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Rationale and Objectives: The burden of coronavirus disease 2019 (COVID-19) airspace opacities is time consuming and challenging to
quantify on computed tomography. The purpose of this study was to evaluate the ability of a deep convolutional neural network (dCNN)
to predict inpatient outcomes associated with COVID-19 pneumonia.

Materials and Methods: A previously trained dCNN was tested on an external validation cohort of 241 patients who presented to the
emergency department and received a chest computed tomography scan, 93 with COVID-19 and 168 without. Airspace opacity scoring
systems were defined by the extent of airspace opacity in each lobe, totaled across the entire lungs. Expert and dCNN scores were con-
currently evaluated for interobserver agreement, while both dCNN identified airspace opacity scoring and raw opacity values were used in
the prediction of COVID-19 diagnosis and inpatient outcomes.

Results: Interobserver agreement for airspace opacity scoring was 0.892 (95% CI 0.834-0.930). Probability of each outcome behaved as
a logistic function of the opacity scoring (25% intensive care unit admission at score of 13/25, 25% intubation at 17/25, and 25%mortality
at 20/25). Length of hospitalization, intensive care unit stay, and intubation were associated with larger airspace opacity score (p = 0.032,
0.039, 0.036, respectively).

Conclusion: The tested dCNN was highly predictive of inpatient outcomes, performs at a near expert level, and provides added value for
clinicians in terms of prognostication and disease severity.
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INTRODUCTION
T he coronavirus disease 2019 (COVID-19) pandemic
has created a unique challenge for medical personnel
worldwide by becoming quickly pervasive. Many

studies have identified the signs found and usefulness of chest
computed tomography (CT) imaging (or even abdominopel-
vic lung base analysis) for triage of these patients with poten-
tial COVID-19 pneumonia, particularly to identify
diagnostic and prognostic factors (1-4). Therefore, the use of
artificial intelligence (AI) deep learning models to
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prognosticate from CT images has been identified from the
beginning of the pandemic as a potential way to expedite the
triage process, improve prognostication, and guideline utiliza-
tion of resources (1, 5). The use of AI to prognosticate clinical
course of COVID-19 pneumonia patients from subjective
imaging features is challenging. One solution is the use of
scoring systems, such as severity scoring, as standardization
and efficiency are increased by protocol, resulting in higher-
quality, evidence-based decision making by clinicians. How-
ever, manual segment severity scoring is a time-consuming
task which is not currently standard of care. Thus, utilizing
AI severity scoring may be helpful in meeting the challenge
of practical, reproducible triage of COVID-19 patients by
identifying patients at high risk for morbidity and mortality
(6).
While there is a relative paucity of studies utilizing severity

scoring during the task of COVID-19 CT image interpreta-
tion, several studies have demonstrated the efficacy of scoring
images with severity scoring methods (6-9). Lessman, et al.
reported moderate agreement for score determination by AI
methods when in comparison to expert radiologists’ interpre-
tation; with high area under curve (AUC), sensitivity, and
specificity (internal set: 0.95, 85.7%, and 89.8% and external
set: 0.88, 82.0%, and 80.5%, respectively) (6). Goncharov,
et al. demonstrated an AUC of 0.95 and severity model cor-
relation 0.98 for the identification of COVID-19 pneumonia
patients (7). Lassau, et al. calculated severity scores based on
clinical factors and then recalculated the scored based on the
combination of clinical factors and imaging interpretation by
AI. The AI-assisted method of score calculation outper-
formed the previously determined score in terms of prognos-
tic ability (8). Finally, Mader et al. determined that severity
scoring differentially predicts patients with severe disease
from non-severe (10).
However, methods and image sources vary between stud-

ies and may be prone to bias and overfitting from use of iden-
tical or poorly annotated images from publicly available
datasets. Furthermore, few seldom test their methods against
a real-world contiguous patient cohort with well-defined
outcomes (1). Therefore, the purpose of this study is to ana-
lyze the efficacy of a novel deep learning model in determin-
ing prognostic value of an AI severity scoring algorithm.
METHODS

Study Population, Clinical Information, and Imaging Data
Acquisition

The protocol of this retrospective study was approved by the
local Institutional Review Board and the need for informed
consent was waived. Patient data was collected and anony-
mized in compliance with HIPAA and institutional protocols
to protect patient privacy. A total of 241 patients were
enrolled in this study, 93 severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) polymerase chain reaction
(PCR) positive and 158 SARS-CoV-2 PCR negative, who
underwent a chest CT with or without contrast from March
2020 to February 2021. Data collected included demo-
graphics, clinical comorbidities, and outcome variables which
included hospitalization, intensive care unit (ICU) admission,
intubation, and mortality. A preliminary patient list was col-
lected through billing code search using COVID-19 testing
and chest CT identifiers. Data collection was performed by
chart review and compiled in a de-identified encrypted docu-
ment. Imaging data from chest CT scans with 1 mm slice
thickness including non-contrast and iodinated contrast
enhanced studies (mAs and kVp selected according to
patients’ body mass index) were acquired from Somatom
Force and Naeotom Alpha CT scanners (Siemens Healthi-
neers, Forcheim, Germany). Archived data was then exported
from the picture archiving and communication system and
uploaded to the AI interface (AI-RAD companion, Siemens
Healthineeers) where the algorithm was executed and the
results recorded.
Study Design

A single-institution retrospective case-control study was per-
formed. Inclusion criteria included patients >18 years old
who presented to the emergency department, received both
a COVID-19 test and a chest CT within 14 days, and had
sufficient same-institution follow-up for outcomes analysis (1
month post discharge from emergency department (ED) or
inpatient hospitalization). Controls were selected based on an
eligible CT scan with a negative SARS-CoV-2 PCR in the
stated timeframe. These controls were neither age nor sex
matched. Exclusion criteria included prior pulmonary surgical
history, viral pneumonia other than COVID-19, and exces-
sive artifact on chest CT.

The gold standard used was an expert-derived airspace
opacity score. Three cardiothoracic trained radiologists com-
prised the expert determination of airspace opacities as given
by Bernheim et al. (11) For each lobe, the disease extent was
judged to be one of the following categories: (0) the lobe is
not affected; (1) 1%-25%; (2) 25%-50%; (3) 50%-75%; and
(4) 75%-100%. The scores for each of the five lobes were
summed to calculate the total severity score, resulting in a
total score range from 0 to 20. A 0 indicates that none of the
lobes are involved and 20 indicates that all five lobes are
severely affected.

The primary endpoints were interobserver agreement
between AI and the radiologists for the determination of
COVID-19 extent as well as the predictive capability of air-
space opacity scoring and other AI measurements for the
diagnosis of COVID-19 pneumonia.
Convolutional Neural Network Architecture and Outputs

The deep convolutional neural network (dCNN) algorithm
has been previously described in Chaganti et al. (12) Briefly,
the original dCNN was trained on 901 chest CT scans (431
COVID-19, 174 viral pneumonia, and 296 with interstitial
1179
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lung disease) with a validation cohort of 200 patients (100
COVID-19 and 100 control). The general architecture uti-
lized a preprocessing step with deep-image-to-image lung
segmentation using the carina as a landmark with alignment,
then a DenseUNet architecture for feature (ground glass
opacity, etc.) extraction, subsequently followed by segmenta-
tion and global classification. Please see appendix E1 in Cha-
ganti et al. for a detailed description of the neural network
architecture, training, and measures such as loss function.
Statistical Analysis

A power calculation optimized for outcomes assuming at least
a 10% prevalence of each event required >150 patients for a
standardized power of 0.8. Post-hoc, 241 patients conferred a
power of 0.965 for simple logistic regression analysis (Fig
S1). Aggregate demographics and clinical risk factors analysis
was performed using SARS-CoV-2 PCR positivity as the
stratifying variable. Continuous variables were assessed for
normality and reported as medians plus interquartile ranges.
Categorical variables were reported with count and frequency
as percent.

Primarily, interobserver agreement for quantitative scoring
was assessed using intraclass correlation coefficients (ICC)
with 2-way mixed effects, single rater (k), and absolute agree-
ment. Adjusted linear model R2 and p-values were also
reported for assessment of linearity of results. Cohen’s kappa
was reported with confidence interval as a secondary measure
of categorical agreement. For categorical agreement, any air-
space opacity was counted as a positive result, and no airspace
opacities were defined as the only negative result and only
used in the context of COVID-19 positive patients to focus
on specific performance on COVID-19 patients. Diagnostic
parameters were reported using confidence intervals con-
structed using the Clopper-Pearson method.

Multivariate modelling for COVID-19 diagnosis was
performed using multiple logistic regression. Briefly, back-
wards stepwise logistic regression was performed on all AI
generated measurements until all retained model elements
were significant (p < 0.05) in the model. The model
with the lowest Akaike information criterion was selected
among the models with significant elements. Multivariate
modelling of outcomes was performed using the variables
deemed diagnostic for COVID-19 in the previous analy-
sis. Optimal airspace opacity score cutoffs were empirically
selected using a bootstrapping approach with 200 repeti-
tions of 1:1 COVID-19 positive/negative stratification
sampling were used by maximization of the bootstrapped
accuracy metric. Figure S2 demonstrates the empiric
selection process. Time-derived outcome variables were
analyzed by binning into quintiles to improve reader
interpretability. Differences between each quintile were
assessed using one-way ANOVA. Means and standard
errors were reported for continuous variables. All statistical
analysis was performed in R v 3.6.3.
1180
RESULTS

In this study 93 patients (38.5%) were positive for SARS-
CoV-2. The median age of those with and without COVID-
19 was 59 (IQR 45-71) and 62 (IQR 47-69), respectively. A
greater proportion of those with COVID-19 were male in
comparison to controls (61.5% vs 51.9). The median time
between nasopharyngeal swab and imaging was 3 days for
SARS-CoV-2 positive patients and 0 days for SARS-CoV-2
negative patients. Patients positive for SARS-CoV-2 were
more likely to be Black or Hispanic (57.0%, 2.3%) than
SARS-CoV-2 negative patients (37.7%, 0%). In comparison
to control patients, SARS-CoV-2 positive patients were
more frequently smokers (93.4% vs 48.8%), more likely to
have hypertension (65.9% vs 49.2%), and more likely to be
diabetic (37.6% vs 23.8) (Table 1).

The AI dashboard, the provided summary of the algorithm
output, demonstrates highlighted airspace opacities in the
axial view with the possibility to reconstruct the affected tis-
sue in three dimensions. The results dashboard provides read-
ers with information regarding the extent of the airspace
opacities as broken down by lobe. Results include opacity
scores, lung volumes, mean and standard deviation of the
Hounsfield units for affected lungs, volumes of affected lung
tissue and high opacity measurements (Fig 1).

The overall correlation between observer estimates of
severity score was 0.827 (95% CI 0.751 - 0.891). The expert
and AI had a high rate of agreement with ICC of 0.892 (95%
CI 0.834-0.930), p < 0.001. The Adjusted R2 for explana-
tion of model variance was 0.69, p< 0.001 (Fig 2a).Overall,
The accuracy of the dCNN was 0.828 (95% CI 0.751-0.905)
and sensitivity was 0.914 (95% CI 0.830-0.965) (Fig 2b).

Using the measurements given in the AI dashboard, a best
fit multivariate model consisting of total opacity volume
(cm3), high opacity volume (cm3), standard deviation of
opacity Hounsfield units, and total standard deviation of all
Hounsfield units gives an AUC of 0.805 (95% CI 0.745-
0.862) for the diagnosis of COVID-19. The AUC for indi-
vidual predictors of the model range from 0.728 to 0.561. All
variable coefficients were significant in the multiple logistic
regression model (p < 0.05) (Fig 3). The same combination
of variables predicts need for inpatient hospitalization
(AUC = 0.810) and ICU admission, intubation, and mortal-
ity at AUCs ranging from 0.666 to 0.683. The trend of accu-
racy was highest for events earliest in each patient’s time
course (Fig 4).

In regards to threshold determination, AI Airspace opacity
�13 was accurate (0.777 95%; CI 0.724-0.829) and specific
(0.873; 95% CI 0.822-0.913) for mortality. AI airspace opac-
ity �13 had a high NPV for death (0.946; 95% CI 0.915-
0.977). Accuracy of AI airspace opacity �8 for hospitalization
was 0.777 (95% CI 0.724-0.829). Accuracy of AI airspace
opacity � 9 for ICU admission was 0.744 (95% CI 0.680-
0.799). Accuracy of AI airspace opacity �12 for intubation
was 0.839 (95% CI 0.793-0.885) (Table 2). Using the
threshold values within the logistic model probabilities, there



TABLE 1. Demographics and Clinical Comorbidities of Patients Enrolled in this Study Stratified by SARS-CoV-2 Nasopharyngeal
Swab PCR Results

N = 241 SARS-CoV-2 Positive (N = 93) SARS-CoV-2 Negative (N = 148)

Median IQR Median IQR

Age (years) 59 45-71 62 47-69
BMI (kg/m2) 29.3 25.8-36.1 26.5 21.9-33.0
Symptom days 6 2-9 4 1-9
PCR-Imaging D 3 0-8 0 1-9

Count Frequency (%) Count Frequency (%)
Sex
Female 35 38.5 62 48.1
Male 56 61.5 67 51.9
Ethnicity
Black 49 57.0 40 37.7
Hispanic 2 2.3 0 0
Other 5 5.8 2 1.9
White 30 34.9 64 60.4
Prior Structural Lung disease 32 34.8 37 28.5
History of Cancer 9 11.9 46 33.6
Smoking History 85 93.4 44 48.4
Hypertension 60 65.9 64 49.2
Diabetes 34 37.6 31 23.8
CHF 16 17.8 27 20.8
CKD 14 15.4 19 14.6
Autoimmune disease 14 15.4 17 13.1
HIV 0 0 6 4.6

BMI, body mass index; CHF, congestive heart failure; CKD, chronic kidney disease; HIV, human immunodeficiency virus; IQR, interquartile
range; PCR, polymerase chain reaction; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.
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is a 25% risk of respective outcomes at an airspace score of 6
(Hospitalization), 13 (ICU Admission), 16 (Intubation) and
�20 (Mortality). Significant increases in probability of mor-
tality does not occur until AI Airspace opacity >10. A maxi-
mum score of 20 conferred an 87.5% probability of
hospitalization, 50% probability of ICU admission, 37.5%
probability of intubation, and about a 25% probability of
mortality. The points of most uncertainty came at scores >
15, suggesting other risk factors are increasingly important at
these upper ranges (Fig 5).
The AI airspace opacity scores predict time-to-event and

inpatient durations, with the mean hospitalization duration,
ICU duration, and intubation duration being associated with
increased AI airspace opacity scores (p = 0.032, 0.039, 0.036,
respectively). The time from hospital admission to ICU
admission was not significantly associated with AI airspace
opacity scores (p = 0.159) (Fig 6).
DISCUSSION

The purpose of this study was to test a previously trained deep
convolutional neural network for diagnostic and prognostic
purposes in patients with COVID-19 pneumonia as seen on
chest CT. A total of 241 patients (93 COVID-19 positive)
were evaluated by the dCNN in this external testing cohort
design. The AI algorithm was highly accurate compared to
attending radiologists with ICCs approaching human-level
agreement. Several key interpretable outputs were derived
including opacity volumes, parenchymal-opacity ratios, and
other 2nd order statistics. When put together into a standard-
ized scoring system, several cutoffs were identified that pro-
cess in a stepwise fashion in terms of severity. Lastly, both
probabilities of inpatient outcomes and time-to-events
behaved as a function of the airspace opacity scoring system,
establishing expected prognostic gradients that may influence
patient care.

It is critical to understand the accuracy of expert observers
in the diagnosis of COVID-19 pneumonia from chest CT, as
the gold standard used in this study was the expert quantifica-
tion of airspace severity. Baseline expert accuracy in compari-
son to PCR surpasses 90% for the diagnosis of COVID-19
pneumonia. The ICC for expert-AI quantitative severity
scoring represented “excellent” agreement. Overall, AI accu-
racy for patients with COVID-19 by positive PCR was high
for identifying airspace opacities related to COVID-19
lesions. However, the correlation coefficient in this external
validation cohort was mildly less than the previously pub-
lished training data for the neural network (12).

While the focus of this study is on AI severity scoring, mul-
tivariate modelling of AI segmented measurements has an
advantage over a scoring heuristic for the diagnosis of
COVID-19 pneumonia (13, 14). A multivariate model con-
sisting of opacity volume, “high opacity” volume, and the
standard deviation of both opacity Hounsfield units and total
1181



Figure 1. Artificial Intelligence dashboard for automated evaluation of chest computed tomography for COVID-19. (a) Axial view of lung fields
with highlighted opacities segmented by neural network algorithm. (b) Three-dimensional Image reconstruction of lungs with rending of
involved airspace opacities. (C) Parameters involved with diagnosis of COVID-19 by AI. AI, Artificial intelligence; COVID-19, Coronavirus dis-
ease 2019. (Color version of figure is available online.)
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Figure 2. Interobserver agreement between expert and AI opacity scores in patients who were positive for SARS-CoV-2 by PCR. (a) Quanti-
tative comparison of opacity score. (b) Qualitative assessment for detection of any airspace opacities. AI, Artificial intelligence; NPV, negative
predictive value; PCR, polymerase chain reaction; PPV, positive predictive value; SARS-CoV-2, Severe acute respiratory syndrome coronavi-
rus 2. (Color version of figure is available online.)
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Hounsfield units provides an AUC of 0.805, greater than the
sum of its parts or the opacity scoring system. Expert mea-
surement of opacity volumes and standard deviations are not
feasible, reflecting a possible advantage of using AI systems in
the prediction of COVID-19 pneumonia. Indeed, some
radiomic studies suggest the quantitative parenchymal
involvement to be important indicators of severe outcomes
(15-17). The loss of accuracy from the severity scoring system
can be attributed to the trade of interpretability for accuracy
in any scaled heuristic (18).
Further clinical utility can be derived from the prediction

of outcomes from airspace severity scoring. Quantitative AI
airspace values readily predict inpatient hospitalization with
reasonable accuracy, providing immediate clinical utility
from the emergency department. More advanced outcomes
(ICU admission, Intubation, and mortality) had predictions
which were less strong, likely related to the multifactorial risk
factors for each outcome. Certainly, already verified risk fac-
tors such as age, immunosuppression, BMI, and sex contrib-
ute to the overall predictive value of the imaging factors to a
large degree in late inpatient clinical outcomes.
The presence of “large” or “extensive” airspace opacities
on chest imaging often evokes a negative reaction for poor
prognosis among physicians caring for COVID-19 patients.
However, the actual relationship of the quantitative extent
of the airspace opacities and inpatient outcomes is poorly
understood (18). Certainly, radiologists may be able to seg-
ment airspace opacities by hand to provide extra clinical
value, but this is a time intensive and laborious process
which presents difficulty in the setting of increased chest
imaging volumes during the COVID-19 pandemic (19).
Therefore, the introduction of an AI algorithm that would
automatically segment the airspace opacities and provide a
numeric, interpretable score could add value to the prognos-
tication of COVID-19 pneumonia and change clinical man-
agement as patients progress down the COVID-19
treatment protocol (20). Several such algorithms have been
proposed with ICCs above the 90th percentile, each deriv-
ing value from individual lobar involvement (21, 22). Still, a
main challenge with expert-derived approaches include
interobserver variation, which is partially rectified using a
standardized AI approach (23).
1183



Figure 4. Multivariate logistic regression modelling of outcomes used in this study. A combination of variables (Opacity Volume, High Opacity Vol-
ume, SDOpacityHU, SDTotal HU) derived from significant predictors of COVID-19 status predict hospitalization, ICUadmission, intubation anddeath.

AUC, area under curve; COVID-19, Coronavirus disease 2019; HU, Hounsfield units; ICU, intensive care unit. (Color version of figure is
available online.)

Figure 3. AI-segmented imaging features for use in prediction of COVID-19 status. (a) Multivariate imagingmodel consisting of total opacity volume (cm3),
high opacity volume (cm3), standard deviation of opacity Hounsfield units, and total standard deviation of all Hounsfield units. All variables were significant in
multiple logistic regression model (p < 0.05). (b) Individual features used in the multivariate model and their individual diagnostic performance for COVID-19
diagnosis. Opacity volume, followed by high opacity volume, had the largest predictive power for COVID-19 diagnosis. AI, Artificial intelligence; AUC, area
under curve; COVID-19, Coronavirus disease 2019; HU, Hounsfield units; SD, standard deviation. (Color version of figure is available online.)
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TABLE 2. Diagnostic Parameters of the Most Accurate Thresholds for Inpatient Outcomes. AI Airspace Score Thresholds Have a
High Specificity and NPV for Identifying Patients at Risk of Morbidity and Mortality

AI Airspace Opacity Score � 8 and Hospitalization (N = 241)

Hospitalization No Hospitalization % Hospitalized

Opacity Score �8 45 28 61.6%
Opacity Score <8 26 143 15.4%
Accuracy 0.777 (0.724-0.829) Odds Ratio 8.8 (4.7-16.5)
Sensitivity 0.634 (0.511-0.745) PPV 0.616 (0.505-0.728)
Specificity 0.836 (0.772-0.888) NPV 0.846 (0.792-0.901)
AI Airspace Opacity Score � 9 and ICU Admission (N = 241)

ICU Admission No ICU Admission % ICU
Opacity Score �9 18 49 26.9%
Opacity Score <9 13 162 7.4%
Accuracy 0.744 (0.689-0.799) Odds Ratio 4.58 (2.1-9.8)
Sensitivity 0.581 (0.391-0.755) PPV 0.269 (0.163-0.375)
Specificity 0.768 (0.705-0.823) NPV 0.926 (0.887-0.965)
AI Airspace Opacity Score � 12 and Intubation (N = 241)

Intubation No Intubation % Intubation
Opacity Score �12 9 28 24.3%
Opacity Score <12 11 194 5.4%
Accuracy 0.839 (0.793-0.885) Odds Ratio 5.67 (2.07-9.95)
Sensitivity 0.450 (0.231-0.685) PPV 0.243 (0.105-0.381)
Specificity 0.874 (0.823-0.915) NPV 0.946 (0.915-0.977)
AI Airspace Opacity Score � 13 and Mortality (N = 241)

Dead Alive % Mortality
Opacity Score �13 4 29 12.1%
Opacity Score <13 10 199 4.8%
Accuracy 0.839 (0.793-0.885) Odds Ratio 2.75 (0.852-0.844)
Sensitivity 0.286 (0.084-0.581) PPV 0.121 (0.010-0.233)
Specificity 0.873 (0.822-0.913) NPV 0.952 (0.923-0.981)
AI, Artificial intelligence; ICU, Intensive care unit; NPV, Negative predictive value; PPV, Positive predictive value.
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Comparison of predictive ability with the literature at large
is a challenging task due to the heterogeneity of methods,
preponderance of public dataset usage and transfer learning,
and a risk of bias (1). Fewer studies still have investigated an
interpretable AI severity score from chest CT for both diag-
nosis and prognosis, but among those with similar aims the
correlation coefficients are usually high between the experts
and AI (0.87-0.97) (7, 24, 25). Prognostication often falls
somewhat less accurate with AUCs between 0.75 and 0.90
reported (26, 27). Univariate severity score AUCs in this
range should be expected as other clinical variables (age,
immunosuppression, etc.) contribute to disease progression
and mortality in patients with COVID-19. A recent study
found AUCs of 0.70-0.77 for inpatient outcomes by use of
deep learning, which corroborates with our results (28). It
may be possible to achieve higher AUCs using radiologists
supervised transfer learning (29). It is likely that the univariate
prediction strength of current AI methods lies within this
range, but we suggest that our study stands out in this cohort
due to the use of interpretable AI derived classification
schemes.
Empirically derived opacity score thresholds improve on

the accuracy and predictive ability of COVID-19-related
inpatient outcomes (12, 30, 31). Many clinicians and patients
are concerned about the next large decision points in
COVID-19 clinical care, and airspace opacity scoring accu-
rately prognosticates patient risk with negative predictive val-
ues > 90%; below 8 for hospitalization, below 9 for ICU
admission, below 12 for intubation, and below 13 for death.
For a patient with an airspace severity score of 2, 5, or 10, a
physician could relate that the probability of death to be low
at <10%. Conversely, for a hospitalized patient with an air-
space opacity score of 17 and approaching escalation of care,
a physician could quote upwards of 25% risk of intubation
and 20% all-comers mortality when discussing goals of care.
Furthermore, AI airspace opacity scoring can inform clini-
cians, patients, and hospital systems of length of stay and dura-
tion of high-level of care including invasive ventilation
duration and ICU bed occupancy. Bracketing airspace opac-
ity into quintiles demonstrates a clear upward trend in hospi-
talization duration, ICU duration, and intubation duration as
a function of severity. Physicians could once again counsel a
patient with a score of 15 and approaching intubation to
expect an invasive ventilation duration of 10 days on average,
albeit with a large degree of variation.

CT scans are obtained at other points in admission besides
the initial encounter stages and with other possible viral
pathologies. While the strategy employed in this study utilizes
1185



Figure 5. Probability of inpatient outcomes among as a logistic function of AI opacity score. The probability of an inpatient event follows an
exponential function. AI, Artificial intelligence. (Color version of figure is available online.)
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a cross-sectional time point (emergency department admission
predicated around SARS-CoV-2 PCR testing), there is a
lack of information on if follow-up scores would predict
morbidity and mortality as anticipated. The authors find likely
that a change in clinical situation should result in a differential
rate of outcomes, but there is dearth of follow-up CT scans
during hospital admission. At the present time we are unable
to conclude if and how the severity score predictions would
change over the course of the admission, and instead recom-
mend interpretation of prognostics in the setting of early
workup of disease. Regarding other causes of atypical pneu-
monia, CT has been well described in the evaluations of
other viral pneumonias (32, 33). Various deep learning algo-
rithms have attempted to differentiate between COVID-19
and other viral pneumonias; however, the authors argue that
with widespread SARS-CoV-2 testing availability this is less
of a concern (25). Future study should investigate patients
who had subsequent cross-sectional imaging during the hospi-
tal course and assess for changes in prognostic value.
LIMITATIONS

Limitations of this study include the single institution, retro-
spective nature of this study spanning multiple iterations of
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COVID-19 waves, vaccines, strains, and best practices. There
is no current data to suggest how clinicians might approach
this potential confounding aspect (i.e., radiologic findings of
the Delta vs Omicron variant, vaccinated vs non-vaccinated
vs booster received, etc). Additionally, this study was not
powered to evaluate concurrent demographic and comorbid-
ities as risk factors or effect modifiers as those were considered
secondary endpoints. Further study is needed to develop
more accurate risk modelling in the context of previously
identified demographic and clinical variables. The patients
enrolled in this study are also subject to selection bias by the
criteria of having received a chest CT upon presentation.
Patients who receive a CT scan in the ED more likely repre-
sent a population with more severe presenting illness, which
may inflate the average airspace opacity score among
COVID-19 positive patients. Severe outcomes in the
COVID-19 group were sparse. A larger multi-institutional
cohort is needed with more outcomes, for which this study
will serve as the basis for a second power analysis.

Importantly, interpreting airspace opacities in the context
of COVID-19 patients is murky, as the type of airspace opac-
ity is not discriminated against by the AI program. For
instance � ground-glass opacities, “tree-in-bud” pattern, and
patchy consolidation is found in many patients without



Figure 6. Time to event and inpatient duration analysis among hospitalizedCOVID-19 patients using airspace opacity score quintiles with reportedmeans
and standard errors. Mean hospitalization duration (a), ICU duration (b), and intubation (d) duration were associated with increased AI airspace opacity
scores. Time from hospital admission to ICU admission (c) was not significantly associatedwith AI airspace opacity scores. AI, Artificial intelligence; ANOVA,
analysis of variance; COVID-19, Coronavirus disease 2019; Hosp, hospitalization; ICU, intensive care unit. (Color version of figure is available online.)
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pulmonary disease or in non-COVID-19 viral pneumonia,
but would count as a positive airspace opacity in patients
with or without COVID-19 in this study (2, 3, 34). Certain
systems have been invented to classify COVID vs non-
COVID pneumonia, but at the time of this article this is still
an evolving science. A best practice would include perform-
ing a COVID-19 test before cross-sectional imaging to clarify
pre-test probability (32).
CONCLUSIONS

The use of AI segmented quantitative airspace severity scor-
ing is an accurate diagnostic and prognostic tool for COVID-
19. The AI algorithm adequately quantifies burden of disease
in COVID-19 patients and can provide a service which
would otherwise be too time consuming for radiologists and
clinicians. The AI scoring output is also easily interpretable,
explaining the outputs of a convolutional neural network
with relatively little previous knowledge required. Extra
value is also provided to clinicians on the risk of progression
of disease to their patients, which may change management
and influence goals of care discussion. Further study will focus
on multivariate predictive outcomes analysis with less empha-
sis on interobserver agreement.
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