5.  
Given that artemisinin is activated by hemoglobin degradation products, these mutations can confer resistance to  
artemisinin.

The established pharmacodynamics benchmark for P. falciparum sensitivity to artemisinin-based therapy is 
the parasite clearance rate6,7. Resistance to artemisinin-based therapy is considered to be present with a para-
site clearance rate greater than five hours8. By understanding the genetic factors that affect resistance in  
malaria, targeted development can occur in an effort to abate further resistance or infections of resistant strains.

Previous research has shown success in applying similar machine learning methods in the explanation of genetic  
differences in plants9, fungi10, and even humans11. Previous work in machine learning-based tropical disease  
research, including malaria and other diseases,  has shown effective in drug discovery12,13 and in the understanding of 
degradomes14. Also, other machine learning work in malaria has focused on the identification and diagnosis of malaria 
using image classification15–17.

In this work, we create multiple machine learning-based models to address these issues around artemisinin  
resistance and parasite clearance. Given that the interpretation and analysis of many genes and their effects on  
resistance may be tedious, machine learning allows for a more power investigation into this relationship. Plus, we 
employ model explainability methods to help rank particular genes of interest in the malaria genome.

Prediction of artemisinin IC50
First, we created a machine learning model to predict the IC

50
 of malaria parasites based on transcription  

profiles of experimentally-tested isolates. IC
50

, also known as the half maximal inhibitory concentration, is 
the drug concentration at which 50% of parasites die. This value indicates a population of parasites’ ability  
to withstand various doses of antimalarial drugs, such as artemisinin.

Methods
Training data was obtained from the 2019 DREAM Malaria Challenge18,19. The training data consists of gene 
expression data of 5,540 genes of 30 isolates from the malaria parasite, Plasmodium falciparum. For each 
malaria parasite isolate, transcription data was collected at two time points [6 hours post invasion (hpi) and 
24 hpi], with and without treatment of dihydroartemisinin (the metabolically active form of artemisinin), each  
with a biological replicate. This yields a total of at eight data points for each isolate. The initial form of the  
training dataset contains 272 rows and 5,546 columns, as shown in Table 1.

      Amendments from Version 4

In this revision, we have addressed the latest reviewer’s comments around the applicability of this work to the broader 
field of parasitology, also have also included some new work from Birnbaum et al. 2020. In addition, we also discuss the 
need for lab-based (in vitro) validation of these in silico findings, though this work helps to highlight the most probable/
important things to test first.

It should be noted that there is some specific information that reviewers are asking about the input data that we do not 
have yet as this is part of a larger DREAM Challenge. Once this information is public, we will likely add it to this work as 
well.

Any further responses from the reviewers can be found at the end of the article

REVISED
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Table 2. IC50 training data information. 
(Adapted from Turnbull et al., (2017) PLoS 
One22).

Training Set

Array Bozdech

Platform Printed

Plexes 1

Unique Probes 10159

Range of Probes per Exon N/A

Average Probes per Gene 2

Genes Represented 5363

Transcript Isoform Profiling No

ncRNAs No

Channel Detection Method Two Color

Scanner PowerScanner

Data Extraction GenePix Pro

Table 1. Initial IC50 model training data format. Note that for Treatment, UT represents untreated samples and DHA 
represents samples treated with dihydroartemisinin.

Sample_Name Isolate Timepoint Treatment BioRep Gene1 … Gene5540 DHA_IC50

isolate_01.24HR.DHA.BRep1 isolate_01 24HR DHA BRep1 0.008286 … -2.48653 2.177

isolate_01.24HR.DHA.BRep2 isolate_01 24HR DHA BRep2 -0.87203 … -1.79457 2.177

isolate_01.24HR.UT.BRep1 isolate_01 24HR UT BRep1 0.03948 … -2.49517 2.177

isolate_01.24HR.UT.BRep2 isolate_01 24HR UT BRep2 0.125177 … -1.73531 2.177

isolate_01.6HR.DHA.BRep1 isolate_01 6HR DHA BRep1 1.354956 … -0.82169 2.177

isolate_01.6HR.DHA.BRep2 isolate_01 6HR DHA BRep2 -0.21807 … -1.61839 2.177

isolate_01.6HR.UT.BRep1 isolate_01 6HR UT BRep1 1.31135 … -2.62262 2.177

isolate_01.6HR.UT.BRep2 isolate_01 6HR UT BRep2 0.997722 … -2.24719 2.177

… … … … … … … … …

isolate_30.6HR.UT.BRep2 isolate_30 6HR UT BRep2 -0.26639 … -1.72273 1.363

The transcription data was collected as described in Table 2. The transcription data set consists of 92 non-coding 
RNAs (denoted by gene IDs that begins with ’MAL’), while the rest are protein coding genes (denoted by gene  
IDs that start with ’PF3D7’). The feature to predict is DHA_IC50.

Data preparation
We used Apache Spark20 to pivot the dataset such that each isolate was its own row and each of the transcription  
values for each gene and attributes (i.e. timepoint, treatment, biological replicate) combination was its own column. 
This exercise transformed the training dataset from 272 rows and 5,546 columns to 30 rows and 44,343  
columns, as shown in Table 3. We completed this pivot by slicing the data by each of the eight combinations of 
timepoint, treatment, and biological replicate, dynamically renaming the variables (genes) for each slice, and then  
joining all eight slices back together.

By using the massively parallel architecture of Spark, this transformation can be completed in a minimal amount of 
time on a relatively small cluster environment (e.g., <10 minutes using a 8-worker/36-core cluster with PySpark on 
Apache Spark 2.4.3).

Lastly, the dataset is then vectorized using the Spark VectorAssembler, and converted into a Numpy21-compatible  
array. Vectorization allows for highly scalable parallelization of the machine learning modeling in the next step.
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Machine learning
We used the Microsoft Azure Machine Learning Service23 as the tracking platform for retaining model perform-
ance metrics as the various models were generated. For this use case, 498 machine learning models were trained 
using various scaling techniques and algorithms. Scaling and normalization methods are shown in Table 14. We 
then created two ensemble models of the individual models using Stack Ensemble and Voting ensemble methods. 

The Microsoft AutoML package24 allows for the parallel creation and testing of various models, fitting based 
on a primary metric. For this use case, models were trained using Decision Tree, Elastic Net, Extreme Ran-
dom Tree, Gradient Boosting, Lasso Lars, LightGBM, RandomForest, and Stochastic Gradient Decent algorithms 
along with various scaling methods from Maximum Absolute Scaler, Min/Max Scaler, Principal Component 
Analysis, Robust Scaler, Sparse Normalizer, Standard Scale Wrapper, Truncated Singular Value Decomposition  
Wrapper (as defined in Table 14). All of the machine learning algorithms are from the scikit-learn package25 
except for LightGBM, which is from the LightGBM package26. The settings for the model sweep are defined  
in Table 4. The ‘Preprocess Data?’ parameter enables the scaling and imputation of the features in the  
data. Note that these models were evaluated using random sampling of the input training dataset provided by the 
DREAM Challenge, though the evaluation within the challenge was performed on an unlabelled testing dataset. 
The metrics  in the Results section below reflect the evaluation on the sampled training data.

Once the 498 individual models were trained, two ensemble models (voting ensemble and stack ensemble) 
were then created and tested. The voting ensemble method makes a prediction based on the weighted average of 
the previous models’ predicted regression outputs whereas the stacking ensemble method combines the previous 
models and trains a meta-model using the elastic net algorithm based on the output from the previous models.  
The model selection method used was the Caruana ensemble selection algorithm27.

Results
The voting ensemble model (using soft voting) was selected as the best model, having the lowest normalized 
Root Mean Squared Error (RMSE), as shown in Table 5. The top 10 models trained are reported in Table 6. 
Having a normalized RMSE of only 0.1228 and a Mean Absolute Percentage Error (MAPE) of 24.27%, this  
model is expected to accurately predict IC

50
 in malaria isolates. See Figure 1 for a visualization of the experiment  

runs and Figure 2 for the distribution of residuals on the best model.

Prediction of resistance status
The second task of this work was to create a machine learning model that can predict the parasite clearance rate 
(fast versus slow) of malaria isolates. When resistance rates change in a pathogen, it can be indicative of regulatory  

Table 3. Post-transformation format of the IC50 model training data.

Isolate DHA_IC50 hr24_trDHA_br1_Gene1 hr24_trDHA_br2_Gene1 … hr6_trUT_br2_Gene5540

isolate_01 2.177 0.008286 -0.87203 … -2.24719

… … … … … …

isolate_30 1.363 0.195032 0.031504 … -1.72273

Table 4. Model search parameter setting for the 
IC50 model search.

Parameter Value

Task Regression

Number of Iterations 500

Iteration Timeout (minutes) 20

Max Cores per Iteration 7

Primary Metric Normalized Root Mean 
Squared Error

Preprocess Data? True

k-Fold Cross-Validations 20 folds
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Table 6. Top 10 training iterations of the IC50 model search, evaluated by Root 
Mean Squared Error. Note that the top performing model (VotingEnsemble) is the 
final IC50 model discussed in this paper.

Iteration Preprocessor Algorithm Normalized RMSE

498 VotingEnsemble 0.12283293

370 SparseNormalizer RandomForest 0.132003138

432 StandardScalerWrapper LightGBM 0.133180215

240 SparseNormalizer RandomForest 0.133779391

430 StandardScalerWrapper RandomForest 0.137084337

65 SparseNormalizer RandomForest 0.13884791

56 SparseNormalizer RandomForest 0.14417843

68 MaxAbsScaler ExtremeRandomTrees 0.151925822

470 StandardScalerWrapper RandomForest 0.152262231

181 MinMaxScaler LightGBM 0.15279075

Figure 1. Root Mean Squared Error (RMSE) by iteration of the IC50 model search. Each orange dot is an iteration with 
the blue line representing the minimum RMSE up to that iteration.

Table 5. Model metrics of the final IC50 ensemble 
model.

Metric Value

Normalized Root Mean Squared Error 0.1228

Root Mean Squared Log Error 0.1336

Normalized Mean Absolute Error 0.1097

Mean Absolute Percentage Error 24.27

Normalized Median Absolute Error 0.1097

Root Mean Squared Error 0.3398

Explained Variance -1.755

Normalized Root Mean Squared Log Error 0.1379

Median Absolute Error 0.3035

Mean Absolute Error 0.3035
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Figure 2. Model residuals of the final IC50 ensemble model.

Table 7. Format of the clearance rate model training data.

Sample_Names Country Asexual_
stage hpi_ Kmeans_Grp PF3D7_

0100100 … PF3D7_1480100 ClearanceRate

GSM1427365 Bangladesh 20 B 0.226311 … -0.64171 Fast

… … … … … … … …

GSM1427537 Cambodia 12 C 0.81096 … -1.72825 Slow

… … … … … … … …

GSM1428407 Vietnam 8 A 0.999095 … NaN Fast

changes in the pathogen’s genome. These changes can be exploited for the prevention of further resistance 
spread. Thus, a goal of this work is to understand genes important in the prediction of artemisinin resistance. The  
relationship of this use case to the first is that parasite clearance is a measure of the effectiveness of a treatment  
regimen. While the first use case looked at the drug concentration, this use case looks into the speed at which the  
parasites are cleared as a result of a standard treatment.

Methods
An in vivo transcription data set from Mok et al., (2015) Science28 was used to predict the parasite clearance  
rate of malaria parasite isolates based on in vitro transcriptional profiles (see Table 8).

The training data consists of 1,043 isolates with 4,952 genes from the malaria parasite Plasmodium falciparum. 
For each malaria parasite isolate, transcription data was collected for various PF3D7 genes. The form of 
the training dataset contains 1,043 rows and 4,957 columns, as shown in Table 7. The feature to predict is  
ClearanceRate.

Data preparation
The training data for this use case did not require the same pivoting transformations as in the last use case 
as each record describes a single isolate. Thus, only the vectorization of the data was necessary, which was per-
formed using the Spark VectorAssembler and then converted into a Numpy-compatible array22. Note that this 
vectorization only kept the numerical columns, which excludes the Country, Kmeans_Grp, and Asexual_
stage__hpi_ attributes as they are either absent or contain non-matching factors (i.e. different set of countries) in 
the testing data.

Machine learning
Once the 98 individual models were trained, two ensemble models (voting ensemble and stack ensemble)  
were then created and tested as before. Model search parameters are shown in Table 9.
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Results
The voting ensemble model (using soft voting) was selected as the best model, having the highest area under 
the receiver operating characteristic curve (AUC), as shown in Table 11. The top 10 of the 100 models trained 
are reported in Table 10. Having a weighted AUC of 0.87 and a weighted F1 score of 0.80, this model is  
expected to accurately predict isolate clearance rates. A confusion matrix of the predicted results versus actuals  
is shown in Table 12. See Figure 3 for a visualization of the experiment runs and see Figure 4 and Figure 5 for  
the ROC and Precision-Recall curves on the best model. Note that these models were evaluated using ran-
dom sampling of the input training dataset provided by the DREAM Challenge, though the evaluation within 
the challenge was performed on an unlabelled testing dataset. The metrics in the Results section below 
reflect the evaluation on the sampled training data.

Note that the averages reported in Figure 4 and Figure 55 are defined as follows:
• ‘micro’: Computed globally by combining the true positives and false positives from each class at each cutoff.

• ‘macro’: The arithmetic mean for each class. This does not take class imbalance into account.

• ‘weighted’: The arithmetic mean of the score for each class, weighted by the number of true instances in 
each class (support).

Feature importance
Feature importances were calculated using mimic-based model explanation of the ensemble model29. The mimic 
explainer works by training global surrogate models to mimic blackbox models (i.e. complex models that are  
difficult to explain). The surrogate model is an interpretable model, trained to approximate the predictions of a  
black box model as accurately as possible30. In Figure 6 and Table 13, the feature importance values for each class 
(“Slow”, “Fast”, and NULL) are shown. This shows which genes are important in the prediction of clearance  
rate.

Table 9. Model search parameter settings for the clearance rate 
model search.

Parameter Value

Task Regression

Number of iterations 100

Iteration timeout (minutes) 20

Max cores per iteration 14

Primary metric weighted area under the receiver 
operating characteristic curve (AUC)

Preprocess data? True

k-Fold cross-validations 10 folds

Table 8. Training dataset information from Mok et al., 
201528.

Training Set

Number 
of isolates 1043

Isolate 
collection site Southeast Asia

Isolate 
collection years 2012–2014

Sample 
type in vivo 

Synchronized? Not synchronized

Number 
of samples per isolate 1

Additional attributes
~18 hpi, 
Non-perturbed, No replicates
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Table 10.  Top 10 training iterations of the clearance rate model search. 
Note that the top performing model (VotingEnsemble) is the clearance rate 
model discussed in this paper.

Iteration Preprocessor Algorithm Weighted AUC

98 VotingEnsemble 0.870471056

99 StackEnsemble 0.865215516

65 StandardScalerWrapper LogisticRegression 0.86062304

33 StandardScalerWrapper LogisticRegression 0.859881677

97 StandardScalerWrapper LogisticRegression 0.858791006

44 StandardScalerWrapper LogisticRegression 0.856105491

73 StandardScalerWrapper LogisticRegression 0.855502817

17 RobustScaler SVM 0.855452622

43 StandardScalerWrapper LogisticRegression 0.855368394

61 RobustScaler LogisticRegression 0.854357599

Table 11. Model metrics of the final clearance 
rate ensemble model.

Metric Accuracy

f1_score_macro 0.6084

AUC_micro 0.9445

AUC_macro 0.8475

recall_score_micro 0.8101

recall_score_weighted 0.8101

average_precision_score_weighted 0.8707

weighted_accuracy 0.8585

precision_score_macro 0.6217

precision_score_micro 0.8101

balanced_accuracy 0.6027

log_loss 0.4455

recall_score_macro 0.6027

precision_score_weighted 0.8

AUC_weighted 0.8705

average_precision_score_micro 0.8911

f1_score_weighted 0.8019

f1_score_micro 0.8101

norm_macro_recall 0.354

average_precision_score_macro 0.7344

accuracy 0.8101
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Figure 4. Receiver operating characteristic curve of the clearance rate model.

Figure 3. Area under the receiver operating characteristic curve (AUC) by iteration of the clearance rate model. 
Each orange dot is an iteration with the blue line representing the maximum AUC up to that iteration.

Table 12. Confusion matrix of clearance rate predictions 
versus actual.

Class

Prediction

Fast (ID: 0) Slow (ID: 1) Null (ID: 2)

Actual

Fast (ID: 0) 661 74 0

Slow (ID: 1) 115 184 0

Null (ID: 2) 6 3 0

The mimic explainer was opted over other traditional methods such as principal component analysis (PCA) because 
of its ability to provide clearer interpretations into the features’ importance. PCA occludes the true values of  
individual features by summarising multiple features together. Given that insights into particular genes’ importance  
on resistance were desired here, the mimic explainer provides this output in a more straightforward manner.
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Figure 5. Precision-Recall curve of the clearance rate model.

Figure 6. Derived feature importances using the black box mimic model explanation of the clearance rate model. 
(Shown: Top 30 genes.)
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Table 13. Top 10 PF3D7 genes (features) in predicting clearance rate.

Rank PF3D7 Gene Slow Importance Fast Importance NULL Importance Overall Importance

1 PF3D7_1245300 0.292 0.118 0.000 0.410

2 PF3D7_1107700 0.020 0.274 0.000 0.294

3 PF3D7_1328400 0.154 0.123 0.000 0.277

4 PF3D7_1372000 0.172 0.095 0.000 0.267

5 PF3D7_1115600 0.083 0.179 0.000 0.262

6 PF3D7_0608100 0.000 0.000 0.243 0.243

7 PF3D7_0523000 0.154 0.087 0.000 0.241

8 PF3D7_1205300 0.000 0.002 0.197 0.199

9 PF3D7_1129100 0.008 0.191 0.000 0.199

Discussion
By using distributed processing of the data preparation, we can successfully shape and manage large 
malaria datasets. We efficiently transformed a matrix of over 40,000 genetic attributes for the IC

50
 use 

case and over 4,000 genetic attributes for the resistance rate use case. This was completed with scalable  
vectorization of the training data, which allowed for many machine learning models to be generated. By  
tracking the individual performance results of each machine learning model, we can determine which 
model is most useful. In addition, ensemble modeling of the various singular models proved effective for  
both tasks in this work. While the number of training observations for each use case stand to be improved, the 
usage of adequate cross-validation can help to stabilize the risk of over fitting models to such a small dataset. 
Also note that there is an imbalance in the number of samples in each class in the clearance rate experiment, 
which stands to be remedied   in future work. There are over double the number of “Fast” clearance rate isolates 
compared to “Slow”. This can be seen in  the variation in model performance as indicated by the macro average 
Precision-Recall curve (Figure 5).

The resulting model performance of both the IC
50

 model and the clearance rate model show relatively adequate 
fitting of the data for their respective predictions. While additional model tuning may provide a lift in model  
performance, we have demonstrated the utility of ensemble modeling in these predictive use cases in malaria. In 
both models, we show that IC

50
 and clearance rate can be effectively predicted using transcriptomic analysis data 

with machine learning. By extension, this is also predicting the phenotypic result of the genetic variations among the  
samples as is relates to resistance.

Table 14. Scaling function information for machine learning model search31.

Scaling and Normalization Description

StandardScaleWrapper Standardize features by removing the mean and scaling to unit variance

MinMaxScalar Transforms features by scaling each feature by that column’s minimum and maximum

MaxAbsScaler Scale each feature by its maximum absolute value

RobustScalar This Scaler features by their quantile range

PCA Linear dimensionality reduction using singular value decomposition of the data to 
project it to a lower dimensional space

TruncatedSVDWrapper

This transformer performs linear dimensionality reduction by means of truncated 
singular value decomposition. 
Contrary to PCA, this estimator does not center the data before computing the 
singular value decomposition. This means it can efficiently work with sparse matrices.

SparseNormalizer Each sample (each record of the data) with at least one non-zero component is  
re-scaled independently of other samples so that its norm (L1 or L2) equals one

Page 12 of 25

F1000Research 2020, 9:62 Last updated: 11 JUL 2022



In a broader sense for the field parasitology, this exercise helps to quantify the importance of genetic features,  
spotlighting potential genes that are significant in artemisinin resistance. The merit of this work showcases the util-
ity of machine learning to assist in the understanding of the underlying genetic/transcriptomic mechanisms that  
affect drug performance. 

Specific examples include PF3D7 1245300, the most important feature in predicting slow parasite clearance.  
PF3D7 1245300 is the gene that codes for the NEDD8-conjugating enzyme UBC12 (UniProt ID: Q8I4X8), a ligase 
used in the ubiquitin conjugating pathway. Another example, PF3D7 1107700 is the most important gene for fast 
clearance rate. PF3D7 1107700 (UniProt ID: Q8IIS5) is important in the regulation of the cell cycle, specifically  
in the maturation of ribosomal RNAs and in the formation of the large ribosomal subunit. Future in vitro  
experiments of this in silico work should be performed to validate these findings. While biological confirmations 
of these genetic factors are needed, this analysis helps   to rank the most probable factors by importance, therefore  
reducing the in vitro work to be performed.

These two examples of important genes identified here along with the other may one day be the target for future  
drugs or may prove integral in the overall understanding of how resistance works in P. falciparum. The utility of 
these models will help in directing development of alternative treatments or coordination of combination therapies  
in resistant infections and provides an example of the usage of machine learning in the identification of important 
genetic feature in infectious disease research.

Preprint
An earlier version of this article can be found on bioRxiv (doi: 10.1101/856922).

Data availability
Underlying data
The challenge datasets are available from Synapse (https://www.synapse.org/; Synapse ID: syn18089524). Access 
to the data requires registration and agreement to the conditions for use at: https://www.synapse.org/#!Synapse: 
syn18089524.

Challenge documentation, including the detailed description of the Challenge design, data description, and  
overall results can be found at: https://www.synapse.org/#!Synapse:syn16924919/wiki/583955.

Whole genome expression profiling of artemsinin-resistant Plasmodium falciparum field isolates, Accession  
number GSE59099: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE59099.

Zenodo: colbyford/malaria_DREAM2019: Ensemble Machine Learning Modeling for the Prediction of  
Artemisinin Resistance in Malaria - Initial Code Release for Research Publication (F1000). https://doi.org/10.5281/
zenodo.359045932.

This project contains the following underlying data:

•     /SubChallenge1/data/sc1_X_train.pkl (Pickle file of the SubChallenge 1 independent variables, pivoted by 
Timepoint, Treatment, and BioRep.)

•     /SubChallenge1/data/sc1_y_train.pkl (Pickle file of the SubChallenge 1 dependent variable, DHA_IC50.)

•     /SubChallenge2/data/sc2_X_train.pkl (Pickle file of the SubChallenge 2 independent variables.)

•     /SubChallenge2/data/sc2_y_train.pkl (Pickle file of the SubChallenge 2 dependent variable, ClearanceRate.)

Data are available under the terms of the Creative Commons Zero “No rights reserved” data waiver (CC0 1.0 Public 
domain dedication).

Software availability
•    Source code available from: https://github.com/colbyford/malaria_DREAM2019

•    Archived source code at time of publication: https://doi.org/10.5281/zenodo.359045932

•    License: GPL-3.0
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This is commendable work by the authors making use of two publicly available datasets – the 2019 
DREAM Malaria Challenge and an in vivo transcription data set from Mok et al., (2015) to create a 
confident machine learning model predicting IC50 (the rate at which parasites respond to 
artmesinin) and the transcriptional features (gene expression) involved in fast vs slow parasite 
clearance rates. Source codes were also made available to public for reproducibility. The 
manuscript would benefit from more structure in the “methods” and “results” sections to present 
clearer analysis workflow and results. Adding more explanation and discussion of biological 
significance from the generated models should improve the quality of the manuscript. There are a 
few specific suggestions for the authors in a revision of their manuscript below. 
 
Major 
 
The strongest suggestion is to re-structure the methods section. Rather than having separate 
sections (“method”, “data preparation”, “results”) for each machine learning exercise, I suggest 
merging some of these paragraphs. For instance, the entire method section describing model 
generation (page 3-5) to predict IC50 can be possibly renamed as “machine learning method to 
predict IC50”. Along this line, the paragraph titled “Prediction of artemisinin IC50” should merge 
with this section. A similar arrangement is also suggested for paragraphs from page 5-7. Adding a 
generic workflow figure should clarify some of these issues. Both of the results sections (page 5 & 
8) should come after methods.  
 
Authors used datasets specific to Plasmodium falciparum malaria and thus title should reflect 
about P. falciparum malaria. The results section paragraph (page 8) should be expanded to include 
more explanation of results from figure-6, which can be connected to the previously known 
attributes of these top-30 hits as discussed in the 4th paragraph of discussion (page 13). 
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Minor
Abstract 2nd paragraph– indicate ‘2019 DREAM Malaria Challenge’ 
 

○

Methods typo -  “This yields a total of at eight data points for each isolate." 
 

○

Description of table-3 (page 4) such as number of rows, columns in training data can be 
moved to the Github page. The same suggestions for table-1 and table-7. 
 

○

A simple definition or explanation of “Caruana ensemble” selection algorithm (page 5) 
should be added. 
 

○

Mean Absolute Percentage Error (MAPE) of algorithms should be added to table-6 (page 6) 
because it is mentioned in the results section (page 5) that the voting ensemble model has 
chosen as the best model based on RMSE and MAPE. 
 

○

Paragraph starting with “Note that the ....” (page 8) should be considered as figure legends 
for figure 4 and 5. 
 

○

Paragraph explaining the use of mimic explainer over PCA (page 10) should be considered 
to move to discussion possibility merging with 4th

○

 
Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use 
by others?
Partly

If any results are presented, are all the source data underlying the results available to 
ensure full reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the 
findings presented in the article?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: malaria, genomics, computational biology

We confirm that we have read this submission and believe that we have an appropriate level 
of expertise to confirm that it is of an acceptable scientific standard, however we have 
significant reservations, as outlined above.
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Sameer K. Antani   
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The authors have updated the article but there is limited update on machine learning elements, or 
it is not apparent from the web-based interface. I am willing to accept the article related to prior 
comments, and also recognizing that the work is limited by the data from the DREAM challenge.
 
Is the rationale for developing the new method (or application) clearly explained?
Partly

Is the description of the method technically sound?
Partly

Are sufficient details provided to allow replication of the method development and its use 
by others?
Partly

If any results are presented, are all the source data underlying the results available to 
ensure full reproducibility?
Partly

Are the conclusions about the method and its performance adequately supported by the 
findings presented in the article?
Partly

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.
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© 2020 Burrows J. This is an open access peer review report distributed under the terms of the Creative 
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited.

Jeremy Burrows   
Medicines for Malaria Venture (MMV), Geneva, Switzerland 

Page 3: Artemisinin-based therapies are described as being among the best treatment options for 
falciparum malaria. ACTs are the mainstay therapy and are, definitively, the best treatment 
options. This should be altered. 
 
Page 3: The underlying biology of artemisinin partial resistance is becoming clearer – the authors 
should cite Kelch13-defined endocytosis pathway mediates artemisinin resistance in malaria 
parasites1. 
 
Page 3: In terms of predicting the IC50 of DHA on parasites, the authors really need to comment 
on the importance of time point and whether the parasites are synchronous or asynchronous. 
Usually growth inhibition assays are 48h-72h with asynchronous parasites and these result in 
virtually no differences in the IC50s between WT and highly resistant K13 mutant strains – indeed, 
this is why artemisinin partial resistance took so long to be identified. Table 1 does show the 
timepoint (which is good) but the synchronicity of the isolate is not mentioned. Also did the group 
include well characterized control lab-adapted strains (both resistant and WT)? What is the range 
of IC50s in the data set? 
 
Table 1 – Abbreviations need to be described. I know what DHA is, but some readers may not. 
What is UT? 
 
The computational discussion is beyond me, but I was trying to work out exactly what the authors 
were claiming. Is the conclusion of the first step that the IC50 can be predicted based on the 
transcriptomic analysis, given full genomic information of an isolate? If so, that could be 
interesting in predicting phenotype from genotype (in the absence of phenotypic data), but if, on 
the other hand, it simply confirms resistance will be evident when certain mutations are involved, 
then that is not so helpful as we know that already. Can the authors very clearly, in layman’s 
terms, explain what value their model offers to the parasitology community? The same points 
relate to parasite clearance rate? If the model is simply telling us what we know already then that 
is significantly less useful or interesting than if it predicts things that we do not yet know. Some 
very clear explanations of the hypotheses and conclusions are needed for non-computational 
parasitologists to understand the merit of this work. This is not approvable without such clarity, on 
the assumption that other reviewers with computational expertise have approved the underlying 
methods. 
 
The identification of PF3D71245300, a NEDD8-conjugating enzyme UBC12 and PF3D71107700 
seem to me to be predicted genes for slow and fast clearance are the main conclusions from this 
work and there should be a stronger statement with respect to the need for follow-up biology to 
confirm these. 
 
I would like to have seen a plot of predicted vs actual IC50 and predicted vs actual clearance rate 
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in a form that is easily interpretable (perhaps it’s there for those in the ‘know’). I was still left 
unclear as to how good the models were; the authors described them as ‘adequate’ which sounds 
rather underwhelming. 
 
In short – the work may have merit, but it is not communicated in a form that makes it clear what 
the added value is to use the model and what the actual quality and impact is of the model. 
 
References 
1. Birnbaum J, Scharf S, Schmidt S, et al.: A Kelch13-defined endocytosis pathway mediates 
artemisinin resistance in malaria parasites. Science. 2020; 367 (6473): 51-59 
 
Is the rationale for developing the new method (or application) clearly explained?
No

Is the description of the method technically sound?
Partly

Are sufficient details provided to allow replication of the method development and its use 
by others?
Partly

If any results are presented, are all the source data underlying the results available to 
ensure full reproducibility?
Partly

Are the conclusions about the method and its performance adequately supported by the 
findings presented in the article?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Drug discovery, malaria, parasitology (not computational modelling).

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 22 Jun 2020
Colby Ford, University of North Carolina at Charlotte, USA 

Thank you for your review. We have added the additional context about ACTs, and the 
kelch13 gene from the Birnbaum paper. In addition, we have included information about 
how this work is of merit and applicable to the broader field of parasitology. We also 
included information in the discussion about the need for biological (in vitro) validation of 
these findings, but that this work helps to "bubble up" the most probable/important things 
to test first. 

 
Page 19 of 25

F1000Research 2020, 9:62 Last updated: 11 JUL 2022



 
As for the specific questions about the data used in this study, we are still waiting on the 
overall DREAM Challenge write up and release to occur, which should contain must more in-
depth information about the lab procedures (timepoints, test, etc.) and data collection. We 
are open to adding this information into our paper as well once we can get it from the 
DREAM Challenge. 
 
Though only the ROC Curves are shown in the paper, all of the figures for model 
performance are in the GitHub repository. The plot of actual vs. predictive performance 
(a.k.a. calibration curve) is here: 
https://github.com/colbyford/malaria_DREAM2019/blob/master/SubChallenge2/model/amls_model_7-
31-19/Calibration.PNG  
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The authors have addressed several, but not all of the reviewers’ comments. The description of the 
state-of-the-art could be stronger. For example, the authors should discuss the status quo in 
machine learning for malaria drug-resistance detection, and the status/results of the DREAM 
Competition in particular, including the context of the data used. Some questions remain 
regarding the computation of averages in the ROC and precision-recall curves in Figures 4 and 5, 
see for example the bump in the latter (blue curve). The authors have not explained Figure 6, as 
reviewers asked them to do (labeling and legend fonts are too small). The authors also don’t 
explain how they do the testing (size of test set, evaluation scheme etc.) I am not sure about the 
usefulness of Figure 2 - Sensitivity and specificity are more intuitive measures than squared errors.
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Is the rationale for developing the new method (or application) clearly explained?
Partly

Is the description of the method technically sound?
Partly

Are sufficient details provided to allow replication of the method development and its use 
by others?
Partly

If any results are presented, are all the source data underlying the results available to 
ensure full reproducibility?
Partly

Are the conclusions about the method and its performance adequately supported by the 
findings presented in the article?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: machine learning, artificial intelligence, data science, malaria screening

We confirm that we have read this submission and believe that we have an appropriate level 
of expertise to state that we do not consider it to be of an acceptable scientific standard, for 
reasons outlined above.

Author Response 19 May 2020
Colby Ford, University of North Carolina at Charlotte, USA 

We appreciate the reviewer's comments and have made some updates to the manuscript to 
reflect some figure quality issues and to address some points of confusion. 
 
In this revision, we have addressed the reviewer's comments around the precision-recall 
curve and the ROC curve by better explaining the variation in the P-R curve and defining the 
micro, macro, and weighted average metrics shown in the figures. In addition, we have 
replaced the feature importance bar chart (Figure 6) with a higher quality version, which 
should be much more readable. We have also better described the model evaluation 
process. 
 
Note: This article is part of a larger DREAM Challenge, from which a larger compilation 
manuscript will be written at a later date. As such, we cannot yet publish the data used in 
this work. We also cannot control the data used in this work as we were to use the data 
provided by the 2019 Malaria DREAM Challenge. Thus, we should not be evaluated on the 
lack of data, lack of a public testing dataset (which will be published in the future parent 
article), lack of a public evaluation scheme, the status/results of the DREAM Competition, or 
the full context of the data used.  
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Stefan Jaeger   
National Library of Medicine, National Institutes of Health, Bethesda, USA 

Sameer K. Antani   
Communications Engineering Branch, National Library of Medicine, National Institutes of Health, 
Bethesda, MD, USA 

The authors present a machine learning approach for detecting malaria drug-resistance based on 
genetic attributes. To this end, they train many different models, which they combine with known 
ensemble methods like voting. The detection of malaria drug resistance is an important medical 
problem and the application of machine learning in this context deserves further exploration. 
However, the paper has several shortcomings that the authors need to address:

The author should provide a better description of the state-of-the-art and existing literature 
at the beginning of their paper.  
 

○

Also demonstrate the need for such an approach. It is implicitly suggested, but greater 
clarity is needed on what gaps this approach fills. This can be addressed through previous 
bullet also. 
 

○

The overall structure of the paper lacks clarity and concrete results. The authors claim 
that their exercise helps to “quantify the importance of genetic features, spotlighting 
potential genes that are significant in artemisinin resistance. The utility of these models will 
help in directing development of alternative treatment or coordination of combination 
therapies in resistant infections.” However, the experimental validation of these statements 
is insufficient, and the derived feature importance need to be discussed in more detail to 
convince the reader. In this context, Figure 6 need to be explained and discussed. What is 
the black block mimic model? Why has it been chosen by the authors for ranking features? 
In what way do other feature ranking schemes like PCA differ?  
 

○
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The paper describes two experiments: a regression experiment with the IC50 value as 
target, and a classification experiment with three different parasite clearance rates. 
However, both experiments need further justification. In the first experiment, the number 
of rows (patterns) seems to be very small compared to the number of features (genetic 
attributes), which makes over-training very likely. The authors need to comment on this and 
address the issue if possible. In the second experiment, it is unclear how the three different 
clearance rates relate to drug-resistance. What is the correlation between these classes and 
drug-resistance? Why have the authors trained many more models for the first experiment? 
 

○

Listing of source code for formatting data is unnecessary and not suitable for a research 
paper. They have provided links to their code so including it in the paper seems 
superfluous, unless they want to make a point about it, which is absent. Further, 
that their example output after vectorization contains NaNs does not inspire confidence in 
the quality of the code; and, obviously needs further discussion. 
 

○

The authors also cite that an earlier version of this article is available on bioRxiv. They 
should include discussion on what improvements are in this work that substantially improve 
over that.

○

 
Is the rationale for developing the new method (or application) clearly explained?
Partly

Is the description of the method technically sound?
Partly

Are sufficient details provided to allow replication of the method development and its use 
by others?
Partly

If any results are presented, are all the source data underlying the results available to 
ensure full reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the 
findings presented in the article?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: machine learning, artificial intelligence, data science, malaria screening

We confirm that we have read this submission and believe that we have an appropriate level 
of expertise to state that we do not consider it to be of an acceptable scientific standard, for 
reasons outlined above.

Author Response 09 Apr 2020
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Colby Ford, University of North Carolina at Charlotte, USA 

We sincerely appreciate the reviewers' feedback on this work and have improved the article 
based on your recommendations. 
 
We have addressed each comment as follows in the article:

Added additional examples of ML-based work in genomics, other tropical diseases, 
and in malaria.

○

Added a brief explanation about the utility of this approach and its benefit over 
manual analysis.

○

Addressed the reviewers' questions in the article around the explanability and black 
box methods and gave examples of the role of certain important genes identified 
here.

○

Addressed the small observation size and the training of many models in the article 
and have better explained the relationship between drug resistance and parasite 
clearance rates. Further information on this data can be found in Mok et al., 2015. 
Also, the reason the second use case has fewer models trained was due to 
performance and risk of overfitting. However, with more observations, the machine 
learning modeling performance may increase with additional training and tuning 
time.

○

The example code segments have been removed from the article.○

For the data quality concern, this is the data provided by the DREAM competition, 
thus isn't something we can control.

○

The previous version on bioRxiv is nearly identical and was published there until the 
gateway was set up on F1000 and the publication embargo was lifted.

○

 

Competing Interests: No competing interests.

 
Page 24 of 25

F1000Research 2020, 9:62 Last updated: 11 JUL 2022



The benefits of publishing with F1000Research:

Your article is published within days, with no editorial bias•

You can publish traditional articles, null/negative results, case reports, data notes and more•

The peer review process is transparent and collaborative•

Your article is indexed in PubMed after passing peer review•

Dedicated customer support at every stage•

For pre-submission enquiries, contact research@f1000.com

 
Page 25 of 25

F1000Research 2020, 9:62 Last updated: 11 JUL 2022

mailto:research@f1000.com

