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Abstract

Geopolymer concrete is an inorganic concrete that uses industrial or agro by-product ashes

as the main binder instead of ordinary Portland cement; this leads to the geopolymer con-

crete being an eco-efficient and environmentally friendly construction material. A variety of

ashes used as the binder in geopolymer concrete such as fly ash, ground granulated blast

furnace slag, rice husk ash, metakaolin ash, and Palm oil fuel ash, fly ash was commonly

consumed to prepare geopolymer concrete composites. The most important mechanical

property for all types of concrete composites, including geopolymer concrete, is the com-

pressive strength. However, in the structural design and construction field, the compressive

strength of the concrete at 28 days is essential. Therefore, achieving an authoritative model

for predicting the compressive strength of geopolymer concrete is necessary regarding sav-

ing time, energy, and cost-effectiveness. It gives guidance regarding scheduling the con-

struction process and removal of formworks. In this study, Linear (LR), Non-Linear (NLR),

and Multi-logistic (MLR) regression models were used to develop the predictive models for

estimating the compressive strength of fly ash-based geopolymer concrete (FA-GPC). In

this regard, a comprehensive dataset consists of 510 samples were collected in several aca-

demic research studies and analyzed to develop the models. In the modeling process, for

the first time, twelve effective variable parameters on the compressive strength of the FA-

GPC, including SiO2/Al2O3 (Si/Al) of fly ash binder, alkaline liquid to binder ratio (l/b), fly ash

(FA) content, fine aggregate (F) content, coarse aggregate (C) content, sodium hydroxide

(SH)content, sodium silicate (SS) content, (SS/SH), molarity (M), curing temperature (T),

curing duration inside ovens (CD) and specimen ages (A) were considered as the modeling

input parameters. Various statistical assessments such as Root Mean Squared Error

(RMSE), Mean Absolute Error (MAE), Scatter Index (SI), OBJ value, and the Coefficient of

determination (R2) were used to evaluate the efficiency of the developed models. The

results indicated that the NLR model performed better for predicting the compressive

strength of FA-GPC mixtures compared to the other models. Moreover, the sensitivity analy-

sis demonstrated that the curing temperature, alkaline liquid to binder ratio, and sodium
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silicate content are the most affecting parameter for estimating the compressive strength of

the FA-GPC.

1. Introduction

It is commonly known that the production of Portland cement (PC) needs a considerable

amount of energy as well as participates in about 7% of the total volume of carbon dioxide in

the atmosphere. In the cement factories, around 50% of carbon dioxide is directly released into

the air when the limestone heated in the calcination process, 40% delivers to the atmosphere as

a result of the combustion of fuels to heat the rotary kiln, and the remaining 10% of the

released carbon dioxide is measured for quarrying and transporting [1,2]. Also, around 2.8

tons of raw materials are needs for the manufacture of one ton of cement; this is a resource-

exhausting process that consumes a large number of natural resources such as limestone and

shale for the production of clinkers for cement [3]. Furthermore, approximately one trillion

liters of mixing water are required to be used in the concrete industry annually [4]. In the

same context, after the steel and aluminum industry, cement is one of the most energy-exhaus-

tive construction materials that used around 110–120 kWh to produce one ton of cement in a

typical cement plant alone [5].

Nevertheless, the majority of the cementing materials for the production of concrete are

PC. Therefore, to decrease PC’s environmental impact, a lot of research has been carried out to

develop a new material to be an alternative to the PC [6]; geopolymer technology was devel-

oped first by Davidovits in France 1970 [7]. The green gas emission of geopolymer concrete

(GC) is around 70% lower than the PC concrete due to the high consumption of waste materi-

als in the mix proportions of the GC [8].

Geopolymers are one of the parts of mineral alumino-silicate polymers that generated from

alkaline activation of different materials that rich in aluminosilicate materials, such as natural

materials like metakaolin, by-product industrial materials like fly ash (FA), and the by-product

of agro materials such as rice husk ash (RHA) [9]. The microstructure of geopolymer materials

is amorphous and their chemical constituents are similar to the natural zeolitic materials. The

mineral composition of the ash-based geopolymer and alkaline activators are the factors that

affect the final product of the polymerization process. Also, the high temperature has usually

accelerated the polymerization process [10,11]. So it can be concluded that geopolymer is the

third generation of cementing materials after lime and cement [12]. Geopolymer concrete is a

mixture of aluminosilicate binder, aggregates, alkaline solution, and water. Binder source

materials such as FA, RHA, Ground Granulated Blast Furnace Slag (GGFBS), and metakaolin,

or any hybridization between these ashes with or without PC. The most common industrial

waste used as cementing material is FA, and it is divided into two classes: class F fly ash and

Class C fly ash. The former FA has lower calcium content than class C FA [13]; FA has a variety

of applications with high and low volumes for the production of different cementitious com-

posites [14]. Aggregates consist of fine and coarse particles with required properties and grada-

tion. The alkaline solution is a mixture of sodium hydroxide or potassium hydroxide with

sodium silicate or potassium silicate. The polymerization between these ingredients produces

a solid concrete almost like normal concrete [15].

The polymerization mechanism could be briefly explained as follows; in the first stage, dis-

solution of the silicate and aluminum elements of the binder inside the high alkalinity aqueous

solution produces ions of silicon and aluminum oxide. In the second stage, a mixture of sili-

cate, aluminate, and aluminosilicate species, which through a contemporaneous operation of
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poly-condensation-gelation further condensation, finally produces an amorphous gel [16].

Several factors could influence the performance of GC such as type of binder, the concentra-

tion of the alkaline solution, the molarity of sodium hydroxide, sodium silicate to sodium

hydroxide ratio, extra water, mix proportion, and curing method [17].

Compressive strength of all types of concrete composites, including GC is one of the most

remarkable mechanical properties. Usually, it gives a general performance about the quality of

the concrete composites [18]. The compressive strength test is conducted by following the

standard test methods of ASTM C39 or BS EN 12390–3 [19,20]. In the literature, a variety of

studies have been conducted to investigate the influence of several mixture parameters on the

mechanical properties of FA-GPC, for instance, Hardjito et al., [21] studied the influence of

different parameters such as molarity, sodium silicate to sodium hydroxide ratio, curing tem-

perature, curing time, the dosage of high range water-reducing admixture, handling time, the

water content in the mixture and age of concrete on the compressive strength of GC. They

revealed that the higher molarity, sodium silicate to sodium hydroxide ratio, higher curing

temperatures, and curing time gives higher compressive strength to the GC; At the same time,

the increment in the percent of water leads to a reduction in the compressive strength [21].

On the other hand, a research study has been carried out by Patankar et al. [22] on the effect

of water to geopolymer binder ratio on the performance of FA-GPC. They observed that the

compressive strength was declined as the water to geopolymer binder ratio increased [22].

Similar observations can also found in other studies even though different mixture proportions

were used [23].

One of the factors that affect the polymerization process is the type and quantity of the alka-

line liquids by influencing the release of Si4+ and Al3+ from the base binders. Alkaline liquids

of greater concentration are usually beneficial for getting higher compressive strength up to an

optimal range [24]. Singhal et al. [25] prepared FA-GPC with different sodium hydroxide con-

centrations (molarity) range from 8 to 16 M. They observed that with the increment of the

molarity of the geopolymer mixture compressive strength was increased. Also, sodium silicate

(Na2SiO3) is a high viscosity solution that is generally used with sodium hydroxide (NaOH) to

enhance the compressive strength of FA-GPC; Na2SiO3 helps the formation of geopolymer

gels and gives a high compact microstructure to the final product of the FA-GPC [26]. Further-

more, a variety of (Na2SiO3/NaOH) ratio was used to prepare geopolymer concrete, for

instance, a research study has been carried out by Topark-Ngarm et al., [27], who used a differ-

ent ratio of Na2SiO3/NaOH, and they reported that with the increasing of Na2SiO3/NaOH,

compressive strength was increased. In the same context, the amount of aggregate content in

the geopolymer mixture proportions have influences on the compressive strength of the

FA-GPC as investigated by Joseph and Mathew [28]. They performed an experimental labora-

tory work that used different aggregate volumes from 60% to 75%., and they concluded that

the FA-GPC with the total aggregate content of 70%, the ratio of sand to the total aggregate of

0.35, the molarity of 10, l/b of 0.55, Na2SiO3/NaOH of 2.5, when cured for 1 day at 100˚C, pro-

vide the compressive strength of 52 MPa.

Another critical parameter that affects the performance of FA-GPC is the curing condition

of the samples. Generally, there are various types of curing regimes, namely, ambient curing

[29,30], heat curing [31,32], and steam curing [33–35]. Several types of research have been car-

ried out on the mixed proportion of FA-GPC and its compressive strength when cured at tem-

peratures varying from 23 to 120˚C. The polymerization process is rapidly increased with the

increment of curing temperature which makes the GC gain up to 70% of its final strength

when the specimens cured inside an oven at 65˚C for 24 hr. beyond which there is a peripheral

enhance in the compressive strength after 28 days of maturity [36,37]. Further, heat curing

regimes give higher compressive strength as compared to the ambient curing condition for the
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same GC mixture [38–41]. Experimental program work was done by Joseph and Mathew [28].

They used different curing temperatures from 30 to 100˚C to cure their GC specimens; their

results show that with the increment of curing temperature, the compressive strength was sig-

nificantly increased. Similar results were obtained by Chithambaram et al. [42].

Achieving an authoritative model for predicting the compressive strength of GC is essential

regarding saving in time, energy, and cost-effectiveness. It gives guidance about scheduling for

the construction process and removal of framework elements [43]. The modeling of the com-

pressive strength characteristic of the FA-GPC is essential regarding the possibility of changing

or validating the GC mix proportions [44]. By selecting appropriate mixing proportions, eco-

nomical and efficient designs will be accomplished. Therefore, a variety of researches have

been tried to shorten the time of selecting an appropriate mix of proportions to get the targeted

properties; among them is modeling with developing empirical equations. There are different

ways for modeling the characteristics of construction materials, including statistical tech-

niques, computational modeling, and nowadays developed techniques such as regression anal-

ysis [45,46]. A variety of factors affect the compressive strength of the FA-GPC; this leads to

different compressive strength results; as a consequence, predicting compressive strength is a

challenging task for researchers and engineers. Therefore, there is a need for numerical and

mathematical models [47]. Machine learning’s excellent ability regarding prioritization, opti-

mization, forecasting, and planning was widely used in the various engineering fields [43]. In

the literature, machine learning systems were used to model the various characteristics of dif-

ferent types of concrete composites such as compressive strength of green concrete [48], split-

ting tensile and flexural strength of recycled aggregate concrete [49], modulus of elasticity of

recycled concrete aggregate [50,51], the compressive strength of high volume fly ash concrete

[52], the compressive strength of eco-friendly GC containing natural zeolite and silica fume

[53], splitting tensile strength of fiber-reinforced concrete [54], and so on.

In the literature, there is a lack of measuring effects of several mixture proportion parame-

ters and different curing regimes on the compressive strength of FA-GPC from an early age to

112 days. Also, according to the comprehensive and systematic review on the FA-GPC, an

authoritative and developed model which used a variety of parameters to predict the compres-

sive strength of FA-GPC is very rare to be used by the construction industry. The majority of

efforts have concerned a single scale model without covering broad laboratory work data or

various parameters. Moreover, the compressive strength of FA-GPC is affected by more than

one parameter; therefore, in this study, for the first time, in a single developed model, influ-

ences of twelve parameters, such as SiO2/Al2O3 (Si/Al) of fly ash, alkaline liquid/binder (l/b),

fly ash (FA) content, fine aggregate (F) content, coarse aggregate (C) content, sodium hydrox-

ide (SH) content, sodium silicate (SS) content, (SS/SH) ratio, molarity (M), curing temperature

(T), curing duration inside ovens (CD) and specimens ages (A) were investigated and quanti-

fied on the compressive strength of FA-GPC by using different model techniques, namely Lin-

ear Regression (LR), Nonlinear regression (NLR) and Multi-logistic Regression (MLR). They

were used as predictive models for predicting the compressive strength of eco-efficient

FA-GPC by using 510 samples from the literature studies.

2. Research significance

Provide multiscale models to predict the compressive strength of FA-GPC is the main scope of

this study. Thus, a wide range of laboratory work data, about 510 tested specimens with vari-

ous (Si/Al), (l/b), (FA), (F), (C), (SH), (SS), (SS/SH), (M), (T), (CD), and (A) were considered

with different analysis approaches aiming: (i) to guarantee the construction industry to use the

provided models without any theoretical; (ii) to carry out statistical analysis and recognize the
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influence of various parameters on the compressive strength of FA-GPC; (iii) to quantify and

provide a systematic multiscale model to predict the compressive strength of FA-GPC with the

mixture propositions containing a various range of parameters; (iv) to discover the most

authoritative model to predict the compressive strength of FA-GPC from three different

model techniques (LR, NLR, and MLR) using statistical assessment tools.

3. Methodology

510 dataset was collected from past researches on FA-GPC. In the literature, there is a wide

range of data regarding geopolymer concrete with different base source materials, including

FA, GGBFS, RHA, silica fume (SF), Metakaolin (MK), red mud (RM), and so on. But in this

paper, the authors take those papers that use fly ash (FA) as base source materials to prepare

geopolymer concrete. The models used twelve input parameters to restrict authors from using

more datasets in the developed models. The collected datasets were statistically analyzed and

split into three groups. The larger group, which included 340 datasets, was used to create the

models. The second group consists of 85 datasets used to test the proposed models, and the last

group, which includes 85 datasets, was used to validate the provided models [43]. The dataset

ranges can be seen in Table 1 that contains the range of all different parameters with the mea-

sured compressive strength of FA-GPC. The input dataset consists of the Si/Al range from 0.4–

7.7, l/b range from 0.25–0.92, FA range from 254–670 kg/m3, F range from 318–1196 kg/m3,

C range from 394–1591 kg/m3, SH range from 25–135 kg/m3, SS range from 48–342 kg/m3, SS/

SH range from 0.4–8.8, M range from 3–20, T range from 23–120˚C, CD range from 8–168 hr,

and A range from 3–112 days. The former dataset was then used to propose different models to

predict the compressive strength of FA-GPC, and compared with the actual experimental com-

pressive strength (MPa); after that, the developed models were assessed by some statistical crite-

ria such as coefficient of determination, root mean squared error, mean absolute error, scatter

index and OBJ to indicate the most reliable and accurate model. Further details of the data col-

lection and modeling work are summarized in the form of a flow chart, as depicted in Fig 1.

4. Statistical assessment

In the current section, a statistical analysis was carried out to see whether powerful relation-

ships exist between input parameters and compressive strength of FA-GPC or not. In this

regard, all considered dataset variables including (1) SiO2/Al2O3 (Si/Al) of fly ash (2), alkaline

liquid/binder (l/b) (3), fly ash content (FA) (4), fine aggregate content (F) (5), coarse aggregate

content (C) (6), sodium hydroxide (SH) (7), sodium silicate (SS) (8), (SS/SH) ratio (9), molarity

(M) (10), curing temperature (T) (11), curing duration inside ovens (CD) (12), specimens ages

(A) was plotted and analyzed with compressive strength, also, the statistical criteria such as

standard deviation, variance, skewness, and kurtosis were determined to illustrate the distribu-

tion of each variable with compressive strength. Regarding the kurtosis criteria, a high negative

value demonstrates the shorter distribution tails compared to the normal distribution, while

the longer tails represent the positive value. A high negative value indicates a long left tail for

the skewness parameter, and a positive value represents a right tail. More information on each

statistical criterion was reported by Sliva et al. [96]. Below sufficient information regarding

each variable considered as the input parameter is present:

a) SiO2/Al2O3 (Si/Al)

Based on the dataset, which contains 510 data samples from literature, the Si/Al ratio of the fly

ash was varied from 0.4 to 7.7 with an average of 2.7, the variance of 2.69, the standard devia-

tion of 1.64, skewness of 2.5, and kurtosis of 5.03. Skewness belongs to distortion or asymmetry
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Table 1. Summary of different fly ash-based geopolymer concrete mixes.

Ref. (Si/Al) (l/b) FA (kg/m3) F (kg/m3) C (kg/m3) SH (kg/m3) SS (kg/m3) (SS/SH) M T (˚C) CD (hr.) A (Day) σc (Mpa)

[21] 2 0.35 476 554 1294 48–120 48–120 0.4–2.5 8–14 24–90 8–96 3–94 17–64

[22] 4.3 0.35 334 555–632 1175–1329 58 58 1 13 90 8 7 17–61

[23] 2.2 0.3–0.45 400 830–895 830–895 32–52 85–129 2–3.3 12–18 50 48 7–28 16.36

[25] 2.1 0.45 350–400 505–533 1178–1243 45–52 112–129 2.5 8–16 24 - 3–28 7–41

[27] 2.2 0.5 414 588 1091 69–104 104–138 1–2 10–20 24–60 24 7–28 19–54

[28] 2.1 0.35–0.65 254–420 318–1198 394–1591 25–76 69–165 1.5–3.5 8–16 24–120 6–72 3–28 13–60

[29] 2.0 0.4 400 644 1197 53 107 2 10 24 - 3–56 5–23

[30] 1.8 0.4 394 554 1293 45 112 2.5 8 24 - 7–28 3–18

[31] 2.6 0.65 639 639 959 121 304 2.5 8_12 24 - 7–28 6–32

[32] 3.1 0.5 400 650 1206 50–70 140–154 2–2.75 14 60 168 7–28 30–36

[33] 1.6 0.35 408 647 1202 41 103 2.5 14 24–60 24 28 27–40

[34] 1.9 0.35 408 554 1294 41 103 2.5 8–14 60 24 7 40–64

[35] 1.9 0.35 356–444 554–647 1170–1248 36–44 89–111 2.5 14 60 24 7–28 24–63

[38] 2.1 0.38–0.46 350–400 540–575 1265–1343 38–53 95–132 2.5 16 24–90 24 3–28 2.6–44

[39] 0.4 0.4 350 650 1250 41 103 2.5 8 24–60 24 3–28 6–32

[40] 1.5 0.37 424 598 1169–1197 63 95 1.5 14 70 24 3–96 2–58

[41] 1.9 0.3 670 600 970 80 120 1.5 3–9 50 72 3–7 59–61

[42] 2.4 0.45 298–430 533–590 1243–1377 38–55 96–138 2.5 8–14 10–90 24 3–28 19–43

[55] 1.5–5.1 0.5–0.6 300–500 471–664 1000–1411 42–120 90–215 1.5–2 12–16 70 24 7 16–64

[56] 2.4 0.6 385 601.7 1203 66 165 2.5 12 80 24 3–28 74–81

[57] 1.8 0.45–0.55 300–350 698–753 1048–1131 38–55 96–118 2.5 10 100 24 7–28 26–36

[58] 3.0 0.81 409 686 909 129 204 1.58 15 80 24 28–96 22–27

[59] 2.3 0.4 394 646 1201 45 112 2.5 16 24–60 24 3–28 8–50

[60] 2.6 0.6 400 704 1056 68 171 2.5 10–16 60 24 7–28 25–32

[61] 1.5 0.35 408 554 1294 41 103 2.5 8 24 - 7–28 12–16

[62] 1.5 0.3–0.5 400–475 529–547 1235–1280 34–57 85–142 2.5 14 24 - 7–56 7–44

[63] 1.6 0.6 390 585 1092 67 167 2.5 8–18 24 - 28 23–32

[64] 2.1 0.35–0.38 408 660 1168–1201 41 103 2.5 10–16 24–50 24 28 25–72

[65] 2.8 0.55 356 554.4 1293 43–78 117–152 1.5–3.5 10 60 48 7–28 23–35

[66] 2.4–2.9 0.45 500 575 1150 64 160 2.5 14 24 - 28 44–52

[67] 2.4 0.4 440 723 1085 64 112 1.75 12 60 48 3–28 23–35

[68] 1.9 0.35 408 640–647 1190–1202 41 103 2.5 14–16 60 24 28 42–62

[69] 1.5–3.9 0.7–0.9 412–420 693–706 918–936 39–92 241–342 2.6–8.8 15 80 24 3–96 22–57

[70] 2.5 0.55 310 649 1204 48.86 122 2.5 10 80 24 28–96 44–47

[71] 1.9 0.4 400 651 1209 45 114 2.5 14 24 - 3–96 5–33

[72] 1.9 0.6 450 500 1150 135 135 1 10 40 24 7–96 18–49

[73] 1.7 0.4 400 554 1293 45 113 2.5 14 100 72 3–28 29–45

[74] 1.7 0.4 400 554 1293 45 113 2.5 14 100 72 3–28 29–45

[75] 1.9 0.37–0.4 408 647 1201 62–68 93–103 1.5 14 60 24 28 32–38

[76] 2.3–3.3 0.4 420–440 340–575 660–1127 60–68 150–169 2.5 12 80–120 72 7 21–61

[77] 3 0.35 409 549 1290 41 102 2.5 10 24 - 7–112 10–41

[78] 2.6–2.9 0.5 420 630 1090 60 150 2.5 12 80 24 7 32–41

[79] 2.3 0.5 368 554 1293 52 131 2.5 16 100 24 28 41

[80] 2.1–2.6 0.3 450 788–972 945–972 67 67 1 10 70 24 7–28 25–41

[81] 5.6 0.4 410 530 1044 67 117 1.74 10 24–75 26 7–180 4–36

[82] 2.3 0.45 500 550 1100 64.3 160.7 2.5 14 70 48 28 49.5

[83] 1.9 0.4 400 651–656 1209–1218 40–46 100–114 2.5 14 24 _ 28–90 25–41

(Continued)
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in a symmetrical normal distribution in a dataset. If the curve is moved to the right or the left

side, it is stated to be skewed. Also, skewness could be quantified as an impersonation of the

range to which a given distribution differs from a normal distribution. For instance, the skew

of zero value was measured for normal distribution, while, right skew is an indication of log-

normal distribution [97]. The variation between compressive strength and Si/Al, as well as the

histogram analysis, is shown in Fig 2. As can be seen from figure a very poor relationship

existed between compressive strength and the Si/Al ratio.

b) Alkaline liquid/binder (l/b)

According to the dataset, which contains 510 data samples from past researches, the l/b ratio

of the FBGC was varied from 0.25 to 0.92 with an average variance, standard deviation, skew-

ness, and kurtosis of 0.5, 0.01, 0.1, 1.21, and 2.88, respectively, The variance informed of the

degree of spread in dataset, the greater the spread of the data, the greater the variance is about

the mean. The relationship between compressive strength and l/b with Histogram of FA-GPC

mixtures is presented in Fig 3.

c) Fly ash content (FA)

The content of fly ash in the mixture proportions of different FA-GPC for the collected data

varied from 254 to 670 kg/m3. The FAs have different chemical compositions as well as various

specific gravities ranging from 1.95 to 2.54. The average, standard deviation, variance, skew-

ness, and kurtosis of the FA were 386 kg/m3, 63 kg/m3, 3974, 1.51, and 6.18. The kurtosis is a

statistical indicator that explains how heavily the tails of a distribution of a set of data differ

from the tails of the normal distribution. In addition, the kurtosis finds the heaviness of the

distribution tails, while skewness measures the symmetry of the distribution. Moreover, the

Table 1. (Continued)

Ref. (Si/Al) (l/b) FA (kg/m3) F (kg/m3) C (kg/m3) SH (kg/m3) SS (kg/m3) (SS/SH) M T (˚C) CD (hr.) A (Day) σc (Mpa)

[84] 1.7 0.4 400 554 1293 45 113 2.5 14 100 72 3–28 14–36

[85] 2.3 0.35–0.5 327–409 554–672 1201–1294 40–54 108–112 2–2.5 8–16 60 24 28 31–62

[86] 1.6 0.58 380 462 1386 62 156 2.5 10 60 24 28–56 18–23

[87] 1.9 0.4 394 554 1293 45 112 2.5 12 24–60 24 7–28 8–28

[88] 2.1 0.3–0.4 428 630 1170 44–57 114–122 2–2.5 8–14 60–90 24 3–7 20–49

[89] 1.5 0.3 563 732 5994 44 124 2.8 10 75 16 28 3345

[90] 7.7 0.4–0.6 345–394 554 1294 45–83 94–148 1.5–2.5 8–16 24 - 28 7–22

[91] 1.8 0.4 350 483 1081 40 100 2.5 14 24 - 7–28 3–23

[92] 1.7 0.45 436 654 1308 56 140 2.5 8 24 - 3–12 8–18

[93] 2.7 0.45 380 660 1189 48 122 2.5 8 24 - 28 30

[94] 1.6 0.35 500 623 1016 70 105 1.5 14–16 24 - 3–28 7–27

[95] 2.1 0.41 350 645 1200 41 103 2.5 8 24 - 3–56 7–21

Remarks (Ranged

are Varies

Between)

0.4–7.7 0.25–0.92 254–670 318–1196 394–1591 25–135 48–342 0.4–8.8 3–20 23–120 8–168 3–112 2–64

�(Si/Al) is a (SiO2/Al2O3) ratio of fly ash, (l/b) is the alkaline liquid to binder ratio, (FA) is a fly ash content (kg/m3), (F) is a fine aggregate content (kg/m3), (C) is a

coarse aggregate content (kg/m3), (SH) is a sodium hydroxide content (kg/m3), (SS) is a sodium silicate content (kg/m3), (SS/SH) is the ratio of sodium silicate to

sodium hydroxide of the mix, (M) is the molarity (concentration of sodium hydroxide) of the mix, (T) is the curing temperature of the specimens and this is may be

ambient curing or heat curing inside an oven (˚C), (CD) is the curing duration inside an oven (hr.), (A) is the age of samples at the time of testing (days) and (σc) is the

measured compressive strength (MPa).

https://doi.org/10.1371/journal.pone.0253006.t001
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variation between compressive strength and FA content and Histogram of FA-GPC mixtures

is reported in Fig 4.

d) Fine aggregate content (F)

In the past studies, the fine aggregate was a river and crushed sand with a maximum aggregate

size of 4.75 mm, and specific gravity ranged between 2.60–2.75. Also, its gradation satisfied the

limitations of ASTM C 33. Fine aggregate content for the collected 510 datasets was varying

from 318 to 1196 kg/m3 for the mixtures of FA-GPC, and it has an average of 615kg/m3, a stan-

dard deviation of 100 kg/m3, a variance of 10047. Other statistical variables for the fine aggre-

gate content in the FA-GPC mixtures, such as skewness and kurtosis, are 1.75 and 5.56. The

relationship between compressive strength and fine aggregate content with a Histogram of

FA-GPC mixtures is illustrated in Fig 5.

Fig 1. The flow chart diagram process followed in this study.

https://doi.org/10.1371/journal.pone.0253006.g001

Fig 2. Variation between compressive strength and (SiO2/Al2O3) ratio of fly ash with the histogram of fly ash-

based geopolymer concrete mixtures.

https://doi.org/10.1371/journal.pone.0253006.g002
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e) Coarse aggregate content (C)

The crushed stone or gravel with a maximum aggregate size of 20 mm was used in the litera-

ture as coarse aggregate for the production of FA-GPC. Based on the collected 510 dataset

from different FA-GPC mixture proportions, coarse aggregate content varied between 394 to

1591 kg/m3. The statistical analysis of the dataset shows that the average of the coarse aggregate

content was 1187 kg/m3, the standard deviation was 146.8 kg/m3, the variance was 21557, the

skewness was -1.69, and the kurtosis was 4.5. Variation between compressive strength and

coarse aggregate content with Histogram of FA-GPC mixtures are presented in Fig 6.

f) Sodium hydroxide (SH)

The content of the sodium hydroxide (NaOH) for the collected 510 datasets varied from 25 to

135 kg/m3, with an average of 54.3 kg/m3, the standard deviation of 16.11 kg/m3, and a vari-

ance of 259. The skewness and kurtosis were 1.69 and 4.55, respectively. The purity of the SH

was above 97% of all the FA-GPC mixtures, and pellets and flakes were the two main states of

the SH in all the mixtures. The relationship between compressive strength and sodium hydrox-

ide with a Histogram of FA-GPC mixtures are illustrated in Fig 7.

g) Sodium silicate (SS)

Based on the dataset, which contains 510 data samples from literature, the content of SS was

varied between 48 to 342 kg/m3. The constituents of the SS were SiO2, Na2O, and water. The

range of SiO2 was varying from 28 to 37%, Na2O was in the range of 8 to 18%, and the percent

of water in the SS was in the range of 45 to 64%. The statistical analysis for the collected data of

Fig 3. Variation between compressive strength and (alkaline liquid/fly ash) ratio with a histogram of fly ash-based

geopolymer concrete mixtures.

https://doi.org/10.1371/journal.pone.0253006.g003

Fig 4. Variation between compressive strength and fly ash content with a histogram of fly ash-based geopolymer

concrete mixtures.

https://doi.org/10.1371/journal.pone.0253006.g004
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SS revealed that the average content of SS in the FA-GPC was 123.4 kg/m3, the standard devia-

tion was 36.2 kg/m3, the variance was 1313, skewness was 2.89, and kurtosis was 12.8. Varia-

tion between compressive strength and sodium silicate (Na2SiO3) content with Histogram of

FA-GPC mixtures are presented in Fig 8.

h) SS/SH

Referring to the collected data, the ratio of Na2SiO3 to NaOH was varied from 0.4 to 8.8, with

an average of 2.4. The standard deviation, variance, skewness, and kurtosis were 0.68, 0.47,

4.71, and 45.9, respectively. The relationship between compressive strength and SS/SH with

Histogram of FA-GPC mixtures is shown in Fig 9.

i) Molarity (M)

According to the dataset, which contains 510 data samples from literature, the sodium hydrox-

ide concentration (molarity) was varying from 3 to 20 M, with an average of 11.9 M, the stan-

dard deviation of 2.8 M, the variance of 7.83, the skewness of 0.14 and the kurtosis of -0.41.

Variation between compressive strength and molarity with Histogram of FA-GPC mixtures

are illustrated in Fig 10.

j) Curing temperature (T)

The statistical analysis for the total collected data of the 510 dataset shows that the range of the

curing temperature was varied from 23 to 120˚C, with an average of 58.6˚C and standard

Fig 5. Variation between compressive strength and fine aggregate content with the histogram of fly ash-based

geopolymer concrete mixtures.

https://doi.org/10.1371/journal.pone.0253006.g005

Fig 6. Variation between compressive strength and coarse aggregate content with a histogram of fly ash-based

geopolymer concrete mixtures.

https://doi.org/10.1371/journal.pone.0253006.g006
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deviations of 27.9˚C. Besides, the variance, skewness, and kurtosis were 7, 0.05, and -1.16, cor-

respondingly. The relationship between compressive strength and curing temperature with a

Histogram of FA-GPC mixtures is shown in Fig 11.

k) Oven curing duration (CD)

The duration of heating samples in the oven with the selected temperatures was another

independent variable that is collected from the past different research studies. The statistical

analysis revealed that the minimum curing duration of the collected data set was 8 hr. The

maximum CD inside ovens was 168 hr. Moreover, the average of CD was measured as 29 hr.

the other statistical indications such as standard deviation, variance, skewness, and kurtosis

were recorded as 19.86 hr, 395, 5.66, and 35.6, respectively. Variation between compressive

strength and the oven curing duration with Histogram of FA-GPC mixtures are illustrated in

Fig 12.

l) Specimens ages (A)

Another independent variable collected in the literature papers is the age of FA-GPC speci-

mens. The collected data contain the ages of the samples range from 3 up to 112 days. Other

statistical measuring devices such as standard deviation, variance, skewness, and kurtosis were

calculated as 15.65 days, 245, 2.67, and 10.75, correspondingly. Variation between compressive

strength and specimens ages with Histogram of FA-GPC mixtures are shown in Fig 13.

Fig 7. Variation between compressive strength and sodium hydroxide content with a histogram of fly ash-based

geopolymer concrete mixtures.

https://doi.org/10.1371/journal.pone.0253006.g007

Fig 8. Variation between compressive strength and sodium silicate content with histogram of fly ash-based

geopolymer concrete mixtures.

https://doi.org/10.1371/journal.pone.0253006.g008
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m) Compressive strength (σc)
The measured compressive strength of the 510 collected data from the literature studies was

shown in Table 1; the compressive strength of the FA-GPC was in the range of 2 to 64 MPa,

with an average of 30.6 MPa. The statistical analysis for the other dataset distribution indica-

tions such as standard deviation, variance, skewness, and kurtosis was 11.6 MPa, 133.8, -0.16,

and -0.3, respectively.

5. Modeling

Based on the coefficient of determination (R2) and statistical analysis, there are no direct rela-

tionships between the compressive strength and the constituents of the FA-GPC at different

curing regimes as shown in Figs 2–13. Therefore, three different models, as reported below,

are proposed to evaluate the impact of different mixture proportions mentioned above on the

compressive strength of FA-GPC.

The models proposed in this study are used to predict the compressive strength of FA-GPC

and select the best model, which gives a better estimation of compressive strength compared

with the measured compressive strength from the experimental data. All the collected datasets

were randomly split in to three parts, namely training, testing, and validating datasets [43]. 340

Training dataset is used to train the LR, NLR, and MLR model and obtain the optimal weights

and biases, while 85 testing dataset is used to confirm the fulfillment of the proposed models.

Moreover, 85 validating datasets are used to explore the generality of the models and prohibi-

tion of the over-fitting problem in the case of classical training algorithms. The comparison

Fig 9. Variation between compressive strength and (SS/SH) ratio with a histogram of fly ash-based geopolymer

concrete mixtures.

https://doi.org/10.1371/journal.pone.0253006.g009

Fig 10. Variation between compressive strength and molarity with a histogram of fly ash-based geopolymer

concrete mixtures.

https://doi.org/10.1371/journal.pone.0253006.g010
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among model predictions was made based on the following assessment criteria: the model

should be scientifically valid, it should give less percentage of error between the measured and

predicted data, lower RMSE, OBJ, SI, and higher R2 value.

a) Linear regression model (LR)

One of the most common methods to predict the compressive strength of concrete is the linear

regression model (LR) [98], as shown in Eq 1, and it is considered as a general form of linear

regression model [52,97]

sc ¼ aþ bðl=bÞ ð1Þ

Where, σc,l=b, a and b represents compressive strength, liquid to binder ratio and equation

parameters, respectively. However, other components of FA-GPC mixtures that influence the

compression strength, such as curing regime and time and different mix proportions, are not

included in the equation above. Therefore, to have more reliable and scientific observations,

Eq 2 is proposed to include all other mix proportions and variables that may impact the com-

pressive strength of FA-GPC.

sc ¼ aþ b
Si
Al

� �

þ c
l
b

� �

þ d FAð Þ þ e Fð Þ þ f Cð Þ þ g SHð Þ þ h SSð Þ þ i
SS
SH

� �

þ j Mð Þ

þ k Að Þ þ l Tð Þ þm CDð Þ ð2Þ

Where: (Si/Al) is the ratio of SiO2 to Al2O3 of the fly ash, (l/b) is the alkaline liquid to the

Fig 11. Variation between compressive strength and curing temperature histogram of fly ash-based geopolymer

concrete mixtures.

https://doi.org/10.1371/journal.pone.0253006.g011

Fig 12. Variation between compressive strength and curing duration with histogram of fly ash-based geopolymer

concrete mixtures.

https://doi.org/10.1371/journal.pone.0253006.g012
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binder ratio, (FA) is the fly ash content (kg/m3), (F) is the fine aggregate content (kg/m3), (C)

is the coarse aggregate content (kg/m3), (SH) is the sodium hydroxide content (kg/m3), (SS) is

the sodium silicate content (kg/m3), (SS/SH) is the ratio of sodium silicate to the sodium

hydroxide, (M) is the sodium hydroxide concentration (Molarity), (T) is the curing tempera-

ture (˚C), (CD) is the curing duration inside ovens (hr) and (A) is the ages of the specimens

(days). While a, b, c, d, e, f, g, h, i, j, k, l, and m are the model parameters. This developed equa-

tion is a unique equation that involves a wide range of independent variables to produce

FA-GPC that may be very useful for the construction industry. The proposed Eq 2 can be con-

sidered as an extent for Eq 1 since all variables can be adapted linearly.

b) Nonlinear regression model (NLR)

To propose a NLR model, Eq 3 could be considered as a general form [99,100]. The interrela-

tion between different variables in Eqs 1 and 2 can be represented in Eq 3 to predict the com-

pression strength of FA-GPC mixtures.

sc ¼ a �
Si
Al

� �b

� ð
l
b
Þ
c
� ðFAÞd � ðFÞe � ðCÞf � ðSHÞg � ðSSÞh �

SS
SH

� �i

� ðMÞj � ðAÞk þ l

�
Si
Al

� �m

�
l
b

� �n

� ðFAÞo � ðFÞp � ðCÞq � ðSHÞr � ðSSÞs �
SS
SH

� �t

� ðMÞu � ðAÞv � ðTÞw

� ðCDÞx ð3Þ

Where: (Si/Al) is the ratio of SiO2 to Al2O3 of the fly ash, (l/b) is the alkaline liquid to the

binder ratio, (FA) is the fly ash content (kg/m3), (F) is the fine aggregate content (kg/m3), (C)

is the coarse aggregate content (kg/m3), (SH) is the sodium hydroxide content (kg/m3), (SS) is

the sodium silicate content (kg/m3), (SS/SH) is the ratio of sodium silicate to the sodium

hydroxide, (M) is the sodium hydroxide concentration (Molarity), (T) is the curing tempera-

ture (˚C), (CD) is the curing duration inside ovens (hr.) and (A) is the ages of the specimens

(Days). While, a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, and x are the model

parameters.

c) Multi-logistic regression model (MLR)

Same as the former models, multi-logistic regression analysis model was carried out for the

collected datasets, and the general form of the MLR is shown in Eq 4 based on the research

studied that had been conducted by Mohammed et al. [51]. MLR is used to clarify the

Fig 13. Variation between compressive strength and curing duration histogram of fly ash-based geopolymer

concrete mixtures.

https://doi.org/10.1371/journal.pone.0253006.g013
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difference between a nominal predictor variable and one or more independent variables.

sc ¼ a47208een model predictions of compressive strength of fly ash based geopolymer concrete mixtures using training data161616

�
Si
Al

� �b

�
l
b

� �c

� ðFAÞd � ðFÞe � ðCÞf � ðSHÞg � ðSSÞh �
SS
SH

� �i

� ðMÞj � ðAÞk � ðTÞl � ðCDÞm ð4Þ

Where: (Si/Al) is the ratio of SiO2 to Al2O3 of the fly ash, (l/b) is the alkaline liquid to the

binder ratio, (FA) is the fly ash content (kg/m3), (F) is the fine aggregate content (kg/m3), (C)

is the coarse aggregate content (kg/m3), (SH) is the sodium hydroxide content (kg/m3), (SS) is

the sodium silicate content (kg/m3), (SS/SH) is the ratio of sodium silicate to the sodium

hydroxide, (M) is the sodium hydroxide concentration (Molarity), (T) is the curing tempera-

ture (˚C), (CD) is the curing duration inside ovens (hr.) and (A) is the ages of the specimens

(Days). While a, b, c, d, e, f, g, h, i, j, k, l, and m are the model parameters.

6. Model performance assessment criteria

In order to evaluate and assess the efficiency of the proposed models, various performance

parameters, including the coefficient of determination (R2), Root Mean Squared Error

(RMSE), Mean Absolute Error (MAE), Scatter Index (SI), and OBJ, were used, which are

defined as follows:

R2 ¼

Pp
p¼1
ðtp � t0Þðyp � y0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½
Pp

p¼1
ðtp � t0Þ2�½

Pp
p¼1
ðyp � y0Þ2�

q

0

B
@

1

C
A

2

ð5Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPp
p¼1
ðyp � tpÞ

2

p

s

ð6Þ

MAE ¼
Pp

p¼1
jðyp � tpÞj
p

ð7Þ

SI ¼
RMSE

t0
ð8Þ

OBJ ¼
ntr

nall
�
RMSEtr þMAEtr

R2
tr þ 1

� �

þ
ntst

nall
�
RMSEtst þMAEtst

R2
tst þ 1

� �

þ
nval

nall
�
RMSEval þMAEval

R2
val þ 1

� �

ð9Þ

Where: yp and tp are the predicted and the measured values of the pth pattern, correspond-

ingly, and t0 and y0 are the averages of the measured and the predicted values, respectively. tr,
tst, and val are referred to as training, testing, and validating datasets, respectively and n is the

number of patterns (collected data) in the corresponding dataset.

Except for the R2 value, the best value for other assessment parameters is zero. However,

the best value for R2 is one. Regarding the SI parameter, it can be said that a model has a poor

performance when SI > 0.3, a fair performance when 0.2 < SI < 0.3, a good performance

when 0.1< SI < 0.2, and an excellent performance when SI < 0.1 [43,101]. Moreover, in Eq

(9) the OBJ parameter was also used to assess the efficiency of the proposed models as an inte-

grated performance parameter.
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7. Analysis and outputs

a) LR model

The comparison between predicted and measured compressive strengths of FA-GPC for train-

ing, testing and validating datasets are presented in Fig 14A–14C, respectively. The model

parameters observed that the l/b ratio and the ratio of sodium silicate to the sodium hydroxide

significantly affects the compressive strength of FA-GPC. For the current model the weight of

each parameter on the compressive strength of FA-GPC was determined by optimizing the

sum of error squares and the least square method, which implemented in Excel program using

Solver to calculate the ideal value (a specific value, minimum or maximum) for the equation in

one cell named the objective cell. This object cell was subject to certain limits or constraints on

the values of other equation cells in the worksheet [52]. Based on the linear regression analysis

model, it was observed that, among the whole model input parameters, the ratio of alkaline liq-

uid to the binder ration (l/b) and the sodium silicate to the sodium hydroxide ratio of the GC

mixture have a great influence on the compressive strength of the FA-GPC which it is matched

with the experimental results presented in the literature [21,23,25,28,55]. The equation for the

LR model with different weight parameters can be written as follows as reported in Eq 10.

sc ¼ � 66:8 � 1:697
Si
Al

� �

þ 187:75
l
b

� �

þ 0:246 FAð Þ � 0:016 Fð Þ � 0:012 Cð Þ � 0:334 SHð Þ

� 0:538 SSð Þ þ 0:942
SS
SH

� �

þ 0:179 Mð Þ þ 0:228 Að Þ þ 0:342 Tð Þ þ 0:01 CDð Þ ð10Þ

The studied datasets have a ±20% error line for the training data and -15% and +20% error

lines for both testing and validating datasets. Nevertheless, the developed model slightly over-

estimated the low strength FA-GPC mixes and underestimated the high strength FA-GPC.

Also, the residual compressive strength between the predicted and measured compressive

strength for the LR model by using training, testing, and validating dataset were compared, as

shown in Fig 15. This model’s evaluation parameters, such as R2, RMSE, and MAE are 0.8369,

4.65 MPa, and 3.76 MPa, respectively. Moreover, as reported from Figs 16 and 17, the OBJ and

SI values for the current model are 3.09 and 0.15 for the training dataset.

b) NLR model

The relationships between the predicted compressive strength and measured compressive

strength obtained from experimental programs of FA-GPC mixtures for training, testing, and

Fig 14. Comparison between measured and predicted compressive strength of fly ash-based geopolymer concrete mixture using LR model, (a) training data, (b) testing

data, (c) validating data.

https://doi.org/10.1371/journal.pone.0253006.g014
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validating datasets are presented in Fig 18A–18C, respectively. The most important parameters

which affects the compressive strength of FA-GPC mixtures according to this model are the

curing temperature and sodium silicate content. This was also approved by several experimen-

tal programs from past studies, in which increasing the sodium silicate content and increasing

the curing temperature was resulted in the increasing the compressive strength of FA-GPC

mixtures significantly [21,27,31,38,40,55,81,87,92]—the proposed equation for NLR model

with different variable parameters presented in Eq 11.

sC ¼ � 1997208 �
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Al

� �� 0:508

�
l
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� ðFAÞ� 2:134
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�
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þ 9993:13 �
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l
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� ðFÞ� 0:151
� ðCÞ� 0:184

� ðSHÞ� 0:426
� ðSSÞ� 0:0007
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SH

� �� 0:453

� ðMÞ0:134
� ðAÞ� 0:022

� ðTÞ0:352
� ðCDÞ� 0:064

ð11Þ

The studied datasets have a ±20% error line for the training data and -15% and +20% error

lines for both testing and validating datasets. Similar to the LR model, this model slightly

Fig 15. Residual error diagram of compressive strength of fly ash-based geopolymer concrete mixtures using

training, testing, and validating dataset for all models.

https://doi.org/10.1371/journal.pone.0253006.g015

Fig 16. The OBJ values of all developed models.

https://doi.org/10.1371/journal.pone.0253006.g016
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underestimated the high strength FA-GPC mixes and overestimated the low strength

FA-GPC. Also, the residual compressive strength was shown in Fig 15, which shows the resid-

ual error between the predicted and measured compressive strength for the NLR model by

using training, testing, and validating datasets. In addition, the assessment parameters for this

model, such as R2, RMSE, and MAE, are 0.8576, 4.19 MPa, and 3.35 MPa, respectively, and the

other assessment tools such as OBJ and SI are 2.71 and 0.14 correspondingly, as illustrated

from Figs 16 and 17.

c) MLR model

The proposed equation for MLR model with different variable parameters presented in Eq 12.

In the MLR model, like other developed models, the curing temperature, sodium silicate con-

tent, an alkaline liquid to the binder ratio were the most significant independent variables that

affect on the compressive strength of the FA-GPC that is matched with the experimental

works presented in the literature [21,23,25,27,28,31,38,40,55,81,87,92]. The relationships

between the predicted and measured compressive strength of the training data set for FA-GPC

was shown in Fig 19A. Further, same as the two previous models, this model was checked by

two sets of data (testing and validating dataset) to show their efficiency for other data out of

the model data (training data); the results show that this model can be used to predict the com-

pressive strength of FA-GPC just by substitute the independent variables into the developed

Fig 17. Comparing the SI performance parameter of different developed models.

https://doi.org/10.1371/journal.pone.0253006.g017

Fig 18. Comparison between measured and predicted compressive strength of fly ash-based geopolymer concrete mixture using NLR model, (a) training data, (b) testing

data, (c) validating data.

https://doi.org/10.1371/journal.pone.0253006.g018
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equation as shown in Fig 19B and 19C.

sc ¼ 147:1447208een model predictions of compressive strength of fly ash based geopolymer concrete mixtures using training data191919

�
Si
Al

� �� 0:383

�
l
b

� �0:350

� ðFAÞ0:195
� ðFÞ� 0:212

� ðCÞ� 0:236
� ðSHÞ� 0:715

� ðSSÞ0:393
�

SS
SH

� �� 0:81

� ðMÞ0:086
� ðAÞ0:128

� ðTÞ0:534
� ðCDÞ� 0:046

ð12Þ

Similar to other models, the studied datasets have a ±20% error line for the training data

and -15% and +20% error lines for both testing and validating datasets, which indicated that

almost all checked results were in ± 20% error lines. Finally, the residual compressive strength

for the MLRA model was shown in Fig 15 for the predicted and measured compressive

strength using training, testing, and validating datasets. Furthermore, the assessment criteria

for this model, such as R2, RMSE, MAE, OBJ, and SI are 0.7907, 5.08 MPa, 3.95 MPa, 3.4, and

0.17, respectively, for the training dataset.

8. Comparison between developed models

As mentioned previously, five different statistical tools, which are RMSE, MAE, SI, OBJ, and R2

was used to evaluate the efficiency of the developed models. Among the three different models,

the NLR model has higher R2 with lower RMSE and MAE values compared to LR and MLR

models. Also, Fig 20 presents the comparison between model predictions of the compressive

strength of FA-GPC mixtures using training data. Moreover, Fig 15 shows the residual error for

all models using training, testing, and validating datasets. It can be noticed from both figures

that the predicted and measured values of compressive strength are closer for the NLR mode,

which indicates the superior performance of the NLR model compared to other models.

The OBJ values for all proposed models are given in Fig 16. The values for LR, NLR, and

MLR are 4.78, 4.42, and 5.18, respectively. The OBJ value of the NLR model is 8.1% less than

the LR model and 17.2% lower than the NLR models. This also demonstrates that the NLR

model is more efficient for predicting the compressive strength of FA-GPC mixtures.

The values of the SI assessment parameter for the proposed models in the training, validat-

ing, and testing phases are presented in Fig 17. As can be seen from Fig 17, for all models and

all phases (Training, testing, and validating), the SI values were between 0.1 and 0.2, indicating

good performance for all models. However, similar to the other performance parameters the

NLR model has lower SI values compared to other models. The NLR model has 9.4% and

19.7% lower SI values than LR and MLR models, correspondingly. This also illustrated that the

Fig 19. Comparison between measured and predicted compressive strength of fly ash-based geopolymer concrete mixture using MLR model, (a) training data, (b) testing

data, (c) validating data.

https://doi.org/10.1371/journal.pone.0253006.g019
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NLR model is more efficient and performed better compared to LR and MLR models for pre-

dicting the compressive strength of FA-GPC.

9. Sensitivity investigation

In order to find and assess the essential input parameter that affects the compressive strength

of FA-GPC, a sensitivity comparison was carried out for the whole model [97]. The training

dataset for the models was calculated by Solver in Excel. During the sensitivity analysis, several

different training data sets were used. For each set, a single input variable was extracted at a

time, and the effects of this variable were assessed by R2, RMSE, MAE, OBJ, and SI, which is

illustrated in Table 2. According to the obtained results, the curing temperature is the most

Fig 20. Compression between model predictions of compressive strength of fly ash-based geopolymer concrete

mixtures using training data.

https://doi.org/10.1371/journal.pone.0253006.g020

Table 2. Sensitivity analysis using LRA, NLRA, and MLRA model.

LR Model NLR Model MLR Model

R2 RMSE MAE OBJ SI R2 RMSE MAE OBJ SI R2 RMSE MAE OBJ SI

Removed Parameter None 0.84 4.65 3.76 3.09 0.15 0.86 4.19 3.35 2.71 0.14 0.79 5.09 3.95 3.40 0.17

Si/Al 0.71 6.20 4.96 4.41 0.20 0.78 5.23 4.11 3.51 0.18 0.71 6.02 4.79 4.27 0.20

l/b 0.73 6.01 4.75 4.21 0.20 0.86 4.23 3.33 3.22 0.18 0.79 5.10 3.95 3.41 0.17

FA (kg/m3) 0.69 6.43 4.90 4.54 0.21 0.86 4.22 3.34 2.72 0.14 0.79 5.09 3.94 3.40 0.17

F (kg/m3) 0.83 4.73 3.84 3.17 0.16 0.85 4.25 3.37 2.75 0.14 0.79 5.13 3.97 3.43 0.17

C (kg/m3) 0.79 5.24 4.15 3.54 0.17 0.85 4.27 3.37 2.75 0.14 0.79 5.13 3.96 3.43 0.17

SH (kg/m3) 0.79 5.27 4.21 3.58 0.17 0.85 4.24 3.37 2.75 0.14 0.79 5.11 3.97 3.42 0.17

SS (kg/m3) 0.72 6.12 4.83 4.31 0.20 0.86 4.19 3.34 2.71 0.14 0.79 5.09 3.96 3.41 0.17

SS/SH 0.84 4.65 3.78 3.10 0.15 0.86 4.20 3.36 2.72 0.14 0.79 5.12 3.98 3.43 0.17

M 0.84 4.67 3.79 3.11 0.15 0.85 4.27 3.43 2.75 0.14 0.79 5.11 3.99 3.43 0.17

T (˚C) 0.40 8.90 7.00 7.67 0.29 0.43 8.43 6.71 7.11 0.28 0.36 8.88 6.98 7.84 0.29

CD (hr.) 0.84 4.65 3.76 3.09 0.15 0.85 4.26 3.39 2.76 0.14 0.79 5.10 3.95 3.41 0.17

A (Day) 0.75 5.70 4.47 3.92 0.19 0.76 5.40 4.23 3.65 0.18 0.71 6.01 4.67 4.21 0.20

https://doi.org/10.1371/journal.pone.0253006.t002
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significant variable for the prediction of the compressive strength of FA-GPC for the whole

LR, NLR, and MLR models, and this is match with a variety of researches that have been per-

formed in the literature [21,27,31,40,81,87,92]. In this study, the curing temperature for the

obtained data was ranged from 23 to 120˚C, thus increasing the curing temperature consider-

ably increased the compressive strength of FA-GPC. It is well documented in the literature

that the compressive strength of FA-GPC is significantly affected by the curing temperature

and duration. Longer curing time and curing at high temperature (50–100˚C) increases the

compressive strength of FA-GPC, although the increase in strength may be insignificant for

curing at more than 60˚C and for periods longer than 48 hrs. Therefore, for heat curing

regimes, temperatures between 50–80˚C and curing time of 24 hr are widely accepted values

used for a successful polymerization process. In addition, among the curing condition meth-

ods (oven, steam, and ambient), oven curing techniques have a better influence on the com-

pressive strength of FA-GPC composites.

10. Conclusions

Predicting of compressive strength of FA-GPC by the reliable and accurate model can save

time and cost. In this paper, linear regression (LR), nonlinear regression (NLR), and multi-

logistic regression (MLR) were used to propose predictive models for the FBGC. Based on the

510 collected dataset from previous research works and the simulation of the compressive

strength of the FA-GPC, the following conclusion can be drawn:

i. All the used models LR, NLR, and MLR could be successfully used to develop predictive

models for the compressive strength of the FA-GPC. Overall, the NLR model has better per-

formance than the other two models. The R2 values for this model are 0.86, 0.75, and 0.79

for the training, testing, and validating datasets, respectively. In addition, other sensitivity

indicators for the training dataset for the NLR model are 4.19 MPa, 3.35 MPa, 2.71, and 0.14

for the RMSE, MAE, OBJ, and SI, respectively.

ii. The R2, RMSE, MAE, OBJ, and SI values were 0.84, 4.65MPa, 3.76MPa, 3.09, and 0.15, cor-

respondingly, for the LR model for the training dataset. While these values are 0.79, 5.09

MPa, 3.95 MPa, 3.40, and 0.17, respectively, for the MLR model.

iii. The assessment and comparison of statistical parameters R2, RMSE, MAE, OBJ, and SI for

all the training, testing, and validating datasets validate the accuracy of the developed mod-

els properly.

iv. According to the sensitivity analysis approaches, the curing temperature, liquid to binder

ratio, and sodium silicate content are the most effective independent variables for predict-

ing the compressive strength of FA-GPC for all the models.

v. The eco-efficient fly ash-based geopolymer concrete studied here can participate in sustainable

development because it is a cementless concrete and used industrial or agro by-product ashes

as a binder material; these mixture properties lead to a reduction of the carbon dioxide percent

in the air, energy consumption, as well as waste disposal and the cost of the construction.
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