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Recently, the use of endovascular denervation (EDN) to treat resistant hypertension has gained significant
attention. In addition to reducing sympathetic activity, EDN might also have beneficial effects on pulmonary
arterial hypertension, insulin resistance, chronic kidney disease, atrial fibrillation, heart failure, obstructive sleep
apnea syndrome, loin pain hematuria syndrome, cancer pain and so on. In this article we will summarize the
progress of EDN in clinical research.
The sympathetic nervous system (SNS), which mediates the “fight
and flight” response to stress,1 plays a critical role in regulating the
cardiac output, blood pressure, and composition of body fluids.2 Acti-
vation of the sympathetic efferent nerves results in reactions that pro-
mote survival during states of volume depletion and acute distress.3

However, sympathetic overdrive contributes to a variety of relevant
chronic disease states, including hypertension,4 insulin resistance,5

obstructive sleep apnea,6 heart failure,7 and renal disease.8 Therefore,
targeting the SNS directly might be an attractive therapeutic approach to
simultaneously affect multiple comorbid diseases.

Surgical sympathetic denervation was first used in the early 20th
century to treat uncontrolled hypertension in humans.9 In 1953,10 a
study published the results of paralumbar sympathectomy in 1266 pa-
tients with uncontrolled hypertension. Although 65% of patients had
long-term improvements in hypertension after surgery, these approaches
were associated with significant morbidity and severe complications.10

Thereafter, the use of surgical sympathectomy to treat hypertension was
abandoned. Recent efforts have focused on optimizing minimally inva-
sive procedures and applying new devices to improve these techniques.

With the help of advanced technology and minimally invasive pro-
cedures, selective sympathetic denervation has led to the development of a
catheter-based device that uses radiofrequency energy for the ablation of
sympathetic nerves via arteries. In 2009, Krum et al.11 first used
catheter-based renal denervation (RDN) to treat patients with resistant
hypertension, which made endovascular denervation (EDN) a research
hotspot. However, the efficacy of RDN on the treatment of resistant hy-
pertension remains controversial. On one hand, lots of percutaneous
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approaches to increase the specificity with which sympathetic nerves are
targeted are currently under development, and new devices that use
multi-electrode catheter design have become available12,13; on the other
hand, in order to treat different diseases, researchers are focusing on tar-
geting different arteries, such as the common hepatic artery,14 pulmonary
artery15 and celiac artery,16 to denervate different sympathetic nerves.

EDN is an area of intense research, as the currently available data
suffer from potential bias. In this study, we review the technique applied,
the clinical evidence for performing EDN in patients with hypertension
and non-hypertension diseases, and the potential future indications and
limitations of EDN.

Resistant hypertension

Resistant hypertension is defined as uncontrolled hypertension
(�160 mmHg) despite the use of at least three antihypertensive drugs,
including a diuretic.17 Symplicity HTN-1,11 the first-in-man non--
randomized multicenter trial, included 50 patients, of which 45 under-
went RDN. Office blood pressure reduced by -27/-17 mmHg at one-year
follow-up after RDN, while the mean rise in office blood pressure was
þ26/þ17 mmHg at 9 months in the five non-treated patients. Similar
results were shown in a larger series of patients, and post-RDN office
blood pressures were reduced by -32/-14 mmHg and -32.0/-14.4 mmHg
at 24 and 36 months respectively.18,19 In addition, in a subgroup of ten
patients from Symplicity HTN-1, RDN led to a 47% reduction in
norepinephrine spillover at 6 months, indicating that the procedure had
indeed targeted the sympathetic nerves.11
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Following the first proof-of-concept study, Symplicity HTN-2,20 a
randomized controlled clinical trial, was initiated, which randomized
106 patients to either an RDN or control group. At 6 months, office-based
blood pressure in the RDN group decreased by 32/12 mmHg, whereas no
significant blood pressure reduction was observed in the control group.20

In addition, a significant blood pressure reduction was persistent at
one-year (-28/-9.7 mmHg, n¼ 49)21 and three-year (-33/-14 mmHg, n¼
40)22 follow-ups without serious safety concerns.

However, Symplicity HTN-3,23 a multi-center single blinded trial that
randomized 535 patients to either an RDN or sham procedure group,
showed no significant reduction in office blood pressure (-14.13 mmHg
in the RDN group vs. -11.74 mmHg in the sham-procedure group, P ¼
0.26) or 24-h ambulatory blood pressure reduction (-6.75 mmHg in the
RDN group vs. -4.79 mmHg in the sham-procedure group, P ¼ 0.98).23

Despite being a well-designed trial, it was criticized for its race differ-
ences and inexperienced operators, and as the quality of RDN was not
formally assessed24,25; therefore, researchers are still working on the
accurate efficacy of RDN. The Renal Denervation for Hypertension
(DENERHTN) study26 enrolled 106 resistant hypertensive patients to
either an RDN with standardized stepped-care antihypertensive treat-
ment (SSAHT) group or an SSAHT alone group. At 6 months, the daytime
ambulatory systolic blood pressure decreased by 15.8 mmHg in the RDN
group and by 9.9 mmHg in the SSAHT group, revealing a
baseline-adjusted difference of -5.9 mmHg (P ¼ 0.0329). In well-defined
resistant hypertensive patients, at 6 months, RDN with an SSAHT
decreased ambulatory blood pressure more than the same SSAHT
alone.26

After Symplicity HTN-3, the field of RDN witnessed improvements in
knowledge on factors that implicate denervation efficacy, and histolog-
ical findings also showed the importance of energy application in the
distal vessel segment.27 Therefore, combined branch and main vessel
ablation has become a new technique for RDN. The Symplicity Spyral
multielectrode catheter,28 with four electrodes for positioning, was
developed to apply radiofrequency energy circumferentially to all four
quadrants of the renal artery and branch vessels. Two international
multicenter randomized single-blinded sham-controlled trials, SPYRAL
HTN-OFF MED29 and SPYRAL HTN-ON MED,30 were designed as new
proof-of-concept studies. Patients enrolled in SPYRAL HTN-OFF MED
were drug-naive or discontinued their antihypertensive medications,
while those in SPYRAL HTN-ON MED were still on one to three antihy-
pertensive drugs with stable doses for at least 6 weeks.29,30

In the SPYRAL HTN-OFF MED trial, 80 patients were randomly
assigned to the RDN or sham control groups. At 3 months, office and 24-h
ambulatory blood pressure decreased significantly in the RDN group: 24-
h systolic blood pressure, -5.5 mmHg (P ¼ 0.0031); 24-h diastolic blood
pressure, -4.8 mmHg (P < 0.0001); office systolic blood pressure -10.0
mmHg (P¼ 0.0004); and office diastolic blood pressure, -5.3 mmHg (P¼
0.0002); no significant changes were observed in the sham-control
group.29 This outcome was recently confirmed in the SPYRAL Pivotal
trial,31 and the treatment differences found between the RDN and
sham-control groups were -3.9 mmHg on 24-h systolic blood pressure
and -6.5 mmHg on office systolic blood pressure. In addition, significant
reduction of blood pressure in the RDN group was reported in the SPY-
RAL HTN-ON MED study at 6 months, with 24-h systolic blood pressure,
-7.0 mmHg (P ¼ 0.0059); 24-h diastolic blood pressure, -4.3 mmHg (P ¼
0.0174); office systolic blood pressure, -6.6 mmHg (P ¼ 0.0250); and
office diastolic blood pressure, -4.2 mmHg (P ¼ 0.0190).30 These results
revealed that RDN in the main renal arteries and branches led to more
extensive ablation and significantly reduced blood pressure with no
major safety events, compared with the sham control.

Furthermore, different devices have been developed to ensure
completeness of denervation, and an alternative technology delivering
ultrasound energy to thermally ablate the sympathetic nerves has been
developed. The RADIANCE-HTN SOLO trial,32 which uses the Paradise
system, randomized 146 patients with mild to moderate combined hy-
pertension into RDN or sham control groups. At 2 months, the reduction
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in daytime ambulatory systolic blood pressure was 8.5 mmHg in the RDN
group, while the decrease was 2.2 mmHg in the sham procedure group (P
¼ 0.0001).32 Moreover, at the 6-month follow-up, despite less intensive
SSAHT, RDN had more reduced daytime ambulatory systolic blood
pressure than the sham procedure (-18.1 mmHg vs. -15.6 mmHg, P ¼
0.024).33 In 2019, Fengler et al.34 performed a study to compare the
efficacy of radiofrequency (Symplicity Spyral™ catheter) and ultrasonic
(Paradise system) endovascular RDN. They concluded that endovascular
ultrasound-based RDN was superior to radiofrequency ablation of the
main renal arteries alone, but similar to a combined radiofrequency
ablation approach involving the main arteries, accessories, and side
branches.34 Due to these favorable results, most researchers believe that
RDN could be effective in strictly selected hypertensive patients, and
many trials are ongoing.

Pulmonary arterial hypertension

Pulmonary arterial hypertension (PAH) is a clinical diagnosis consist-
ing of various underlying clinical entities, and can be idiopathic, heritable,
drug or toxin-induced, or associated with underlying systemic disease.35

The pulmonary vasculature receives a rich autonomic nerve supply, with
predominantly sympathetic, but also parasympathetic and sensory nerve
fibers.36 Alpha-1 adrenergic receptors in the autonomic ganglia located in
the adventitia of the pulmonary vessels seem to play a key role in main-
taining an increased vascular tone in pulmonary hypertensive disorders. In
animal models of pulmonary hypertension, pulmonary artery denervation
(PADN) led to an instantaneous drop inmean pulmonary artery pressure,37

and PADN has been used clinically since 2013.15

Chen et al.15 performed the first PADN clinical study in low-risk
idiopathic pulmonary arterial hypertension patients. The pulmonary ar-
tery pressure of 12 patients obviously declined during the subsequent 3
months after PADN, and these patients showed a significant improve-
ment in cardiac input and 6-min walk distance (6MWD) as well. To
confirm the efficacy of PADN, Chen et al. then performed other studies
that enrolled a variety of patients with disease induced by different
causes from different centers.38–40 They found that performing PADN on
the internal surface of the pulmonary artery could still achieve a signif-
icant curative effect in patients with pulmonary arterial hypertension,
after ablation.

A recent multi-national PADN safety study (TROPHY1) using high-
frequency ultrasound around the pulmonary artery bifurcation in PAH
patients validated the safety and efficacy of the procedure.41 In the latest
TROPHY1 study, patients with PAH underwent PADN with an intravas-
cular ultrasound catheter without procedure-related adverse events, and
revealed significant reduction in pulmonary vascular resistance, and in-
crease in 6MWD and daily activity.42 In the latest PADN-5 study,43 pa-
tients with both pre- and post-capillary PAH were randomly assigned to
PADN or sham denervation plus sildenafil therapy groups. The PADN
group showed a significant increase in 6MWD as well as a decrease in
pulmonary vascular resistance and pulmonary artery wedge pressure
compared to the sham group.

More recently, Romanov et al.44 reported the results of a randomized,
single-blind, sham-controlled study comparing PADN with medical
therapy for the treatment of residual PAH after pulmonary endarterec-
tomy in patients with chronic thromboembolic pulmonary hypertension
(CTEPH). Fifty patients with residual CTEPH were randomized to the
PADN group or the medical therapy with riociguat (MED) group. At 12
months, the mean reduction in pulmonary vascular resistance between
the groups was 109 dyn‧s‧cm-5 (P ¼ 0.001), and 6MWD was significantly
increased in the PADN group compared to that in the MED group (470 �
84 m vs. 399 � 116 m, respectively; P ¼ 0.03); however, clinical wors-
ening occurred more frequently in the MED group.44 The available data
suggest that the ablation procedure is safe and feasible, but careful
studies involving homogeneous patient populations are needed to further
determine its procedural safety and long-term effects on hemodynamics,
functional capacity, and outcomes.45
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Insulin resistance

SNS activation is associated with insulin resistance, which is consid-
ered essential for the pathogenesis of type 2 diabetes mellitus (T2DM),
and the resultant hyperinsulinemia causes further sympathetic excita-
tion, establishing a self-perpetuating cycle.46,47 In 2011, preliminary
evidence showed that RDN might re-establish metabolic balance and
attenuate insulin resistance.48–50 In a population of 50 patients with
resistant hypertension and containing 40% T2DM patients divided into
an RDN group and a conventional treatment group, a significant
improvement in glucose metabolism was found in the RDN group. Spe-
cifically, fasting glucose reduced from 118 mg/dL to 108 mg/dL (P ¼
0.039), insulin levels reduced from 20.8 mIU/mL to 9.3 mIU/mL (P ¼
0.006), C-peptide levels decreased from 5.3 ng/mL to 3.0 ng/mL (P ¼
0.002), and homeostasis model assessment-insulin resistance (HOMA-IR)
improved from 6.0 to 2.4 (P ¼ 0.001).48

In another small prospective study of 10 sleep apnea patients
demonstrating similar results, Witkowski et al. found a significant
reduction in blood pressure and apnea–hypopnea index, as well as sig-
nificant reduction of plasma glucose concentration 2-h after oral glucose
tolerance test from 7.0 mmol/L to 6.4 mmol/L (P¼ 0.05) and decrease of
hemoglobin A1c from 6.1% to 5.6% (P < 0.05) 6 months after RDN.49 A
similar improvement was noted in two polycystic ovarian syndrome
cases: after both patients underwent RDN, fasting plasma glucose
declined, and insulin sensitivity improved by 17.5% in the presence of
unaltered body weight at the 3-month follow-up.50 The possibility
observed in these studies may open a promising nonpharmacological
strategy for patients with T2DM.

However, the DREAMS-Study51 investigated the effects of RDN on
insulin sensitivity and blood pressure in 29 patients with metabolic
syndrome, of whom 5 (17%) had T2DM, and it contradicted the results
mentioned above. Fasting glucose changed from 7.2 mmol/L to 7.4
mmol/L at 6-month follow-up (P ¼ 0.34) and 7.0 mmol/L at 12-month
follow-up (P ¼ 0.34). Median insulin sensitivity did not change at the
half- and 1-year follow-up (P ¼ 0.60, and P ¼ 0.77, respectively). In
addition, muscle sympathetic nerve activity did not change after RDN: 48
bursts/min and 75 bursts/100 heartbeats at the 6-month follow-up vs. 48
bursts/min (P ¼ 0.86) and 74 bursts/100 heartbeats (P ¼ 0.80) at
baseline. These results showed that RDN did not change fasting glucose,
median insulin sensitivity, or systemic sympathetic activity.51

The currently used catheter did not adequately lower sympathetic
nervous system activity, possibly due to insufficient denervation, and this
might have resulted in the finding of the DREAMS-Study 46; therefore,
researchers have wondered whether a multielectrode catheter could
achieve better outcomes. In a study by Tsioufis,52 the EnligHTN multi-
electrode RDN system was used to perform the procedure in 17 enrolled
patients with metabolic syndrome. At 3 months, although no significant
change was observed in HOMA-IR, patients in the RDN group had a
restored normal neural response to oral glucose loading and reduced
elevated sympathetic nerve activity.52 In another study of 31 resistant
hypertensive patients, including 22 normoglycemic and 9 patients with
impaired fasting glucose who underwent RDN, fasting glucose (97.1
mg/dL vs. 92.3 mg/dL; P ¼ 0.010), hemoglobin A1c levels (5.82% vs.
5.58%; P ¼ 0.008), and HOMA-IR (2.25 vs. 1.94; P ¼ 0.004) were
significantly reduced at 6 months.53 In addition, there was a significant
increase in pro-insulin, C-peptide, and insulin concentrations 6 months
after RDN (all P < 0.001) due to stimulation with glucagon, which
revealed improvement in the secretory capacity of beta-cells and possible
attenuation of the development of T2DM.53

At the same time, different targeted arteries have been under inves-
tigation. Recently, in an animal study of fat- and fructose-fed dogs, sur-
gical sympathetic denervation of the common hepatic artery was
performed.14 The procedure reduced the diet-induced defect in net he-
patic glucose balance by 37%, which continued for 3 months on
follow-up and showed the potential to enhance postprandial glucose
clearance. In another animal study, male C57BL/6J mice fed a high-fat
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diet were used as chronic hepatic sympathetic overactivity-mediating
hepatic steatosis models.54 Two approaches, including the pharmaco-
logical ablation of the sympathetic nerves and phenol-based hepatic
sympathetic nerve denervation, were used to reduce hepatic sympathetic
nerve activity. After the procedure, high-fat diet-induced hepatic stea-
tosis was effectively reduced without changes in body weight, caloric
intake, or adiposity, which was associated with improvements in liver
triglyceride accumulation pathways.

The celiac plexus mainly includes four branches: the anterior hepatic
plexus, posterior hepatic plexus, splenic plexus, and plexus accompa-
nying the transverse pancreatic artery, which are distributed in different
locations in the human pancreas. Sympathetic afferents are thought to
exit the pancreas along the postganglionic sympathetic fibers, within the
splanchnic nerves and the celiac plexus, to the dorsal root ganglia.55,56 It
is reasonable that the celiac artery may be the potential target artery for
performing EDN, and further evaluation in the arteries and rigorously
designed clinical trials will be necessary to confirm the benefits of EDN in
patients with T2DM.

Chronic kidney disease

SNS activation plays a critical role in chronic kidney disease (CKD),
which is evident in the early phases of the disease and closely related to
target organ damage and cardiovascular and total mortality in patients
with end-stage renal disease.57,58 In 100 resistant hypertensive patients
who underwent RDN, renal resistance indices were improved at 3-month
and 6-month follow-ups, accompanied by a decrease in the severity of
macroalbuminuria and microalbuminuria.59 In another study of 46 CKD
patients who underwent RDN, linear mixed model analysis demonstrated
a significant progressive decline in estimated glomerular filtration rate
(eGFR) from 60 months to 12 months, and from 12 months to the
baseline prior to RDN. RDN was associated with improved eGFR at 3
months, and no significant changes at 6, 12, and 24 month follow-up
were observed.60 Recently, long-term data from the Global SYM-
PLICITY Registry representing the results of 1742 patients 3-year after
RDN revealed that renal function declined by 7.1 mL/min/1.73 m2 in
patients without CKD and by 3.7 mL/min/1.73 m2 in patients with CKD,
without any long-term safety concerns.61 In view of the currently avail-
able device-based treatments, RDN remains a valuable tool to slow the
rate of progression of CKD and its complications, but whether this might
translate to improved patient outcomes warrants further research.

Atrial fibrillation

The autonomic nervous system plays an important role in atrial
fibrillation (AF), and the association of the key pathophysiology of
sympathetic overdrive with hypertension and AF provides a rational
basis for therapeutic strategies, such as combined RDN and pulmonary
vein isolation (PVI), in patients with hypertension and AF.62 In 2012,
Pokushalov et al.63 first reported 27 patients with moderate hypertension
and AF whowere treated with PVI alone and in combination with RDN. A
lower rate of recurrence of AF in the PVI þ RDN group, compared with
PVI alone group (69 vs. 29%, P ¼ 0.033), was found at 12-month
follow-up. This result was confirmed in a subsequent study that
enrolled patients with severe hypertension, in which the ratio of AF-free
patients was 61% in the PVI þ RDN group and 28% in the PVI alone
group (P ¼ 0.03).64 Recently, the ERADICATE-AF trial,65 a multicenter
single-blind randomized clinical trial, was conducted to determine
whether RDN with PVI could enhance long-term antiarrhythmic efficacy.
A total of 302 patients were randomized to either PVI alone (n ¼ 148) or
PVIþ RDN (n¼ 154) groups, and 283 (93.7%) completed the trial. At 12
months, PVI þ RDN, compared with PVI alone, resulted in a statistically
significantly greater proportion of patients who were free from atrial
fibrillation over 12 months (72.1% vs. 56.5%, P ¼ 0.006).65 However,
the lack of a formal sham procedure should be considered when inter-
preting the results.
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Heart failure

Despite the complexities of heart failure, a global pandemic with a
poor prognosis even after hospitalization, it is universally accepted that
significant sympathetic overactivity occurs in patients with advanced
clinical heart failure.66 The REACH-Pilot study,67 the first-in-man safety
evaluation of RDN for chronic systolic heart failure, enrolled seven pa-
tients, and over six months, despite a non-significant trend in blood
pressure reduction, all the patients described themselves as symptomat-
ically improved, and the 6MWD was significantly increased. However,
the Symplicity HF Feasibility Study enrolled 39 patients with chronic
systolic heart failure and renal impairment on stable medical therapy,
and statistically significant reductions in N-terminal pro-B-type natri-
uretic peptide and 120-min glucose tolerance test were observed at 12
months, but there was no significant change in left ventricular ejection
fraction, 6MWD, or eGFR.68 In a recent randomized controlled trial, 60
patients with chronic systolic heart failure were randomly assigned to the
RDN or control groups, and at the 6-month follow-up, when compared
with the control group, patients in the RDN group showed a decrease in
N-terminal pro-B-type natriuretic peptide (440.1 pg/mL vs. 790.8 pg/mL,
P < 0.001), an increase in left ventricular ejection fraction (39.1% vs.
35.6%, P ¼ 0.017), improved New York Heart Association class assess-
ment (P ¼ 0.01), and decreased blood pressure (P < 0.001).69 Never-
theless, the long-term effects of RDN on heart failure remain unclear.

Obstructive sleep apnea syndrome

Obstructive sleep apnea syndrome (OSAS) is an independent cardio-
vascular risk factor characterized by recurrent upper airway obstruction
and increased sympathetic activity that likely plays an essential role in
the development of resistant hypertension.70 In a prospective study of 10
patients with OSAS, Witkowski et al.49 reported that apnea-hypopnea
index decreased from 16.3 events per hour to 4.5 events per hour (P ¼
0.059) 6 months after RDN. In another small study, two responders with
OSAS showed improved polysomnography indices, and one with left
concentric ventricular hypertrophy showed complete cardiac remodeling
11 months after RDN.71 In a randomized proof-of-concept phase II trial,72

60 patients with true resistant hypertension coexisting with
moderate-to-severe OSAS were randomly allocated to a RDN group and a
control group. At 3 months in the RDN group, a significant decrease in
OSA severity (apnea/hypopnea index, 39.4 events per hour vs. 31.2
events per hour; P¼ 0.015) was observed, and a significant improvement
in echocardiographic measures of global longitudinal strain was found at
6 months in the RDN group.72 Further studies are warranted to assess the
impact of RDN on OSAS and its relationship with blood pressure decline
and cardiovascular risk.

Loin pain hematuria syndrome

Loin pain hematuria syndrome (LPHS) is a painful and incapacitating
condition that typically affects young women, with microscopic or
macroscopic hematuria, although the renal abnormalities responsible for
hematuria are often unexplained.73 Prasad et al.74 first used the Vessix
RDN system to perform endovascular ablation of the renal nerves in four
patients with LPHS. By 6 months, improvements in pain, disability, and
quality of life were found, and two of four patients had discontinued all
pain medications, whereas the other two had reduced their doses of these
medications by 75%. In their following research,75 12 patients with LPHS
who underwent endovascular ablation were enrolled. Ten of 12 patients
at 3 months, and 11 of 12 patients at 6 months reported over 30%
reduction in pain, as well as considerable improvement in pain,
disability, quality of life, and mood. The initial improvement in pain
observed in these patients opens up the possibility of conducting further
clinical studies of LPHS with RDN, and long-term clinical studies are
needed to fully evaluate the beneficial effects of RDN.
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Cancer pain

Pain is a common and debilitating problem for patients with malig-
nancies, and about 67% of patients with cancer experience pain or take
narcotics for prolonged periods of time.76 An alternative to opioid ther-
apy is celiac plexus neurolysis, and endoscopic ultrasound-guided celiac
plexus neurolysis (EUS-CPN) has been introduced.77 In 2018, Qi Zhang
et al.16 performed a study on seven cancer pain patients to appraise the
feasibility and safety of using EDN for cancer pain, with EDN carried out
at the abdominal aorta close to the origin of the celiac artery and superior
mesenteric artery using a multielectrode radiofrequency ablation cath-
eter. The pain scores at 1, 2, 4, 8, and 12 weeks after EDN were signifi-
cantly lower than those before the operation (P < 0.001), and a
significant reduction in narcotic use and better sleep within 3 months
after EDN were also observed. It was commented, “Although only 7 pa-
tients were treated in this pilot study, the results are extremely prom-
ising, with significant reductions in pain and opioid agent use and
increased quality of life (QOL) in physical, psychologic, and
level-of-independence domains with no severe adverse toxicity.”78

Future avenues of research could include a randomized clinical trial
comparing the outcomes of EDNwith celiac plexus neurolysis for patients
with advanced abdominal cancer.

Conclusions

Sympathetic denervation, which moderates SNS to improve physio-
logical parameters, has the potential to treat some of the most chal-
lenging and common cardiovascular conditions. Despite the failure of
SYMPLICITY HTN-3, recent evidence in many alternative areas has the
potential to overcome current therapeutic hurdles. New devices,
including RF ablation catheters, intravascular ultrasound catheters, per-
ivascular pharmacological ablation, and externally applied focused ul-
trasound, are currently being investigated for the delivery of more
ablation, including those to areas distal to arterial bifurcations.
Continued exploration of the pathophysiological basis of sympathetic
denervation could eventually accurately target the most appropriate ar-
tery and identify the most suitable procedure for the treatment of a large
population of patients with various diseases. Well-designed trials should
include a sham control arm and delineate confounding factors that can
affect our understanding of EDN efficacy. Over a 100 registered RCT
trials are currently designed to address these questions and formulate
new avenues of inquiry.
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