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Abstract: A midline shift (MLS) is an important clinical indicator for intracranial hemorrhage. In
this study, we proposed a robust, fully automatic neural network-based model for the detection of
MLS and compared it with MLSs drawn by clinicians; we also evaluated the clinical applications
of the fully automatic model. We recruited 300 consecutive non-contrast CT scans consisting of
7269 slices in this study. Six different types of hemorrhage were included. The automatic detection of
MLS was based on modified Keypoint R-CNN with keypoint detection followed by training on the
ResNet-FPN-50 backbone. The results were further compared with manually drawn outcomes and
manually defined keypoint calculations. Clinical parameters, including Glasgow coma scale (GCS),
Glasgow outcome scale (GOS), and 30-day mortality, were also analyzed. The mean absolute error
for the automatic detection of an MLS was 0.936 mm compared with the ground truth. The interclass
correlation was 0.9899 between the automatic method and MLS drawn by different clinicians. There
was high sensitivity and specificity in the detection of MLS at 2 mm (91.7%, 80%) and 5 mm (87.5%,
96.7%) and MLSs greater than 10 mm (85.7%, 97.7%). MLS showed a significant association with
initial poor GCS and GCS on day 7 and was inversely correlated with poor 30-day GOS (p < 0.001). In
conclusion, automatic detection and calculation of MLS can provide an accurate, robust method for
MLS measurement that is clinically comparable to the manually drawn method.

Keywords: intracranial hemorrhage; midline shift; automatic detection; CT

1. Introduction

Intracranial hemorrhage caused by various conditions, including traumatic, sponta-
neous, or secondary disease, can lead to serious medical sequelae due to an increase in
intracranial pressure (ICP), causing neural damage. However, the current gold standard
for accurate assessment of ICP is the placement of invasive, intracranial ICP monitors.
Several different techniques have been developed to evaluate intracranial pressure non-
invasively [1]. One of the most widely used methods is the calculation of midline shift
(MLS) from non-contrast computed tomography (CT) scans, especially in circumstances of
increased ICP caused by localized mass lesions or parenchymal edema. The accessibility
of MLS from CT and its clinical applications had been widely discussed [2]. The National
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Traumatic Coma Data Bank showed that seven out of eighteen patients who could talk and
then deteriorated had a MLS greater than 15 mm [3]; other studies showed a continuous
association of MLS and clinical outcome [4], and in some circumstances, an MLS greater
than 5 mm could be an indication for surgical intervention [5].

The manual measurement of the MLS was proposed by the Brain Trauma Founda-
tion [6]. First, the intracranial width was measured at the level of foramen Monro (A), and
then the distance from the inner skull to the septum pellucidum was measured (B). The
MLS can be calculated by (A/2) − B. Another approach is to measure the distance from a
line joining the most anterior and posterior visible points on the falx to the farthest point on
the septum pellucidum [7]. However, manually drawing the MLS can be time consuming
and less reliable due to potential interrater variability. Therefore, several computer-aided
or automated methods for MLS measurement have been developed to provide an objective
robust method [2]. Liao et al. proposed a symmetry-based method to recognize the distance
of the MLS by segmenting the brain into an upper segment, a lower immobilized falx,
and a central curved segment [8]. Chen et al. combined symmetry and shape matching
for the identification of MLS to correlate with the ICP level [9]. Other approaches, such
as landmark-based approaches, were also proposed. Liu et al. developed an automatic
detection method for anatomical landmarks for MLS measurement, especially for cases of
large deformities [10].

In this article, we propose a fully automatic detection method for MLS based on the
Keypoint R-CNN with the ResNet-FPN-50 backbone. We first compare this automatic
detection method with MLS measured manually and MLS calculated by keypoints. Second,
the MLS measured with different methods is correlated with the clinical outcome, including
30-day overall mortality, Glasgow Outcome Scale (GOS), Glasgow Coma Score (GCS), and
ICP.

2. Materials and Methods
2.1. Patients Population

We retrospectively included 300 consecutively collected non-contrast brain CT scans
from July 2019 to January 2020 from the same single CT machine (GE LightSpeed, slice
thickness = 0.625 mm) in the emergent department in our institution. Indications for brain
CT scans were for the diagnosis of intracranial hemorrhage, clinical deterioration of known
intracranial hemorrhage (ICH) patients, and regular follow-up when clinically needed.
All types of intracranial hemorrhage, including spontaneous ICH, traumatic ICH, acute
subdural hematoma (ASDH), chronic subdural hematoma (CSDH), epidural hematoma
(EDH), intraventricular hemorrhage (IVH), subarachnoid hemorrhage (SAH), or mixed
type were included. All diagnoses were based on neuroradiologist reports. The exclusion
criteria were low imaging quality, such as severe motion defects and failure of complete
examination. Patients with intracranial foreign bodies, skull defects, or postoperative
conditions were not excluded in order to test our algorithm in the real-world setting.

Measurement of the midline shift was done by three different methods. Manual MLS
measurement of the maximal distance between the septum pellucidum from the midline
was done by an attending neurosurgeon with 13 years of experience, a 5th year senior neu-
rosurgical resident, and a research associate with 3 years of experience in clinical research.
The second method is the manual calculation of the distance between keypoint detected by
the algorithm (detailed as below section) and the fully automated MLS measurement.

Clinical medical records and radiologic reports were collected from all patients. In-
tracranial pressure was measured in those in whom an ICP monitor was inserted (intra-
parenchymal or ventricular monitor). Intraoperative and postoperative day 3 ICP data
were recorded. The Glasgow Outcome Scale at 30 days was assessed according to the
medical chart. This project was approved by the Chang Gung Medical Foundation
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2.2. Neural Network Based Automatic Measurement of the Midline Shift

The distance of the midline shift was assessed by using different methods (Figure 1),
including manual drawing (Figure 1A), manual keypoint calculation (Figure 1B), and
automatic MLS calculation (Figure 2). Manual drawing of the MLS was based on the
distance between the falx and septum pellucidum in the most affected CT slice (Figure 1A).
All CT scans were manually drawn by three authors (J.-L. Yan, K. Li, B.-A. Chen.) and were
blinded to each other’s results. The keypoint for the calculation of the MLS was defined as
the anterior end of the falx, the posterior end of the falx, the anterior end of the septum
pellucidum near anterior commissure, and the posterior end of the septum pellucidum
(Figure 1B). The keypoint MLS was defined as the distance between the middle point of the
connection of the anterior and posterior falx and the midpoint of the septum pellucidum.
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from Faster R-CNN [11] and is a revision of Mask R-CNN [12]. The architecture of the 
Keypoint R-CNN was shown in Figure 2. The first stage is the region proposal network 
(RPN). It generates class-agnostic bounding boxes as proposals for the possible pres-
ence of instances. The second stage crops regions from the feature map extracted by 
the backbone network according to the proposals from the RPN and feeds them to 
three task heads, namely classification, bounding box regression, and keypoint detec-
tion, after applying region of interest (ROI) pooling to the feature crops. In contrast to 
Mask R-CNN, Keypoint R-CNN replaces the segmentation head with a keypoints pre-
diction head, which predicts keypoints of the instance detected by the classification 
and detection head. The model is used to detect the 4 keypoints of each axial slice, and 

Figure 1. Figure 1 shows the method for manually drawing the midline shift (A). Firstly. identify the
midline of the brain (yellow line), then measure the distance perpendicular to the septum pellucidum
(red line). The manually selected keypoints were defined as shown in (B), including the anterior-most
point of the anterior falx (C), the posterior-most point of the posterior falx (D), and the endpoints of
the septum pellucidum (E,F). The MLS was calculated by measuring the distance between the middle
point of line AD and line BC.
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Automatic detection of the keypoints is achieved by Keypoint R-CNN derived from
Faster R-CNN [11] and is a revision of Mask R-CNN [12]. The architecture of the Keypoint
R-CNN was shown in Figure 2. The first stage is the region proposal network (RPN). It
generates class-agnostic bounding boxes as proposals for the possible presence of instances.
The second stage crops regions from the feature map extracted by the backbone network
according to the proposals from the RPN and feeds them to three task heads, namely
classification, bounding box regression, and keypoint detection, after applying region of
interest (ROI) pooling to the feature crops. In contrast to Mask R-CNN, Keypoint R-CNN
replaces the segmentation head with a keypoints prediction head, which predicts keypoints
of the instance detected by the classification and detection head. The model is used to
detect the 4 keypoints of each axial slice, and the MLS of the slice is then calculated by the
keypoints. The greatest MLS of all slices is the MLS for the scan.

In the preprocessing phase, the axial medical images were resized to 512 by 512 pixels.
A 3-channel image was created by stacking 3 spatially adjacent slices. Three windows
whose levels and widths were (80, 200), (40, 380), and (600, 2800) were then applied to each
channel, and the windowed channels were normalized to (0, 1).

The dataset for the learning task contains 300 scans consisting of 7269 axial images for
6 types of hemorrhage. The dataset was further split into 223 training, 31 validation, and
46 testing scans consisting of 5248, 769 and 1226 axial images. For the sake of fair-
ness, scans of a patient were not distributed to the different dataset partitions (train-
ing/validation/testing), and scans in each type of hemorrhage were split to an 8:1:1 ratio.

In addition to manually annotated keypoints, the ground truth for training the Key-
point R-CNN also needs the bounding boxes for locating brain areas since it is a two-stage
method (first detects brains and then detects keypoints within the brains). The ground
truth bounding box is generated by scaling the line ADB with the factor of 1.2 and the
width of the ground truth was generated by 0.8 times height.

To make the model robust enough in various situations, the following data augmen-
tations were applied in training: random flipping along sagittal axis, random affine, and
random erasing, and metal artifact simulation [13].

The model was trained on a NVIDIA V100 GPU for 200 epochs, with an initial learning
rate of 0.0001 which was divided by a factor of 10 after 100 epochs. The batch size is 16, and
the optimizer is Adam with weight decay = 0 and beta = (0.9, 0.999). The model’s weights
were pretrained on COCO dataset [14].

The mean absolute error (MAE) of MLS was used to evaluate the gap between predic-
tion of the trained model and manually drawing MLS by a clinician, which was defined as
below, where n is the number of scans, and MLSGT

t , MLSPred
t are ground truth MLS and

predicted MLS in mm.
1
n
×

n

∑
t=1

∣∣∣MLSGT
t − MLSPred

t

∣∣∣ (1)

3. Results
3.1. General Characteristics of the Included Patients

A total of 7269 CT slices from 300 patients were included in this study. General
characteristics are shown in Table 1. One hundred and sixty-three patients had a single
type of hemorrhage (ICH = 60, isolated IVH = 4, SAH = 41, acute SDH = 31, EDH = 1,
and chronic SDH = 28), while the other 147 patients had mixed types of hemorrhage. For
example, there were 28 patients with only chronic SDH, 16 patients had acute on chronic
SDH, and 11 patients with CSDH combing with SAH or ICH in our cohort. Among all CT
scanning results, intracranial intraparenchymal hemorrhage was found in 153 CT scans,
acute subdural hematoma in 90 scans, chronic SDH in 55 scans, EDH in 5 scans, IVH in
53 scans, and SAH in 115 scans. Ninety-three patients received surgical procedures, and
61 patients received intracranial pressure (ICP) monitoring. The indication for the ICP
monitor was acute hemorrhage except for one patient who had acute on chronic SDH
with largely acute component. The mean hematoma volume was 42.36 ± 51.03 mL (range
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0.002–228.3 mL). For those who received ICP monitoring, the ICP was 18.1 ± 7.9 mmHg
on day 0 and 8.9 ± 9.3 mmHg on day 3. The initial GCS was 3–8 in 67 patients, 9–13
in 74 patients, and 14–15 in 159 patients. The Glasgow coma scale on day 3 was 3–8 in
60 patients, 9–13 in 60 patients, and 14–15 in 172 patients. There were 44 deaths on the
30-day outcome, 32 patients with a grade 2 GOS score, 69 patients with a grade 3 GOS
score, 141 patients with mild disability, and 10 patients with good recovery. The causes of
the hemorrhages are listed in Table 2.

Table 1. General Characteristics.

Total Number 300

CT scan (slices) 7269
Age (mean ± SD, range) 48.1 ± 15.1
Types of hemorrhage * ICH 153

Acute SDH 90
Chronic SDH 55
EDH 5
IVH 53
SAH 115

Surgical cases 93
ICP insertion 61
Initial GCS 3–8 67

9–13 74
14–15 159

GCS day 7 3–8 60
9–13 60
14–15 172

GOS score day 30 1 44
2 32
3 69
4 141
5 10

Positive pupil reflex, initial Right (+/−) 244/36
Left (+/−) 245/41

ICP, day 0 (cmH2O, mean ± SD, range) 18.1 ± 7.9, 0–30
ICP, day 3 (cmH2O, mean ± SD, range) 8.9 ± 9.3, 0–70

* Patients may have mixed types of hemorrhage at the same time.

Table 2. Cause of Intracranial Hemorrhage.

Cause of Intracranial Hemoprrhage

Intraparenchymal Hemorrhage 153
Trauma 43
Spontaneous 80
Secondary * 21
Postoperative 9

Acute Subdural hematoma (ASDH) 90
Trauma 68
Secondary * 18
Postoperative 4

Subarachnoid Hemorrhage (SAH) 115
Traumatic 72
Nontraumatic ** 43

Chronic subdural hematoma (CSDH) 55
Traumatic 43
Nontraumatic *** 12

Epidural hemorrhage 5
Intraventricular hemorrhage 53

* Secondary causes of hemorrhage included neoplasm, infarction with hemorrhagic transformation, and vascular
lesions; ** Nontraumatic SAH included, spontaneous ICH associate SAH, vascular lesion, tumor bleeding, and
postoperative changes; *** Nontraumatic CSDH indicated those without clear trauma history.
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3.2. Midline Shift Measurement by Different Methods

Different methods of the MLS measurements are shown in Table 3. There was no
significant difference between the different methods, including MLS_MA (measured by the
attending neurosurgeon), MLS_R (by the neurosurgical resident doctor), MLS_RA (by a
research associate), MLS_GT (calculated from manually selected keypoints), and MLS_Pred
(automatic detection method), for the MLS measurements by using ANOVA with Tukey’s
comparison (ANOVA p = 0.9494, Tukey’s test p = 0.9484, >0.999). The intraclass correlation
coefficient was 0.9899 (F = 98.589, range, 0.9880–0.9915). The sensitivity and specificity for
the detection of MLS greater than 2 mm, 5 mm and 10 mm in the training, validation and
testing sets are shown in Table 4. The testing set had a sensitivity of 91.7% and specificity
of 80% for the MLS 2 mm cutoff value, 87.5% sensitivity and 96.7% specificity for the MLS
5 mm cutoff value, and 85.7% sensitivity of 97.4% sensitivity for the detection of MLS
greater than 10 mm.

Table 3. Different methods for midline shift measurement.

MLS MA * MLS R * MLS RA * MLS GT # MLS Predict #

Slices 300 300 300 6456 7570
Mean (mm) 3.387 3.683 3.639 3.383 3.384

Median 1.300 0.0 2.000 1.490 1.520
Max 29.00 32.00 29.10 25.43 24.49
Min 0.0 0.0 0.0 0.166 0.1987
SD 5.154 5.752 5.224 4.670 4.512

Mean of MAE + 0.213 0.936
Max of MAE 6.227 6.038

CI95 Diff 2.819–3.955 3.050–4.317 3.062–4.216 2.854–3.913 2.872–3.897
No significant difference was observed between different methods for the calculation of the midline shift.
* Manually selected the most representative slice from each patient by the attending neurosurgeon (MLS MA),
by the resident doctor (MLS R), and by a research associate (MLS RA). # MLS GT was the results of keypoint
calculation, and MLS Predict was calculated by the automatic MLS detection method; + MAE: mean absolute of
error was compared with that of the manual measurement made by the attending surgeon.

Table 4. Sensitivity and specificity for detection of midline shift.

Threshold (mm) Sensitivity Specificity

Train 2 89.7% 72.7%
Valid 2 87.5% 85.7%
Test 2 91.7% 80.0%

Train 5 94.0% 96.5%
Valid 5 94.1% 92.9%
Test 5 87.5% 96.7%

Train 10 84.6% 98.5%
Valid 10 83.3% 96.0%
Test 10 85.7% 97.4%

3.3. Midline Shift and Clinical Outcomes

The mean hematoma volume was 42.36 ± 51.03 mL and was highly correlated with
the automatic MLS detection results (Pearson r = 0.678, p < 0.001). The initial GCS and
GCS scores on day 7 and their midline shifts are shown in Figure 3. The degree of the MLS
was proportional to the severity of the GCS. The mean MLS was 6.61–7.18 mm in those
with initial GCS 3–8, 2.75–2.96 mm in GCS 9–12 and 2.17–2.31 mm in GCS ≥ 13. The mean
MLS was 6.25–6.96 in patients with GCS 3–8 at day 7, 4.7–4.96 mm in patients with GCS
9–12 and 1.86–2.03 mm in patients with GCS ≥ 13. The MLS in different GOS scores is
shown in Figure 4 and demonstrated an inverse correlation with GOS scores. A summary
of the correlation between MLS and clinical outcome is shown in Figure 4. There was no
significant correlation between the degree of MLS and the ICP measured in the operation
theater and ICP on postoperative day 3.
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Figure 3. Figure 3 shows the midline shift measured by different methods in different patients with
various initial GCSs (A) and GCS on day 7 (B). The MLS_MA indicates that the MLS was manually
measured. MLS_GT represents the MLS measured by the calculation from the automated defined
keypoints. MLS_pred is the MLS measurement generated by using the automated detection method.
GCS 3–8 (orange), 9–12 (green), and 13–15 (purple) indicates the degree of coma scale in different
patients. The MLS was inversely correlated to the coma scale score.
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detection; MLS_pred: automated MLS detection).
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3.4. ROC for Detection of Mortality, Bad Outcomes and Low GCSs

The prediction of overall 30-day mortality and initial and day 7 severe GCS (GCS < 9)
by using the degree of midline shift is shown in Figure 5. The AUCs of MLS using manual
drawing, keypoint detection and automatic MLS measurement were 0.68–0.71. There was
no difference between different methods.
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Figure 5. Figure 5 shows the receiver operation curve of MLS measurement by using manual drawing,
key point detection and automatic detection methods for the prediction of 30-day mortality and
initial and day 7 severe GCS (GCS < 9). There was no difference between different methods.

4. Discussion

In this study, we developed a fully automatic detection method for MLS. This method
showed high correlation with manual drawing and had fair accuracy in detecting small
MLSs (<2 mm) to large MLSs (>10 mm). Detailed clinical prognosis analysis after intracra-
nial hemorrhage was not the main purpose of this study, and our results showed similar
clinical correlations in automatic MLS detection and manual drawing.

Manual drawings of the MLS can be biased. In a CT measurement reliability study,
the intraclass correlation was approximately 0.652 in one of the study observers [7]. Many
automatic or computer-aided MLS detections have recently been developed from symmetry-
based, landmarked-based and neural network-based methods [2,15]. In 2010, Liao et al.
developed a symmetry-based MLS detection method [8] that showed moderate accuracy in
detection accuracy (approximately 80%), and accuracy was low in detecting large MLSs
(>5 mm) or spontaneous ICHs. Later, Chen et al. in 2013 used a landmark-based ap-
proach and showed that 80% of the detected MLS had less than 2.25 mm error from the
actual midline [9]. More recently, Jain et al. in 2019 developed Icobrain, a U-Net-based
segmentation and MLS detection method [15]. The authors first used a 2D U-Net-based
method for segmentation and second calculated the MLS. In their study of 38 images, the
median absolute MLS difference was 0.86 mm with an ICC of 0.93. Our data also showed
a mean absolute error of approximately 0.93 mm and ICC = 0.9899 when comparing the
automatic detection method and manual drawing. In addition, our data showed good
sensitivity (84.6–91.7%) and specificity (80–97.4%) for detecting 2 mm and 5 mm MLSs
greater than 10 mm. Therefore, our attempt to use keypoint R-CNN can accurately identify
the anterior/posterior falx and the anterior/posterior end of the septum pellucidum rather
than to identify the detailed structure of the brain, which can potentially minimize the error
and lead to a fair accuracy in MLS detection.

Midline shift has been used as one of the clinical indicators for increased ICP and
surgical indications [5,16]. In 2010, Xiao et al. showed a fair accuracy using estimated MLS
to predict mortality and good recovery (AUC = 0.752, 0.668). In 2017, Yang et al. investigated
199 spontaneous ICH patients and showed that MLS measured at different levels had a
significant correlation with poor clinical outcomes in a multivariable analysis [17]. They
also defined that MLS greater than 4 mm can be a predictor for poor outcome. However,
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another study found an association between MLS and clinical outcome but not a cutoff
value for prognosis [4]. A more recent study in 2019 showed that patients with MLS less
than 10 mm can have a significant clinical improvement at the 180-day follow-up [18]. Our
results showed a similar finding that the degree of MLS was correlated with the initial poor
GCS and GCS on day 7 and was inversely proportional to the 30-day GOS score. Our data
showed that the AUC for clinical prediction was only approximately 0.7, which was similar
to a previous study [19]. Our data did not show a correlation between MLS and ICP on
day 0 and day 3, which was not shown in the results. This may be due to several factors.
Some patients received ICP monitor placement prior to the decompression, while others
received ICP monitor insertion after the decompression. Besides, the measurement of the
open pressure after ventricular puncture can be limited and masked by the length of the
external ventricular drainage (EVD) tube especially in those with higher ICP. Further the
drainage of the EVD in our cohort could be continuous or intermittent which may affect
the measurement of the postoperative ICP.

There were several limitations in this study. However, we provided a reasonable size
(n = 300) containing various types of hemorrhage for the development of the model. The
imbalance number in each type of hemorrhage may potentially bias the results. For the
clinical applications of MLS, we did not divide the etiology of ICH into subgroups since
detailed clinical prognosis analysis was not the main purpose of the study.

5. Conclusions

The proposed neural network-based algorithm provides comparable accuracy of MLS
detection to that of MLSs manually drawn by clinicians. Such an approach provides a fast,
robust, fully automatic method for the detection of MLS, showing its prognostic value for
clinical application in the future.
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