
ORIGINAL RESEARCH
published: 14 January 2020

doi: 10.3389/fnsys.2019.00086

Frontiers in Systems Neuroscience | www.frontiersin.org 1 January 2020 | Volume 13 | Article 86

Edited by:

Spase Petkoski,

INSERM U1106 Institut de

Neurosciences des Systèmes, France

Reviewed by:

Tanmoy Banerjee,

University of Burdwan, India

Chie Nakatani,

KU Leuven, Belgium

*Correspondence:

Yuan Yang

yuan.yang@northwestern.edu

Received: 17 August 2019

Accepted: 18 December 2019

Published: 14 January 2020

Citation:

Sinha N, Dewald JPA, Heckman CJ

and Yang Y (2020) Cross-Frequency

Coupling in Descending Motor

Pathways: Theory and Simulation.

Front. Syst. Neurosci. 13:86.

doi: 10.3389/fnsys.2019.00086

Cross-Frequency Coupling in
Descending Motor Pathways: Theory
and Simulation
Nirvik Sinha 1,2, Julius P. A. Dewald 1,3, Charles J. Heckman 1,4 and Yuan Yang 1*

1Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University,

Chicago, IL, United States, 2 School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India,
3Department of Biomedical Engineering, Robert R. McCormick School of Engineering and Applied Science, Northwestern

University, Evanston, IL, United States, 4Department of Physiology, Feinberg School of Medicine, Northwestern University,

Chicago, IL, United States

Coupling of neural oscillations is essential for the transmission of cortical motor

commands to motoneuron pools through direct and indirect descending motor

pathways. Most studies focus on iso-frequency coupling between brain and muscle

activities, i.e., cortico-muscular coherence, which is thought to reflect motor command

transmission in the mono-synaptic corticospinal pathway. Compared to this direct

pathway, indirect corticobulbospinal motor pathways involve multiple intermediate

synaptic connections via spinal interneurons. Neuronal processing of synaptic inputs

can lead to modulation of inter-spike intervals which produces cross-frequency coupling.

This theoretical study aims to evaluate the effect of the number of synaptic layers

in descending pathways on the expression of cross-frequency coupling between

supraspinal input and the cumulative output of the motoneuron pool using a computer

simulation. We simulated descending pathways as various layers of interneurons with a

terminal motoneuron pool using Hogdkin–Huxley styled neuron models. Both cross- and

iso-frequency coupling between the supraspinal input and the motorneuron pool output

were computed using a novel generalized coherence measure, i.e., n:m coherence.

We found that the iso-frequency coupling is only dominant in the mono-synaptic

corticospinal tract, while the cross-frequency coupling is dominant in multi-synaptic

indirect motor pathways. Furthermore, simulations incorporating both mono-synaptic

direct and multi-synaptic indirect descending pathways showed that increased reliance

on a multi-synaptic indirect pathway over a mono-synaptic direct pathway enhances

the dominance of cross-frequency coupling between the supraspinal input and the

motorneuron pool output. These results provide the theoretical basis for future human

subject study quantitatively assessing motor command transmission in indirect vs. direct

pathways and its changes after neurological disorders such as unilateral brain injury.

Keywords: cross-frequency coupling, descending motor pathways, computer simulation, Hogdkin–Huxley styled

neuron model, n:m coherence
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INTRODUCTION

The human motor system is a highly cooperative network
comprised of different groups of neurons. Neural coupling, i.e.,
the synchronization of neural activity across these groups, is
key to signal transmission among functionally related, though
anatomically distant, neuronal groups (e.g., the motor cortices
and spinal motoneuron pool) through direct and indirect
descending pathways (van Wijk et al., 2012). Over decades,
most researchers investigating neural coupling in the motor
descending pathways have focused on the synchronization
between cortical oscillations and muscle activities at the same
frequency (i.e., iso-frequency coupling), known as the cortico-
muscular coherence (Mima and Hallett, 1999). It is thought
to reflect motor command transmission in the mono-synaptic
corticospinal tract (Schoffelen et al., 2005). Previous simulation
and in vivo studies demonstrated that, in this direct descending
pathway, despite the non-linearity of individual neurons, neural
oscillation of the supraspinal input could be linearly transmitted
to the cumulative output of the motoneuron pool at the same
frequency (Negro and Farina, 2011a,b). These previous studies
explained the origin of iso-frequency coupling between the
supraspinal input and the motoneuron pool output with respect
to the use of the monosynaptic corticospinal tract as the fastest,
direct descending pathways in healthy individuals.

However, the corticospinal tract is not the onlymotor pathway
in humans. There are other indirect pathways (e.g., cortico-
reticulospinal tract, rubrospinal tract) in parallel with the direct
corticospinal tract (Dum and Strick, 1991; Jang and Seo, 2014).
Although contributions from these indirect motor pathways are
relatively small compared to the corticospinal tract in healthy
individuals, they do still play important roles in various motor
control tasks such as postural control during movement (Drew
et al., 2004). Furthermore, in some neurological disorders, such
as unilateral brain injury, the reliance on these indirect motor
pathways may increase due to losses of corticospinal projections
(Fries et al., 1993; Jang et al., 2013; Owen et al., 2017). The injury-
induced increased reliance on these indirect motor pathways
is likely associated with motor impairments (e.g., abnormal
limb synergies and spasticity) post unilateral brain injury (Ellis
et al., 2012, 2017; McPherson et al., 2018a,c; Li et al., 2019).
Thus, investigating the neural coupling in these indirect motor
pathways will allow for a more complete understanding of the
transmission of motor commands from the brain to muscles,
and may pave the way for quantitative assessments of the usage
of indirect motor pathways in both normal and pathological
motor control.

Compared to the direct corticospinal tract, these indirect
motor pathways involve multiple synaptic connections via
interneurons. Neuronal processing of synaptic inputs can lead
to the modulation of inter-spike intervals which produces
cross-frequency coupling, i.e., synchronization across different
frequencies between input and output (Koch and Segev, 2000;
Markram, 2003; Yang et al., 2018). Our previous work on multi-
synaptic ascending sensory pathways (Yang et al., 2016b; Tian
et al., 2018), as well as a recent opinion article (Yang et al.,
2018), argued that multi-synaptic interaction in a neural pathway

can lead to a substantial expression of cross-frequency coupling.
However, insights into possible mechanisms underlying neural
coupling in the multi-synaptic descending motor pathways
are currently lacking. Focusing on the iso-frequency coupling
(e.g., cortico-muscular coherence) only one previous study
indicated that the input from the indirect motor pathways can
reduce the iso-frequency coupling between the cortical input
and motoneuron pool output (Negro and Farina, 2011a) while
no insight has been provided into the neural mechanisms of
cross-frequency coupling. This study aims to systematically
evaluate the effect of the number of synaptic connections or
interneuron layers on the expression of cross-frequency coupling
between supraspinal input and output of the motoneuron
pool using computer simulations. We hypothesize that multi-
synaptic interaction in an indirect descending motor pathway
increases the non-linear distortion of efferent motor signal
transmission, resulting in enhanced cross-frequency coupling
over iso-frequency coupling.

To test our hypothesis, we simulated descending pathways
as various layers of interneurons in cascade with a terminal
motoneuron pool, using Hodgkin-Huxley styled neuron models
(Booth et al., 1997; Rybak et al., 2006). Both cross- and iso-
frequency coupling between the input (which comprised of a
supraspinal drive with an independent membrane noise) and the
output of the motoneuron pool were computed using a recently
developed generalized coherence method (Yang et al., 2016b).
The ratio of cross- to iso-frequency coupling was calculated
to determine which type (cross- or iso-frequency) of neural
coupling is dominant and how it changes with an increasing
number of synaptic connections or interneuron layers.

METHODS

Motoneuron and Interneuron Models
We simulated descending pathways as various layers of
interneurons in a cascade with a terminal motoneuron pool.
All neurons were modeled in the Hodgkin–Huxley style. A
two-compartment model comprising of a soma and a dendrite
was used for simulating motoneurons (Booth et al., 1997).
Because of the lack of adequate experimental data, a single
compartment simplification of this model was used to simulate
the interneurons (Rybak et al., 2006).

The motoneuron model incorporated the following ionic
currents (with the corresponding channel conductances): fast
sodium (INa with maximal conductance gNa), persistent (slowly
inactivating) sodium (INaP with maximal conductance gNaP),
delayed-rectifier potassium (IK with maximal conductance gK),
calcium-N (ICaN with maximal conductance gCaN), calcium-
L (ICaL with maximal conductance gCaL), calcium-dependent
potassium (IK,Ca with maximal conductance gK,Ca), and leakage
(IL with constant conductance gL) currents (Lee and Heckman,
2001; Darbon et al., 2004; Rybak et al., 2006; Streit et al., 2006):

INa = gNa ×m3
Na × hNa × (V − ENa);

INaP = gNaP ×mNaP × hNaP × (V − ENa);

IK = gK ×m4
K × (V − EK);
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ICaN = gCaN ×m2
CaN × hCaN × (V − ECa);

ICaL = gCaL ×mCaL × (V − ECa);

IK,Ca = gK,Ca ×mK,Ca × (V − EK);

IL = gL × (V − EL);

where V is the membrane potential of the corresponding neuron
compartment [i.e., soma (V(S)) or dendrite (V(D))] in two-
compartment models, or the neuron membrane potential V in
the one-compartment interneuron model which is explained
later). ENa, EK , ECa, and EL are the reversal potentials for
sodium, potassium, calcium and leakage currents, respectively.
The variables m and h (with subscripts indicating ionic
channels) represent the activation and inactivation variables of
the corresponding ionic channels, as described by the following
differential equations:

τmi (V)
d

dt
mi = m∞i (V) −mi

τhi (V)
d

dt
hi = h∞i (V) − hi

where i indicates the name of the channel, m∞i(V) and h∞i(V)
represent the voltage-dependent steady-state activation and
inactivation, and τmi(V) and τhi(V) are the corresponding time
constants (see Booth et al., 1997; Rybak et al., 2006 for details
of these parameters). The instantaneous value of mK,Ca was
calculated from the intracellular Ca2+ concentration of the
corresponding compartment as (Booth et al., 1997):

mK,Ca =
Ca

Ca+ Kd

where Ca is the Ca2+ concentration of the corresponding
compartment of the neuron and Kd is the half-saturation
level of this conductance. The kinetics of intracellular Ca2+

concentration (|Ca|) were computed separately for each
compartment according to the following equation:

d

dt
|Ca| = −f × (αICa + kCa|Ca|)

where f defines the percentage of free to total Ca2+, α converts the
total Ca2+ current, ICa, to Ca

2+ concentration and kCa represents
the Ca2+ removal rate.

The maximal channel conductances, equilibrium potentials
and membrane capacitance of the neuron models were set with
the same values as in Rybak et al. (2006). The details are
specified in the Appendix. The equilibrium leakage potentials
of the motoneurons and interneurons were set as described in
section Simulations.

The dendrite–soma coupling currents (with conductance gC)
for soma (IC(S)) and dendrite (IC(D)) were calculated as (Booth
et al., 1997):

IC(S) =
gC

p

(

V(D) − V(S)

)

IC(D) =
gC

1− p
(V(S) − V(D))

where p is the parameter defining the ratio of somatic surface area
to the total neuronal surface area.

We used conductance-based excitatory post-synaptic
potentials (EPSPs) for simulating the synaptic inputs to each
motoneuron. The synapses were modeled as exponentially
decaying injected currents (ISynE with peak conductance gSynE
and reversal potential ESynE): ISynE = gSynE × (V – ESynE) into
the soma compartment (Negro and Farina, 2011a). The time
constant τsynE for the decay was 5ms (Rybak et al., 2006).
The peak conductance value for synapses on motoneurons
was adjusted to produce an EPSP peak of 100 µV (Finkel and
Redman, 1983).

With the inclusion of INaP to the motoneuron dendrite
(Rybak et al., 2006), the membrane potentials of the motoneuron
soma (V(S)) and dendrite (V(D)) were computed from the
following equations:

C
dV(S)

dt
= −INa(S) − IK(S) − ICaN(S) − IK,Ca(S) − IL(S)

−IC(S) − ISynE

C
dV(D)

dt
= −INaP(D) − ICaN(D) − ICaL(D) − IK,Ca(D) − IL(D)

−IC(D)

where C is the membrane capacitance and t is time.
The interneurons (single-compartment models) contain only

a minimal set of ionic currents (Rybak et al., 2006):

C
dV

dt
= −INa − IK − IL − ISynE

There is no existing literature reporting experimentally observed
values of interneuron EPSPs of the descending pathways. Since
interneurons are usually much smaller than motoneurons, they
have higher input resistances and smaller somatic surface areas
(Bui et al., 2003). Thus, we adjusted peak conductance of synapses
on interneurons to produce an EPSP peak of 500 µV.

Input Signal and Connection Configuration
We used a probabilistic connection model (Ferrario et al., 2018)
to simulate descending pathways with various layers and 100
neurons per layer (Lüscher et al., 1983) (see Figure 1). Each
neuron in the first layer was fed by a time-varying injected
current into the somatic compartment. The supraspinal input
was designed as a Gaussian signal in beta band (15–35Hz)
[mimicking the cortical oscillations observed experimentally
during motor tasks (Pfurtscheller and Da Silva, 1999)] with an
added membrane noise (see Figure 2). The membrane noise was
modeled as a bandlimited (1–100Hz) Gaussian noise, which was
independent for each neuron (Maltenfort et al., 1998). The total
variance of this stochastic input was a percentage of the constant
current injection to produce amean ISI-CoV of (i) 0.55 for the 1st
interneuron layer in case of multi-synaptic pathways (Prut and
Perlmutter, 2003), and (ii) 0.2–0.3 for the motoneuron pool in
case of the mono-synaptic pathway (Tanji and Kato, 1972; Sturm
et al., 1997; Mattei and Schmied, 2002).

For the successive layers, the input to each neuron was the
sum of output spike trains (convolved with the EPSP) of neurons
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FIGURE 1 | Simulation of descending pathways with various layers (N = 0, 1, 2, …) of interneurons in cascade with a terminal motoneuron pool. In, interneuron; Mn,

motoneuron.

FIGURE 2 | Simulated supraspinal input comprising of a Gaussian signal (15–35Hz) with added Gaussian noise (1–100Hz band-limited) with signal-to-noise ratio of

∼−7.5 dB.

randomly sampled from the previous layer. The number of
neurons which contributed to the input of each interneuron
was set to obtain a mean firing rate in the range of 19–24
spikes/s for the whole interneuron layer. This is in line with
previous experimental observations in primate models during
flexion/extension tasks (Prut and Perlmutter, 2003). The number

of inputs to each motoneuron was set to 100 i.e., the sum of
inputs from all interneurons of the terminal interneuron layer.
The range of the firing rates was adjusted as explained in section
Simulations. The mean firing rate of the active motoneurons (>8
spikes/s; Negro and Farina, 2011a) was thus obtained to be in the
range of 16–19 spikes/s. Such a connection model resembles the
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anatomical course of various descending motor pathways which,
via a varying number of interneuron layers, terminate on spinal
motoneuron pools (Matsuyama et al., 2004).

Simulations
Simulations were run at a sampling rate of 1 kHz using 200
epochs with a 1-s duration per epoch. The resulting data were
sufficient for a robust neural coupling analysis (Hagihira et al.,
2001). Our simulated multi-synaptic pathways represented the
part of descending pathway involving only spinal interneurons
and motoneurons, since no reticular neurons were simulated
due to the complete lack necessary parameters in the existing
literature (McDougal et al., 2017). A previous study reported
heterogeneity of excitatory spinal interneuron populations based
on their firing rates. It found a non-monotonous decline in the
mean firing rate histogram with a local peak at ∼50 spikes/s
(Prut and Perlmutter, 2003). In the simulations, we mimicked
this histogram (see Figure 3A) by combining two random
exponential distributions of leakage potential (EL) values for each
interneuron layer. The range of EL was adjusted so that its mean
was around −64mV (Rybak et al., 2006). Motoneuron firing
rates have been experimentally reported to be predominantly
in the range of 5–30 spikes/s during isometric contractions
of limb muscles (for contraction levels ≤60% of maximum
voluntary torque) (De Luca and Hostage, 2010). We adjusted the
leakage potentials of the motoneurons in the pool to generate a
distribution (Rybak et al., 2006) of firing rates in a similar range
(see Figure 3B).

Neural Coupling Analysis
We used our recently developed generalized coherence
measure, i.e., n:m coherence (NMC) (Yang et al., 2016b),
to assess cross- and iso-frequency coupling between the
simulated input and output signals. The n:m coherence is
a straightforward extension of the linear coherence used
in corticomuscular coherence (Mima and Hallett, 1999)
based on high-order statistics (Nikias and Mendel, 1993)
for distinguishably determining cross- and iso-frequency
coupling between signals. Thus, the iso-frequency coupling of
our results obtained by this method would be comparable
to previous corticomuscular coherence studies (Mima
and Hallett, 1999; Mima et al., 2001; Yang et al., 2016a,
2018).

Let X(f ), Y(f ) be the Fourier Transform of two time series
(e.g., the input and output signals). The NMC between them is
defined as:

NMC
(

fX , fY
)

=

∣
∣SXY

(

fX , fY
)∣
∣

√

SnX
(

fX
)

SmY
(

fY
)

for assessing cross-frequency (fX 6= fY ) and iso-frequency
(fX = fY ) coupling between signals, where m/n is the simple
whole number ratio of fX/fY (e.g., if fX = 8, fY = 16 then
m= 1, n= 2) and

SXY
(

fX , fY
)

=< Xn
(

fX
) (

Ym
(

fY
))∗

>,

SnX
(

fX
)

=< Xn
(

fX
) (

Xn
(

fX
))∗

>

where < · > represents the averaging over epochs and
Xn = X(fx) · X(fx) · . . . · X(fx)

︸ ︷︷ ︸

n

.

The NMC reflects the strength of iso- or cross-frequency
coupling between signals.When fX = fY , we havem= n=1, then
the NMC is equivalent to the classical (linear) coherence for iso-
frequency coupling (Yang et al., 2016a). When fX 6= fY , then the
NMC indicates the non-linear coupling between signals across
different frequency components (i.e., cross-frequency coupling)
(Yang et al., 2015). Thus, the n:mmapping can generate harmonic
(m = 1) and subharmonic coupling (m > 1) between the
input and the output in the frequency domain (Yang et al.,
2016b). As a generalized coherence method, the NMC is a
metric indicating cross-frequency coherence between signals,
which is different from other cross-frequency coupling methods
such as the phase-amplitude coupling (De Hemptinne et al.,
2013) reflecting how a low-frequency phase modulates a high-
frequency amplitude.

According to Cauchy-Schwarz-inequality, we have:

∣
∣〈Xn

(

fX
) (

Ym
(

fY
))∗

〉
∣
∣ ≤

(

〈
∣
∣Xn

(

fX
)∣
∣
2
〉

)1/2 (

〈
∣
∣Ym

(

fY
)∣
∣
2
〉

)1/2

Thus, the NMC is bounded by 0 and 1, where 1 indicates
that two signals are perfectly coupled at the tested frequency
pair (f X, f Y). As the NMC values are computed by comparing
different frequency pairs between signals, the significant
threshold was adapted with a Bonferroni correction to control
the type I error (family-wise error rate: 0.05) (Yang et al.,
2016b). There are 2,100 frequency pairs that were included
for Bonferroni corrections, i.e., 21 frequencies in the input
(from 15 to 35Hz at 1Hz resolution) × 100 frequencies
in the output (from 1 to 100Hz at 1Hz resolution). More
details of the NMC method is available in Yang et al.
(2016b).

Since the supraspinal input had added independent noise for
each 1st layer neuron, each coupling analysis was repeated 100
times, each time with a different realization of the independent
noise (as described in section Input Signal and Connection
Configuration) added to the supraspinal input in the same
signal-to-noise ratio as the original input (i.e., ∼-7.5 dB). To
compare the dominance of cross- vs. iso-frequency coupling,
we defined the cross-frequency coupling over iso-frequency
coupling index as COI = (CFC–IFC)/(CFC+IFC), where CFC
is the sum of all significant cross-frequency coupling values
and IFC the sum of all significant iso-frequency coupling. We
included only “significant” CFC and IFC values to exclude
false positives in the coherence analysis. The range of COI is
[−1, 1], where a larger COI indicates a more dominant cross-
frequency coupling.

To examine the effect of the number of synaptic/interneuron
layers on neural coupling of descending pathways, we computed
NMC, IFC, CFC, and COI between the given supraspinal input
and the cumulative spike train (CST) output of the simulated
motoneuron pool (derived as the sum of individual motoneuron
spike trains following Negro and Farina, 2011a). In addition,
the IFC, CFC, and COI between the supraspinal input and the
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FIGURE 3 | Firing rate of simulated neurons. (A) Histogram of mean firing rates of the simulated interneuron layer with a secondary peak at ∼ 50 spikes/s. (B) Scatter

plot showing the distribution of mean firing rates of the simulated pool of motoneuron.

CST of each successive interneuron layer was also computed to
evaluate how they change across layers. Furthermore, we also
examined the combined effect of both mono- and multi-synaptic
pathways on neural coupling by varying the weight of the input
from either pathway (with the same supraspinal input) to the
terminal motoneuron pool.

RESULTS

Neural Coupling Between the Supraspinal
Input and the Cumulative Output From
Motoneuron Pool
Both iso-frequency coupling and cross-frequency coupling were
detected in the simulated motor pathways (see Figure 4). The
detected cross-frequency coupling includes harmonic coupling
(i.e., output frequency over input frequency ratio n/m is
an integer) and non-integer n:m coupling. This result is
in line with previous experimental studies reporting both
harmonic and non-integer coupling in the human sensorimotor
system (Daffertshofer et al., 2000; Yang et al., 2016a). A
higher amount of cross-frequency coupling was observed in
the multi-synaptic pathways where there are one or more
interneuron layers.

To examine how iso-frequency coupling and cross-frequency
coupling evolved with increasing interneuron layers, we
computed the IFC, CFC, and COI between the given supraspinal
input and the motoneuron pool output for simulated pathways
with various layers (N = 0, 1, 2, 3, . . . ) of interneurons in
cascade with a terminal motoneuron pool (see Figure 5). Using
one-way ANOVA we found that the number of interneuron
layers had significant effect on IFC [F(10, 1089) = 3613.36, p
< 0.001], CFC [F(10, 1089) = 2934.50, p < 0.001] and COI
[F(10, 1089) = 7108.90, p < 0.001]. We used Tukey’s honest
significant difference (HSD) criterion for post-hoc comparisons,
with Bonferroni correction to control the type I error. Hence, we
adjusted the threshold p-value as 0.05/k to control the family-
wise error rate to be <0.05, where k is the number of post hoc
comparisons (k = 10). We found that the IFC decreased with

increasing number of interneuron layers in the pathways (p <

0.05/10), while the CFC increased in the pathway with up to
three interneuron layers (p < 0.05/10). Their combined effect
resulted in an initial increase in COI with interneuron layers (p<

0.05/10) and a saturation for the pathways with more than three
interneuron layers. It was also observed from the COI values that
the iso-frequency coupling is only dominant (COI < 0) in the
mono-synaptic descending pathway where the supraspinal input
directly drives themotoneuron pool without passing through any
interneuron layer. Consequently, the cross-frequency coupling
became dominant (COI > 0) when there were interneuron layers
in the descending pathway.

Neural Coupling Between the Supraspinal
Input and the Output From Successive
Neuron Layers
Using one-way ANOVA, we also found that the number of
interneuron layers had a significant effect at p < 0.05 level
on the IFC [F(9, 990) = 3235.46, p < 0.001], CFC [F(9, 990)
= 2113.54, p < 0.001] and COI [F(9, 990) = 5597.45, p <

0.001] between the supraspinal input and the output from
successive interneuron layers. Using Tukey’s HSD criterion with
Bonferroni correction (k = 9), the IFC was observed to decrease
across successive interneuron layers (p < 0.05/9) while the
CFC and COI increased (p < 0.05/9) up to the fifth and sixth
layer, respectively (see Figure 6). Additionally, in multi-synaptic
pathways, IFC dropped more at the terminal motoneuron layer
of the n-layer pathway in comparison to that of the terminal
interneuron layer of the n + 1 layer pathway (for n = 1–11,
unpaired t-test, p < 0.001 in all cases).

Combined Effect of Mono-Synaptic and
Multi-Synaptic Pathways
In reality, the motor system contains both the mono-synaptic
corticospinal tract and multi-synaptic indirect motor pathways.
Hence, to examine the combined effect of both types of
descending pathways in a motor system, we performed
simulations in a system having dual input to the terminal
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FIGURE 4 | Neural coupling between the supraspinal input and cumulative spike train output of the terminal motoneuron pool for the descending motor pathways

with 0, 1, and 3 interneuron layers. The iso-frequency (1:1) coupling is indicated by the green dashed line. The detected cross-frequency coupling including harmonic

coupling (i.e., output frequency over input frequency ratio n/m is an integer, e.g., 2:1, 3:1, 4:1, indicated by the red dashed lines) and non-integer n:m coupling (other

points in the map).

FIGURE 5 | IFC, CFC, and COI between the supraspinal input and the motoneuron pool output in simulated pathways with various layers of interneurons in cascade

with a terminal motoneuron pool. The depicted values represent the mean (with ±2 standard deviation as indicated by error bars) calculated from 100 repetitions of

the coupling analysis, each being run with a different realization of additive noise to the supraspinal input (as described in section Neural Coupling Analysis). Tukey’s

test was performed to test for significant decrease in IFC and increase in CFC and COI between the pathways containing n−1 and n (n = 1, 2, 3…) interneuron layers.

To control the family-wise error rate, we set the threshold p = 0.05/k (k = 10, i.e., number of comparisons). Asterisks in superscript of the n-th layer number indicate a

significant change of the results in the n-interneuron layer motor pathway in comparison to (n−1)-interneuron layer motor pathway (**p < 0.05/10).

motoneuron pool. The dual input is comprised of (i) a direct
supraspinal drive (resembling the monosynaptic corticospinal
tract) and (ii) an indirect drive from the same supraspinal
input after being passed through two layers of interneurons
(resembling a multi-synaptic descending pathway). The relative

weights of these two drives were systematically varied to examine
their effects on the neural coupling between the supraspinal
input and the motoneuron pool output. Using one-way ANOVA,
we found that the proportion of direct vs. indirect drive has a
significant effect on the IFC [F(5, 594) = 640.63, p < 0.001], CFC
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FIGURE 6 | IFC, CFC, and COI between the supraspinal input and cumulative spike train output of successive neuron layers in simulated pathways with various layers

of interneurons in cascade with a terminal motoneuron pool. The 1-layer pathway represents the monosynaptic tract. The depicted values represent the mean (with ±2

standard deviation as indicated by error bars) calculated from 100 repetitions of the coupling analysis, each being run with a different realization of additive noise to the

supraspinal input (as described in section Neural Coupling Analysis). Tukey’s test was performed to test for significant decrease in IFC and increase in CFC and COI

between the n−1th and nth (n = 2, 3, 4…) interneuron layer. To control the family-wise error rate, we set the threshold p = 0.05/k (k = 9, i.e., number of comparisons)

Asterisks in superscript of the n-th layer number indicate a significant change of the result in that layer in comparison to that of the previous layer (**p < 0.05/9).

[F(5, 594) = 5552.81, p < 0.001] and COI [F(5, 594) = 7748.80, p <

0.001]. Using Tukey’s HSD criterion with Bonferroni correction
(k= 5), IFC was found to reduce with increased indirect drive (p
< 0.05/5), while the CFC increased (p < 0.05/5). Their combined
effect resulted in the progressive increase of COI (p< 0.05/5) (see
Figure 7).

DISCUSSION

This study investigated neural coupling in descending motor
pathways using computer simulations. We simulated the
pathways as various layers of interneurons in a cascade with
a terminal motoneuron pool, using Hodgkin–Huxley neuron
models, to examine the effect of the number of synapses or
interneuron layers on the expression of cross-frequency coupling,
as well as its ratio over iso-frequency coupling.

Most studies investigating neural coupling in the descending
pathways mainly focus on the mono-synaptic corticospinal tract
using iso-frequency coupling measures such as cortico-muscular
coherence (Mima and Hallett, 1999; Salenius and Hari, 2003;
Negro and Farina, 2011b; vanWijk et al., 2012). In this simulation
study, we examined both iso- and cross-frequency coupling in
the mono-synaptic descending pathway. Our results confirmed
the dominance of iso-frequency coupling (as indicated by COI
< 0) in the mono-synaptic pathway, though cross-frequency
coupling is also present (see Figure 4). This result is in line
with our previous experimental work using the NMC to assess
cross- and iso-frequency coupling between brain and muscle

signals during a low-effort (1Nm) isotonic wrist flexion in
healthy young participants, showing that the motor task using
the mono-synaptic corticospinal tract mainly generates iso-
frequency coupling (Yang et al., 2016a).

Using linear coherence measure alone, a previous modeling
study indicated that the recruitment of multi-synaptic indirect
motor pathways can reduce the iso-frequency coupling between
the supraspinal input and motoneuron pool output (Negro and
Farina, 2011a). Consistent with the previous study, we found
that the IFC decreases in the multi-synaptic pathways: the more
interneuron layers in the pathway, the smaller IFC between the
supraspinal input and the motoneuron pool output. However, we
also found that the CFC initially increases in the multi-synaptic
pathways and is then followed by a saturation after passing a few
neuron layers. The combined effect of changes in IFC and CFC
leads to the dominance of cross-frequency coupling (as shown by
COI > 0) in the multi-synaptic pathways.

The mechanism underlying the changes in IFC and CFC
could be associated with the information distortion that occurs
across neuron layers leading to decorrelation of the supraspinal
input and the motoneuron pool output (Negro and Farina,
2011a). Such distortion is likely caused by the modulation
of inter-spike intervals when the motor command is passing
through multiple synaptic layers (Koch and Segev, 2000;
Markram, 2003; Yang et al., 2018). This modulation could be
attributed to (1) heterogeneous recruitment thresholds and spike
after-hyperpolarizations of the individual neurons which results
in different firing rates for the same steady-state drive (Powers
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FIGURE 7 | IFC, CFC, and COI between the supraspinal input and cumulative spike train output of the terminal motoneuron pool for the simulated dual input system.

The dual input is comprised of (i) a direct supraspinal drive (resembling the monosynaptic corticospinal tract) and (ii) an indirect drive from the same supraspinal input

after being passed through two layers of interneurons (resembling a multi-synaptic descending pathway). The relative proportion (in terms of signal power) of the

indirect drive in the composite input was systematically varied from 0 to 100% in steps of 20% increments. The depicted values represent the mean (with ±2 standard

deviation as indicated by error bars) calculated from 100 repetitions of the coupling analysis, each being run with a different realization of additive noise to the

supraspinal input (as described in section Neural Coupling Analysis). Tukey’s test was performed to test for significant decrease in IFC and increase in CFC and COI

between the successive steps of increase in indirect drive. To control the family-wise error rate, we set the threshold p = 0.05/k (k = 5, i.e., number of comparisons).

Asterisks in superscript of the percentage values denote significant change (**p < 0.05/5).

and Binder, 2001; Heckman and Enoka, 2012; Yang et al., 2018),
and (2) the consequent interplay between the time-varying input
(as shown Figure 2, which is added over the steady-state drive)
and different firing rates (as shown in Figure 3) of the neurons
over the entire pool (Thompson et al., 2018). Thus, besides
the input frequecies, the neurons also generate responses at
other frequencies, which contain the components that are cross-
frequency coupled with the input signal, as well as a certain
amount of noise that is not phase-locked to the suprapinal input.
Not only the cross-frequency coupled components but also the
noise can be cumulatively enhanced when the signal is passing
from one layer to the next. After passing a few neuron layers, the
reduced signal-to-noise ratio then leads to the saturation of CFC.

In the multi-synaptic pathways, a sharp decrease of IFC
was found at the terminal motoneuron pool in comparison to
the last interneuron layer. This is likely caused by different
neuronal processing properties of the simulated interneurons
and motoneurons. The motoneurons modeled in this study had
an active dendrite with a persistent inward current as well as
calcium dependent potassium currents in both the soma and the
dendrite compartments (Heckman et al., 2008). In contrast, the
interneurons were modeled without such conductances and had
a single compartment only. These differences may have given rise
to lower IFC (and higher COI) in motoneuron outputs due to
their effects on the neurocomputational properties. Indeed, this
study opens a broad new area for exploring the origin of different

types of neural coupling at the single neuron level and a detailed
analysis of the role of individual ionic conductances on IFC and
CFC can be the scope of future studies.

The proposed COI measure reflects the dominance of iso-
frequency coupling vs. cross-frequency coupling. Interestingly,
the iso-frequency coupling is only dominant in the mono-
synaptic pathway, while the cross-frequency coupling is
dominant in multi-synaptic pathways. After a unilateral
brain injury, damage to the mono-synaptic corticospinal tract
can increase the reliance on multi-synaptic indirect motor
descending pathways (e.g., cortico-reticulospinal tracts for
upper limbs) (Owen et al., 2017; McPherson et al., 2018a;
Karbasforoushan et al., 2019). The simulated “dual-drive”
model mimicks this pathological condition by varing the ratio
of multi-synaptic drive vs. mono-synpatic drive. Our results
show that the increased input from the indirect drive leads to
a more dominant cross-frequency coupling as reflected by an
increased value of COI over the increased percentage of the
indirect motor drive. This result is in line with our pilot work
on eight participants with hemiparetic stroke. The COI between
the brain and muscle signal increases when participants with a
unilateral stroke progressively lift the weight of their paretic arm
(Yang et al., 2019), thereby enhancing the recruitment of indirect
motor pathways to compensate for the loss of corticofugal (i.e.,
corticospinal and corticobulbar) projections from the lesioned
hemisphere (McPherson et al., 2018a).
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Thus, the COI can be used as a quantitative measure to
indicate the relative usage of multi-synaptic indirect motor
pathways vs. mono-synaptic direct corticospinal tract. This
measure could have a significant impact on future neuro-
pathophysiological studies on individuals with an unilateral
brain injury, since recent studies have indicated that motor
impairments after a unilateral brain injury could be associated
with an increased reliance on multi-synaptic indirect motor
pathways following a lesion-induced loss of direct corticospinal
projections (Owen et al., 2017; McPherson et al., 2018a;
Karbasforoushan et al., 2019). Therefore, a measure that
quantitatively determines the usage of indirect motor pathways
over direct corticospinal drive could be crucial (1) for evaluating
motor recovery following unilateral brain injuries, and (2) for
determining the effect of targeted therapeutic interventions
(Ellis et al., 2018; McPherson et al., 2018b) that aim to reduce
the maladaptive reliance on indirect motor pathways after a
hemiparetic stroke. In the future, we will examine both cross-
frequency and iso-frequency coupling, as well as the COI,
between the brain and muscle signals to characterize the relative
ratio of the recruitment of indirect vs. direct motor pathways
following unilateral brain injuries, such as hemiparetic stroke and
unilateral celebral palsy.

LIMITATIONS

We acknowledged that there are a few limitations of the current
study. First, the interneuron model has only a basic set of ionic
conductance since the details of the ionic conductances of spinal
and reticular interneurons are yet to be explored. However,
such reductionist interneuron models have been used in other
simulation studies as well, and this simplification is not expected
to change the overall results of this study (Maltenfort et al.,
1998; Cisi and Kohn, 2008; Williams and Baker, 2009; Negro and
Farina, 2011a). Second, there is no existing literature detailing
the connection pattern of individual interneuron layers in multi-
synaptic descending pathways. However, the probabilistic model
used in this simulation has been previously demonstrated to
capture global connectivity properties in motor descending
pathways well (Humplik and Tkačik, 2017). Thirdly, the number
of neurons in each layer of multi-synaptic descending tracts have
not yet been experimentally determined. However, compound
EPSP recording on motoneurons from spinal interneurons has
shown the number of inputs to be ∼ 100 (Lüscher et al., 1983).
Hence, it is reasonable to assume that the number of descending

inputs on the motoneurons from each tract should be in this
order. The motoneuron pool size can vary frommuscle to muscle
(Karpati et al., 2001), in a range from around 100 (e.g., first dorsal
interosseous in humans) (Buchthal and Schmalbruch, 1980) to
around 800 (e.g., biceps brachii in humans) (Feinstein et al.,
1955). Thus, a size of 100 units for a motoneuron pool falls
in the lowest part of the range. In this study, the size of 100
units per neuron layer was adopted also for uniformity and
computational convenience. Finally, we did not consider synaptic
and transmission delays in this work. The overall delay in a
motor pathway may be determined based on the onset latency
of Transcranial Magnetic Stimulation (TMS) induced Motor
Evoked Potential (MEP) in the targeted muscle (Schwerin et al.,
2011). However, the latency of MEP can be affected by coil
orientation: differencemay exist between direct vs. trans-synaptic
activation of the pyramidal cells and the measurement of MEP
responses in proximal vs. distal muscles. In short, it is still hard
to get a “precise” assessment of the delay in a motor pathway.
Meanwhile, there is no available experimental data for the delays
in each neuron layer that we can included in this simulation
work. Moreover, the time delay only has the effect on the relative
phase between signals. This will not result in additional resonance
components with new frequencies. Thus, the time delay issue
will not affect our current results and overall conclusion of
this paper.
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APPENDIX

Equilibrium Potentials
ENa = 55mV; EK = − 80mV; ECa = 80mV;
EL(S) = −65mV ±0.3; EL(D) = −65±0.15mV (motoneurons∗)
∗Motoneuron equilibrium potentials were assigned from
uniform random distributions with mean ± S.D as given above
to obtain firing rates in the range of 5–30 spikes/s as described in
section Simulations.
∗ ∗ Interneuron equilibrium potentials were set as described in
section Simulations.

Neuron Paramteres
Motoneurons:
gNa(S) = 120 mS cm−2; gNaP(S) = 0.1 mS cm−2; gK(S) =

100mS cm−2;

gCaN(S) = 14 mS cm−2; gK,Ca(S) = 5 mS cm−2; gL(S) =

0.51mS cm−2;

gCaN(D) = 0.3 mS cm−2; gCaL(D) = 0.33 mS cm−2; gNaP(D) =

0.1mS cm−2;

gK,Ca(D) = 1.1 mS cm−2; gL(D) = 0.51 mS cm−2; gc =

0.1mS cm−2;

p = 0.1; f = 0.01; α = 0.0009 mol C−1 µm−1; kCa =

2ms−1; Kd = 0.2µM

Interneurons:
gNa = 120mS cm−2; gK = 100mS cm−2; gL = 0.51mS cm−2;

Synapses:
EsynE = − 10mV; gsynE = 0.01mS cm−2; τsynE = 5ms;
EsynE = − 10mV; gsynE = 0.0075mS cm−2; τsynE = 5ms;

TABLE A1 | Steady-state activation and inactivation variables and time constants

for voltage-dependent ionic channels (Rybak et al., 2006).

Ionic channels m∞ (V) , V is in mV

h∞ (V) , V is in mV

τm (V) , ms

τh (V) , ms

Na+ m∞Na = 1

1+ e
−

(V+35)
7.8

h∞Na = 1

1+ e
(V+55)

7

τmNa = 0

τhNa =
30

e
(V+50)

15 + e
−

(V+50)
16

NaP+ m∞NaP = 1

1+ e
−

(V+47.1)
3.1

h∞NaP = 1

1+ e
−

(V+59)
8

τmNaP = 0

τhNaP = 1,200

cosh( (V+59)
16 )

K+ m∞K = 1

1+ e
−

(V+28)
15

hK = 1

τmK = 7

e
(V+40)

40 + e
−

(V+40)
50

CaN2+ m∞CaN = 1

1+ e
−

(V+30)
5

h∞CaN = 1

1+ e
−

(V+45)
5

τmCaN = 4

τhCaN = 40

CaL2+ m∞CaL = 1

1+ e
−

(V+40)
7

hCaL = 1

τmCaL = 4;
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