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Abstract

Radiotherapy is a common treatment option for head and neck cancer patients; however,

the surrounding healthy salivary glands are often incidentally irradiated during the process.

As a result, patients often experience persistent xerostomia and hyposalivation, which

deceases their quality of life. Clinically, there is currently no standard of care available to

restore salivary function. Repair of epithelial wounds involves cellular proliferation and

establishment of polarity in order to regenerate the tissue. This process is partially mediated

by protein kinase C zeta (PKCζ), an apical polarity regulator; however, its role following radi-

ation damage is not completely understood. Using an in vivo radiation model, we show a sig-

nificant decrease in active PKCζ in irradiated murine parotid glands, which correlates with

increased proliferation that is sustained through 30 days post-irradiation. Additionally, sali-

vary glands in PKCζ null mice show increased basal proliferation which radiation treatment

did not further potentiate. Radiation damage also activates Jun N-terminal kinase (JNK), a

proliferation-inducing mitogen-activated protein kinase normally inhibited by PKCζ. In both a

PKCζ null mouse model and in primary salivary gland cell cultures treated with a PKCζ inhib-

itor, there was increased JNK activity and production of downstream proliferative transcripts.

Collectively, these findings provide a potential molecular link by which PKCζ suppression

following radiation damage promotes JNK activation and radiation-induced compensatory

proliferation in the salivary gland.

Introduction

While radiotherapy is an effective treatment strategy for head and neck cancer, an unfortunate

side effect is damage to the surrounding healthy salivary glands. This damage often leads to

persistent xerostomia, which exacerbates other oral complications and decreases the patient’s

quality of life. Although various therapeutic modalities exist [1–4] to combat this phenome-

non, there is currently no definitive cure available for radiation-induced hyposalivation.
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Therefore, a comprehensive understanding of the molecular components that regulate cellular

function in response to radiation is crucial to develop strategies to mitigate salivary gland

damage.

In most tissue types, cell death during injury leads to the release of mitogenic factors that

stimulate compensatory proliferation, a process by which mitotic division is induced to

replace the cells lost. The compensatory proliferation response has been demonstrated in

imaginal wing discs of Drosophila melanogaster [5–8], murine keratinocytes [9,10], and livers

of injured mice [11–13]. Similar to these models, salivary glands undergo increased prolifera-

tion following radiation-induced damage as early as five days post-treatment [14–19]. Ele-

vated proliferation is still observed at days 30, 60, and 90 post-radiation suggesting the

upstream signaling cues remain present [14,15,18]. Compensatory proliferation has been

reported in a heterogeneous population of cells and currently there is considerable debate on

which population is required to respond to radiation damage [20,21]. This prolonged com-

pensatory proliferation response following radiation correlates with salivary gland hypofunc-

tion, as measured by decreased stimulated salivary flow rate and differentiation state (e.g.

amylase enzyme production) [18,22,23]. Interestingly, upon administration of therapeutic

agents that restore salivary secretion in irradiated mice, proliferation decreases and differen-

tiation increases to levels similar to untreated mice [18,19,24,25]. This suggests that initial

stimulation of compensatory proliferation may be necessary to recoup cellular loss; however,

a sustained proliferative response prevents further downstream regenerative reprogramming

such as differentiation, reepithelization, and tissue remodeling that are necessary for organ

function. A better understanding of the regulation of compensatory proliferation following

radiation damage in salivary glands thus stands to provide initial insights into why organ

function is not restored.

Following tissue injury, the reestablishment of adhesion and polarity is thought to gener-

ally limit proliferation through contact inhibition. Protein kinase C zeta (PKCz), a serine/

threonine kinase that is a part of the Par3/Par6/PKC complex, promotes the establishment of

apical-basalolateral polarity in a number of exocrine tissues, including the salivary glands

[19,26,27]. Loss of Par3/Par6/PKC complex function is known to promote hyperprolifera-

tion, development of carcinomas, and prevention of tissue regeneration [19,28–31]. Impor-

tantly, previous research has shown that PKCz is required for the restoration of salivary

gland function following radiation damage [19]. PKCz-/- mice were unable to restore

salivary flow rates despite administration of therapeutics known to restore salivary function.

While this study highlights the necessity of PKCz during the regenerative process, the

mechanistic link between PKCz and proliferation following radiation damage is poorly

understood.

Previous studies have implicated Jun N-terminal kinase (JNK), a mitogen activated protein

kinase (MAPK), as a key promoter of compensatory proliferation. JNK responds to extracellu-

lar stressors and activates proliferation-inducing transcription factors such as c-Jun, ATF, and

Elk1 [32,33]. Notably, contradicting functions have been described regarding the roles of

PKCz and MAPKs in response to injury. For example, in human bronchial epithelial cells,

stimulation of PKCz activates ERK and JNK, resulting in extracellular matrix degradation and

increased cellular invasion [34]. In contrast, a PKCz deficient lung cancer mouse model

showed increased interleukin-6 production that lead to increased proliferation and tumorigen-

esis [35]. PKCz can functionally display diverse properties depending on the cellular context

and type of injury. Thus, determining how these pathways respond following radiation dam-

age within the salivary glands could provide important insights into the defective regenerative

mechanism underlying salivary hypofunction.

PKCζ and JNK signaling in irradiated parotid glands
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Material and methods

Mice and radiation treatment

Experiments in this study were conducted in female FVB mice and both male and female

C57BL/6J and Prkcz -/- mice. For each experiment, at least four animals were used per treat-

ment group. Mice were maintained and treated in agreement with protocols approved by the

University of Arizona Institutional Animal Care and Use Committee (IACUC). Prkcz -/- mice

were generated and maintained as previously described [18,19]. One dose of 5 Grey (5Gy) was

administered with a 60Cobalt Teletherapy Instrument from Atomic Energy of Canada Ltd

Theratron-80. The head and neck region of the mice were exposed while the rest of the body

was shielded from radiation with>6mm thick lead to avoid systemic effects. Mice were anes-

thetized with an intramuscular injection of ketamine/xylazine (50mg/kg:10mg/mL) before

radiation treatment and were monitored until they regained consciousness. Radiation dosage

calculations and maintenance of the cobalt source are conducted by the Experimental Radia-

tion Shared Service of the Arizona Cancer Center.

Immunoblotting

Whole protein lysates from parotid glands of FVB, wild type C57BL/6J and Prkcz -/- mice were

harvested and processed for immunoblotting as previous described [19,36]. Primary cell

lysates were processed in the same fashion. Briefly, samples were lysed in RIPA buffer with

5mM sodium orthovanadate (Fisher Scientific, Hampton, NH), protease inhibitor cocktail

(Sigma-Aldrich, St. Louis, MO) and 100mM PMSF (Thermo Scientific, Waltham, MA). The

Coomassie Plus-The Better Bradford Assay (Thermo) was used to determine protein concen-

trations and 30–100μg of total lysate was used. The following antibodies were used: anti-

PARD3 (Abcam), anti-PARD6 (Proteintech), anti-total PKCz (Cell Signaling), anti-pPKCz

(T560) (Abcam), anti-phospho-c-Jun (S63) (Cell Signaling), and anti-beta-tubulin (Thermo

Scientific). Restore Western Blotting Stripping Buffer (Fisher) was used to strip membranes

and reprobed for loading controls.

Immunofluorescent staining

Salivary glands were dissected at predetermined time points for formalin-fixed paraffin-

embedded (FFPE) samples as previously described [19,36]. Briefly, samples were fixed in for-

malin and cut to 4μm thickness by IDEXX BioResearch (Columbia, MO). Slides were rehy-

drated in graded ethanol, permeabilized in 0.02% Triton X-100, and antigen retrieval in 1mM

citric acid buffer (pH 6.8). The slides were then blocked in 0.5% NEN (PerkinElmer, Waltham

MA) and incubated in primary antibody overnight at 4˚C. Secondary antibodies were added

for 1 hour at room temperature with Alexa Fluor 594 or Alexa Fluor 488 (Thermo Scientific).

Samples were counterstained with DAPI (1μg/mL) and mounted with ProLong™ Gold Anti-

fade Reagent (Life Technologies). Fluorescently stained slides were stored at 4˚C for no longer

than 5 days until imaging. The following antibodies were used: anti-Ki67 (Cell Signaling) and

anti-pPKCz (T560) (Abcam). Images were taken with a Leica DM5500 microscope (Leica

Microsystems, Wetzlar, Germany) and a Spot Pursuit 4 Megapixel CCD camera (Diagnostic

Instruments, Sterling Heights, MI). Images were processed with ImagePro 6.3 (Media Cyber-

netics, Silver Spring MD) and ImageJ (NIH). Analysis of Ki67-positive cells was performed

manually by counting positive cells from at least 7 images per slide per treatment condition. A

minimum of three mice per group was analyzed. Percentages of total Ki67 positive cells in the

acinar compartment was divided by the total number of cells in this compartment. During

analysis, the ductal compartment was designated based on morphological features as
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previously described, such as rounded structures, the presence of a lumen, and tight cell-cell

contact [21]. The ductal compartment includes the excretory and striated ducts, as well as

some intercalated ducts. Thus, the acinar compartment comprises all the remaining cell types

in the salivary epithelium: mainly acinar and myoepithelial cells, as well as some of the interca-

lated ducts that based on morphology could not be identifiable as ducts. Analysis of pPKCz

(T560) area was quantified as previously described [18]. Briefly, slides were imaged using the

same fluorescent parameters. Morphometric analysis was performed with ImagePro 7.0 soft-

ware (Media Cybernetics, Silver Spring, MD). Positive area was determined from at least 10

fields of view (FOV = 0.39mm2) with a coefficient of variation <7.5% which did not improve

with greater numbers of observations per section. Data are expressed as percentage of pPKCz

(T560) intensity area over total area and the threshold fluorescent range (5x greater than back-

ground) was equivalent for all slides imaged.

JNK kinase assay

JNK kinase activity was detected using a JNK activity assay kit according to the manufacturer’s

protocol (RayBiotech, Norcross, GA). Briefly, JNK kinase was immunoprecipitated from sam-

ple lysates using a JNK-specific antibody. The activity of JNK was then determined using

recombinant c-Jun as the substrate. Phosphorylation of c-Jun was detected using immunoblot-

ting techniques. The BioTek Gen5 (BioTek Instruments, Winooski, Vermont) was used for

readings of protein concentrations.

Primary cell culture

Parotid glands were removed from euthanized mice and cultured as primary cells as previously

described [36,37]. Briefly, the glands were minced in dispersion media, mechanically agitated,

cultured in primary cell culture media, and grown on rat tail collagen plates (Corning, Corn-

ing, NY). On day 1 after dissection, cells were exposed to a single dose of 5Gy radiation. For

the PKCz inhibitor experiments, the cells were grown to sub-confluency and treated with

either 20 μM PKCz pseudosubstrate inhibitor (PPI) (Calbiochem) or vehicle for 2 hours. After

2 hours, JNK kinase activity, c-Jun phosphorylation, and downstream proliferative promoting

transcripts were subsequently measured. For the JNK inhibitor experiments, cells were cul-

tured with 10 μM SP600125 (JNK inhibitor) or DMSO vehicle control on day 4 following radi-

ation treatment. Cells were harvested on day 5 and protein lysates or RNA were collected for

downstream analyses as described.

Real-time RT-PCR

Parotid glands were removed from mice, stored in RNALater Stabilization Reagent (Qiagen,

Valencia, CA), and processed as previously described [19,36]. Briefly, samples were isolated

with the RNeasy Mini Kit (Qiagen) and reversed transcribed with SuperScript IV Reverse

Transcriptase (Invitrogen). Samples were analyzed in triplicate for each cDNA sample (3–5

mice per condition and at least 3 independent primary cell preps) with an iQ5 Real-Time PCR

Detection System (Biorad). The data was analyzed using the 2-ΔΔCT method [38]. Results were

normalized to GAPDH, which remains unchanged in response to treatment. Normalized val-

ues were graphed as relative fold-change compared to controls. The following primers were

purchased from Integrated DNA Technologies (Coralville, IA): GAPDH (FWD: 5’-ACC
ACA GTC CAT GCC ATC AC-3’; REV: 5’-CAC CAC CCT GTT GCT GTA GCC-
3’); CCND1 (FWD: 5’-GCG TAC CCT GAC ACC AAT CTC-3’; REV: 5’-CTC
CTC TTC GCA CTT CTG CTC-3’); PDE3A (FWD: 5’-CCT GGA CTA GCG TGC
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TTA GGA-3’; REV: 5’-CAG GCG ACC TTG AAC CTC T-3’); NFATC2 (FWD:
5’-TCA TCC AAC AAC AGA CTG CCC-3’; REV: 5’-GGG AGG GAG GTC CTG
AAA ACT-3’), MT1F (FWD: 5’-ACT TTC CCT TAT CCC ATC CAC C-3’;
REV: 5’-TGA GAT CCA GAG TTG TCG TAC A-3’).

Statistics

Data were analyzed using Prism 6.04 (GraphPad, La Jolla, CA). All values are reported as the

mean ± standard error of at least three independent experiments. Student’s t-test was applied

to results in which only two groups (untreated vs. inhibitor or untreated vs. day 5 irradiated)

were compared. A one-way analysis of variance (ANOVA) test and a Tukey-Kramer test for

multiple comparison was used to compare results within different group means and was con-

sidered significantly different at p<0.05.

Results

Radiation decreases pPKCz but not total levels of the PKCz/Par3/Par6

complex

PKCz has been previously shown to be essential in regulating salivary progenitor cell prolifera-

tion [19] following radiotherapy, but little is known about its role in the remaining salivary

cells following damage. Thus, to investigate the possible role of the PKCz/Par3/Par6 complex

following radiation treatment, immunoblotting was performed to determine total protein lev-

els at days 4, 5, 7, and 30 following radiation treatment. Total levels of PKCz, Par3, and Par6

did not change with radiation treatment in comparison to untreated (Fig 1A–1F). PKCz is

active when it is phosphorylated in the activation loop at threonine 410 (T410) leading to

autophosphorylation at T560. Thus, to determine whether PKCz is active following radiation

treatment, levels of phosphorylated-PKCz at T560 (pPKCz-T560) were evaluated, and a

decrease in pPKCz is observed at days 5, 7, and 30 following radiation treatment (Fig 1G–1H).

Immunofluorescent staining for pPKCz-T560 was performed to compare fluorescent intensity

area to total tissue area (Fig 1I and 1J). In untreated mice, pPKCz is localized to the apical

region of cells and displays a higher percentage of pPKCz-positive cell area. Comparatively,

irradiated mice at days 5 and 30 display lower percentage of pPKCz-positive cell area which

correlates with the time points at which pPKCz was decreased in the immunoblotting analysis.

These results suggest that radiation disrupts pPKCz levels as early as day 5 and these levels

decreased chronically to day 30.

Depletion of PKCz induces proliferation in vivo
Studies in Drosophila and murine keratinocytes suggest a relationship between loss of cell

polarity and loss of proliferation control [7,9,39]. Because radiation decreases the polarity reg-

ulator, pPKCz, the effect of radiation on proliferation was evaluated. Tissues from untreated

and irradiated wildtype C67BL/5J mice were evaluated for the proliferation marker Ki67 by

immunofluorescent staining (Fig 2A and 2B). Because decreased pPKCz spanned from days 5

to 30 (Fig 1), these time points were chosen for further proliferation evaluation. In untreated

mice, the percentage of Ki67 positive cells in the acinar compartment is 1.8%. In comparison,

when the wildtype mice received one treatment of 5Gy radiation, the percentage of Ki67 posi-

tive cells increases significantly to 6.5% and 3.7% at days 5 and 30 post-radiation, respectively.

To test whether the elevated proliferative response can be mediated by PKC, mice with a

genetic disruption in PKCz (Prkcz -/-) were either untreated or irradiated with 5Gy treatment

PKCζ and JNK signaling in irradiated parotid glands
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and Ki67 immunofluorescent staining was used to detect proliferating cells. In untreated

Prkcz -/- mice, 5.5% of cells stained Ki67 positive which is a similar level as irradiated wildtype

mice at day 5. Radiation did not further elevate the percentage of Ki67 positive cells in Prkcz -/-

mice at days 5 (6.3%) and day 30 (5.6%). These data suggest that radiation induces a compen-

satory proliferation response that is sustained to day 30, and this compensatory proliferation

response could be regulated by PKCz.

Fig 1. Radiation decreases pPKCz-T560 but not total levels of the PKCz/Par3/Par6 complex. FVB mice were

either untreated (UT) or irradiated (IR) with 5Gy and dissected on days 4, 5, 7, and 30 following radiation

treatment. Total protein levels of (A-B) Par3, (C-D) Par6, (E-F), total PKCz, and (G-H) pPKCz-T560 were evaluated

following radiation treatment. Immunoblots were re-probed with β-tubulin or PKCz as a loading control. (I)

Immunofluorescent staining was used to determine the intensity area of pPKCz-T560 (red) in comparison to the total

area. Composite images with DAPI (blue) are presented in both high and low magnification views (scale bar for high

magnification = 30 μm, low magnification = 100 μm). (J) Quantification of the percentage of pPKCz-T560 positive

area within the parotid gland. Results are presented from at least three mice per condition; I-J used 10–15 images per

mouse; error bars denote mean ± SEM. Significant difference (p<0.05) was determined by a Tukey-Kramer test for

multiple comparisons. Treatment groups with different letters above the bar graphs are significantly different from

each other.

https://doi.org/10.1371/journal.pone.0219572.g001

PKCζ and JNK signaling in irradiated parotid glands

PLOS ONE | https://doi.org/10.1371/journal.pone.0219572 July 9, 2019 6 / 15

https://doi.org/10.1371/journal.pone.0219572.g001
https://doi.org/10.1371/journal.pone.0219572


Radiation induces JNK signaling in vivo
Since alterations in PKCz have been linked to JNK signaling [33,35], we investigated whether

JNK signaling was affected following radiation treatment. The onset of radiation-induced

compensatory proliferation (Fig 2) and the decrease in pPKCz (Fig 1) occurs on day 5 post-

irradiation; therefore, this time point chosen for further evaluation. JNK kinase activity, c-Jun

Fig 2. Depletion of PKCz induces proliferation in vivo. Wild Type C57BL/6J and Prkcz -/- mice were either

untreated (UT) or irradiated (IR) with 5Gy and dissected on days 5 and 30 following radiation treatment. (A)

Immunofluorescent staining with Ki67 (green) was used to determine the number of proliferating cells in comparison

to the total number of cells in the acinar compartment. Composite images with DAPI (blue) are presented in both

high and low magnification views (scale bar for high magnification = 30 μm, low magnification = 100 μm). The

yellow dotted outline represents the ductal compartment while the rest of the glandular area represents the acinar

compartment. (B) Quantification of A. Results are presented from at least four mice per condition; A-B used 10–15

images per mouse; error bars denote mean ± SEM. Significant difference (p<0.05) was determined by a Tukey-Kramer

test for multiple comparisons. Treatment groups with different letters above the bar graphs are significantly different

from each other.

https://doi.org/10.1371/journal.pone.0219572.g002
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phosphorylation, and downstream proliferative mRNA transcripts (MT1F, NFATC2, PDE3A,

and CCND1) [13,32,33,40] were evaluated in untreated and irradiated mice. There are higher

levels of JNK activity in salivary tissue samples collected on day 5 post-irradiation compared to

untreated tissues (Fig 3A), which correlates with an increase in phosphorylated c-Jun at serine

63 (S63) (Fig 3B). To evaluate whether JNK downstream signaling also occurs, RT-PCR was

performed to determine whether JNK-mediated proliferation-promoting transcripts such as

MT1F, NFATC2, PDE3A, and CCND1 were altered in salivary tissues following radiation

treatment. In comparison to untreated mice, irradiated mice display significantly elevated

mRNA transcripts for MT1F, NFATC2, PDE3A, and CCND1 (Fig 3C). These results suggest

that radiation upregulates the JNK signaling axis.

Inhibition of JNK signaling with SP600125 in irradiated cells

To confirm that MT1F, PDE3A, NFATC2, and CCND1 where regulated by JNK signaling,

untreated and irradiated primary cell cultures were treated with 10 μM of the specific JNK

inhibitor, SP600125. Since JNK activity was observed at day 5 post-radiation, treatment with

10 μM SP600125 was started on day 4 post-radiation. As a surrogate readout for JNK inhibi-

tion, levels of a JNK substrate, phosphorylate c-Jun was tested. Phosphorylated c-Jun (S63) is

reduced in cells treated with SP600125 (Fig 4A and 4B). To determine whether inhibition of

JNK would result in a decrease of proliferative transcripts, RT-PCR was used. Cells treated

with 10 μM SP600125 show lower mRNA expression of MT1F, PDE3A, NFATC2, and

CCND1 in comparison to irradiated cells (Fig 4C–4F). These data suggest that inhibition of

JNK activity in irradiated cells can decrease proliferative regulators such as MT1F, PDE3A,

NFATC2, and CCND1.

Modulation of PKCz increases JNK signaling

After observing a decrease in pPKCz with a corresponding increase in JNK signaling following

radiation damage, we hypothesized that PKCz can regulate JNK activity and signaling. To

study the role of PKCz, we used an in vitro primary cell culture model treated with a specific

Fig 3. Radiation induces JNK signaling in vivo. FVB mice were either untreated (UT) or irradiated (IR) with 5Gy and dissected on day 5 following radiation

treatment to evaluate JNK signaling. (A) Relative JNK kinase activity was measured by incubating immunoprecipitated JNK in the presence of ATP and a c-Jun

substrate. The amount of phosphorylated c-Jun (S73) was detected via immunoblots. (B) Levels of phosphorylated c-Jun (S63) were determined following radiation

treatment. Total c-Jun was probed as a loading control. (C) Relative mRNA levels of MT1F, PDE3A, NFATC2, and CCND1 were determined by RT-PCR and

normalized to GAPDH. Results are presented from at least four mice per condition. Significant difference (p<0.05) was determined by Student’s t-test. �(p<0.05),
��(p<0.01).

https://doi.org/10.1371/journal.pone.0219572.g003
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Fig 4. Inhibition of JNK signaling with SP600125 in irradiated cells. Parotid salivary glands from FVB mice were dissected and cultured as primary cell cultures. One

day after dissection, the primary cells were irradiated with 5Gy and cell lysates or RNA were collected on Day 5 after radiation treatment. On Day 4 after radiation

treatment, the cells were either treated with 10 μM SP600125 or DMSO vehicle control. (A) Effects of SP600125 treatment on phosphorylated c-Jun (S63) in primary

salivary cells were evaluated by immunoblotting. Blots were reprobed for total levels of c-Jun as a loading control. (B) Quantification by densitometry of A normalized to

DMSO vehicle control. (C-F) Relative MT1F, PDE3A, NFATC2, and CCND1 mRNA levels determined by RT-PCR and normalized to GAPDH. Results are presented

from at least three independent primary cell preparations; error bars denote mean ± SEM. Significant difference (<0.05) was determined by a Tukey-Kramer test for

multiple comparisons. Treatment groups with different letters above the bar graphs are significantly different from each other.

https://doi.org/10.1371/journal.pone.0219572.g004
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PKCz pseudosubstrate inhibitor (PPI). Primary cells were grown to sub-confluency and were

treated with 20 μM PPI or vehicle. Cells treated with the PKCz inhibitor show elevated JNK

activity (Fig 5A) and c-Jun phosphorylation (Fig 5B) in comparison to vehicle control. In con-

junction, cells treated with the PKCz inhibitor express elevated mRNA levels of MT1F,

PDE3A, NFATC2, and CCND1 (Fig 5C). To further determine whether JNK signaling is regu-

lated by PKCz, JNK activity and downstream proliferative genes were analyzed in mice

depleted of PKCz. Similar to in vitro experiments, salivary glands from Prkcz -/- mice show ele-

vated JNK activity (Fig 5D), elevated c-Jun phosphorylation (Fig 5E) and elevated proliferative

mRNA expression (Fig 5F) in comparison to wildtype C67BL/5J mice. These data suggest that

modulation of PKCz can regulate downstream JNK signaling.

Fig 5. Modulation of PKCz increases JNK signaling. Parotid salivary glands from FVB mice were dissected and cultured as primary cell cultures. At sub-confluency, the

cells were treated with 20 μM PKCz pseudosubstrate inhibitor (PPI) or vehicle control. (A) Relative JNK kinase activity was measured by incubating immunoprecipitated

JNK in the presence of ATP and c-Jun substrate in cells treated with 20 μM PPI or vehicle control. The amount of phosphorylated c-Jun (S73) was detected via

immunoblots. (B) Total protein levels for phosphorylated c-Jun (S63) was determined following PPI inhibition. Immunoblots were reprobed with total c-Jun as a loading

control. Relative quantification is depicted below the blot. (C) Relative mRNA levels of MT1F, PDE3A, NFATC2, and CCND1 were determined by RT-PCR and

normalized to GAPDH as a loading control. Lysates and mRNA were collected from C57BL/6J wildtype and Prkcz -/- mice. (D) Relative JNK kinase activity was measured

by incubating immunoprecipitated JNK in the presence of ATP and c-Jun substrate in wildtype or Prkcz -/- mice. The amount of phosphorylated c-Jun (S73) was detected

via immunoblots. (E) Total protein levels for phosphorylated c-Jun (S63) was determined in wildtype or Prkcz -/- mice. Immunoblots were reprobed with total c-Jun as a

loading control. Relative quantification is depicted below the blot. (F) Relative mRNA levels of MT1F, PDE3A, NFATC2, and CCND1 were determined by RT-PCR and

normalized to GAPDH as a loading control. Results are presented from at least four mice for in vivo experiments or three independent in vitro primary cell culture

experiments per condition; error bars denote mean ± SEM. Significant difference (p<0.05) was determined by Student’s t-test. �(p<0.05), ��(p<0.01).

https://doi.org/10.1371/journal.pone.0219572.g005
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Discussion

Tissue repair and regeneration after injury requires multiple processes including the integra-

tion of polarity, which is the positional identity cue of a cell, with preexisting structures. The

establishment of epithelial polarity is necessary to repress proliferation and promote differenti-

ation during the wound healing process. However, the mechanistic contribution of apical

polarity regulators following radiation damage has not been fully elucidated. Here, we demon-

strate that a cell polarity regulator, PKCz and downstream JNK signaling, mediate radiation-

induced compensatory proliferation in murine parotid glands.

JNK has been implicated in compensatory proliferation, regeneration, as well as, apoptosis

[13,32,33]. The dual roles of JNK signaling as a mediator of apoptosis or as a mediator of cell

proliferation raises the question of how one of these downstream outcomes become favored in

a temporal manner following radiation damage. Some insights to this question can be gleaned

from previous work on the apoptotic response of irradiated salivary glands, whereby apoptosis

can be detected as early as four hours after radiation treatment, peaks at 24 hours, and returns

to basal levels by 72 hours [41–44]. In contrast, the current study demonstrates that radiation-

induced JNK signaling is observed at day 5 post-radiation, a time point beyond the apoptotic

response and the beginning of the compensatory proliferation response. Although the exact

mechanism controlling the balance between apoptosis and proliferation is unclear, the identifi-

cation that PKCz can modulate JNK signaling sheds some light on this process since radiation

induces the decrease in pPKCz (T560) at day 5 post-irradiation. Given that PKCz is essential

for tissue regeneration and re-establishment of salivary function, development of therapeutic

strategies to increase active PKCz serves as a promising approach to combat harmful side

effects of radiotherapy in patients with head and neck cancer.

The upregulation of JNK signaling observed in this study parallels a study where subman-

dibular glands from rats irradiated with 20Gy displayed elevated pJNK on day 7 in comparison

to untreated mice [45]; however, the authors did not evaluate potential upstream regulators.

Here, we demonstrate that PKCz could regulate JNK signaling and proliferative transcripts uti-

lizing an in vitro PKCz pseudosubstrate inhibitor (PPI) or Prkcz-/- mice. While activation of

JNK promotes intestinal stem cells to proliferate and replenish damaged cells [46], aberrantly

high or prolonged JNK signaling results in accumulation of mis-differentiated cells and neo-

plastic transformation involving excess proliferation [47]. Perhaps, radiation-induced JNK sig-

naling is preventing salivary restoration through the disruption of the differentiation process

in a similar manner as intestinal cells. Others have suggested that disruption of polarity can

activate JNK signaling through a Rho-associated coiled-coil kinase (ROCK)-dependent axis

[39], while disruption of Scribble, another polarity regulator, eliminates aberrant cells via upre-

gulation of JNK-regulated endocytosis [48]. It was previously shown that radiation damage

can upregulate ROCK signaling [36], which suggests that activation of ROCK signaling follow-

ing PKCz disruption may provide additional signals that lead to compensatory proliferation in

a positive feedback loop. This suggests the possibility of multiple signaling axes that result in

compensatory proliferation and whether the ultimate outcome is beneficial (restoring cell

numbers) or detrimental (neoplasia, loss of differentiation) depends on cellular context.

Studies in Drosophila suggest a relationship between disrupted polarity (such as PKC and

Scribble) and the promotion of uncontrolled proliferation [7,39], while restoration of polarity

helped reestablish tissue integrity [49–51]. Here, we have identified that radiation reduces the

levels of pPKCz without altering total levels of components within the apical complex (Fig 1).

The decrease in pPKCz correlates with an increase in radiation-induced proliferation that is

maintained to day 30 (Fig 2), suggesting a continual loss of apical polarity may provide cues

that the wound healing process is incomplete. In addition, influences from the surrounding
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parenchyma, might also promote the radiation-induced proliferation response. Genetic

ablation of Prkcz -/- in mice results in elevated proliferation regardless of radiation treatment

similar to radiation-induced compensatory proliferation in wildtype control mice (Fig 2:

comparison between Wild Type D5IR and Prkcz -/- UT). This strongly suggests that proper

regulation of PKCz is necessary to repress radiation-induced compensatory proliferation.

Future research into understanding why and how decreased pPKCz persists to day 30 could

provide insights into why the salivary glands fail to restore function following radiation

treatment.

While compensatory proliferation is an evolutionarily conserved mechanism that is critical

in repopulating damaged tissue, improper signaling can inadvertently stimulate excessive pro-

liferation and loss of differentiation [12,52–55]. Further understanding of how the epithelial

cells and parenchyma respond to the context-specific, spatiotemporal integration of signaling

inputs and outputs upon radiation damage could provide a better understanding of how to

regulate compensatory proliferation.
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