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The benefits attributed to mesenchymal stem/stromal cells (MSC) in cell therapy applications are mainly attributed to the secretion
of factors, which exhibit immunomodulatory and anti-inflammatory effects and stimulate angiogenesis. Despite the desirable
features such as high proliferation levels, multipotency, and immune response regulation, there are important variables that
must be considered. Although presenting similar morphological aspects, MSC collected from different tissues can form
heterogeneous cellular populations and, therefore, manifest functional differences. Thus, the source of MSC should be a factor to
be considered in the development of novel therapies. The following text presents an updated review of recent research outcomes
related to Wharton’s jelly mesenchymal stem/stromal cells (WJ-MSC), harvested from umbilical cords and considered novel and
potential candidates for the development of cell-based approaches. This text highlights information on how WJ-MSC affect
immune responses in comparison with other sources of MSC.

1. Introduction

Mesenchymal stem/stromal cells (MSC) are increasingly
viewed as sources of cell therapy applications due to their
known immunomodulatory and anti-inflammatory effects
and capacity to stimulate angiogenesis. Despite the desirable
features such as high proliferation levels, multipotency, and
immune response regulation, there are important variables
that must be considered. Although presenting similar mor-
phological aspects, MSC collected from different tissues can
form heterogeneous cellular populations and also manifest
tissue-specific functional differences. Thus, the source of
MSC should be a factor to be considered in the development
of novel therapies. The following text presents an updated
review of recent research outcomes related to Wharton’s jelly
mesenchymal stem/stromal cells (WJ-MSC), harvested from
umbilical cords and considered novel and potential candi-
dates for the development of cell-based therapies. This text

highlights information on how WJ-MSC affect immune
responses in comparison with other sources of MSC. Some
of the challenges to be addressed in order to overcome
hurdles associated with the therapeutic application of these
cells are also included.

2. The Umbilical Cord Is the Source of
Wharton’s Jelly

Wharton’s jelly (WJ) can be generally described as the
mucoid connective tissue that encloses the three umbilical
vessels, one vein and 2 arteries, being surrounded by a single
layer of amniotic epithelial cells, which constitute the human
umbilical cord [1]. Recently, the ongoing interest in umbilical
cords as a useful source of MSC encouraged further investi-
gation on these tissue structures. WJ is currently divided into
three main zones based on their histological appearance: (a)
the subamnion with a sparse population of fibroblast-like
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cells; (b) the intervascular region, a matrix of connective tis-
sue predominantly made from collagen I, which concentrates
the greatest proportion of WJ-MSC; and (c) the perivascular
layer that surrounds the umbilical vessels (Figure 1) [2, 3].
WJ-MSC derived from different parts of the same umbilical
cord are equally valuable sources for use in cell therapy [4].
Of note, WJ-MSC are different from the hematopoietic stem
cells found in the umbilical cord blood [5]. Moreover, as
other authors already described [3], WJ is seeded by distinct
sources of mesenchymal/stromal cells during the embryolog-
ical development. These cell subsets express not only relevant
markers that characterize both WJ-MSC and perivascular
cells but possibly also the main source of progenitor cells that
populate the WJ [6].

3. Benefits of Using WJ-MSC

MSC are considered a potential tool for cell therapy. The
“gold standard” bone marrow-derived MSC (BM-MSC)
are the most used in clinical trials but have shown mixed
results [7–12]. Furthermore, their use is not always recom-
mended due to the techniques needed to obtain the cell.
BM-MSC are isolated from bone marrow aspirate; this is
an invasive procedure and painful for the patient and is
accompanied by a risk of infection, possibility of donor
morbidity, differences in donor age, and still change or
loss of in vitro proliferative and differentiation cellular
capacity [13, 14].

Alternative sources where isolation is easier, like adipose
tissue (AT) andWJ [15], should be and are being considered.
AT is an autologous source of cells though some concerns
like donor age and risk of infection are the same when
compared to bone marrow (BM) [16]. Other alternative
sources are, for example, dental pulp [17] and menstrual
blood (reviewed in [18]), a well-recognized source of MSC
known since 2004. The umbilical cord is usually discarded,
mitigating the risks associated with the invasive procedures
needed to isolate MSC from BM [16]. With few ethical con-
cerns, WJ is considered an easily accessible source of MSC.

WJ-MSC have been compared not only with BM-MSC but
also with AT-MSC (adipose tissue-MSC) and MSC derived
from menstrual blood [19] and in most cases, show higher
proliferative capacity. In addition, WJ-MSC are very young
cells derived from a protected neonatal tissue that has suf-
fered less environmental interference, namely, the effects on
the tissues resulting from disease history and life style, a fact
that helps the acquisition of a more uniform cell cohort,
which may favor their therapeutic application. However,
the outcome of functional tests in vitro indicates that they
too exhibit limited lifespans and variable immune suppres-
sion potentials [20–23]. WJ-MSC are less prone to develop
defective functions that can accumulate throughout a cells’
lifespan due to aging and the lifetime exposure to environ-
mental factors [24]. It is important to take into account that
quality control for these cells should follow specific criteria
such as selecting samples from healthy donors of full-term
pregnancies, women over 18 years of age, water broken for
no longer than 18h, and the expectant mother must have
had at least two consultations during pregnancy and should
not present fever or infection at time of birth. Maternal serum
screening before delivery should include hemoglobin electro-
phoresis and serology for prevalent viruses and parasites.

Several reports describe MSC as immune privileged or
hypoimmunogenic cells, a status likely enhanced by
immunologically protected neighbouring sites, the placenta
and the foetus itself [25]. In fact, they express low levels
of MHC class I and costimulatory CD40, CD80, and
CD86. They also lack expression of MHC class II mole-
cules [24, 26, 27], in spite of the observation of an upreg-
ulated HLA-DR expression on BM-MSC after treatment
with IFN-γ, but not with TNF-α. Nevertheless, differing
from BM-MSC HLA-DR expression, the same authors did
not detect the effect on WJ-MSC [28]. WJ-MSC exhibit
enhanced expression of immune suppression proteins, nota-
bly leukocyte antigen G6 (HLA-G6) known to have an
important role in avoiding immune-based responses against
the embryo, indoleamine-2,3-dioxygenase (IDO), and pros-
taglandin E2 (PGE2) [29].
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Figure 1: Human umbilical cord structure. Schematic image showing umbilical cord anatomical compartments, including Wharton’s jelly.

2 Stem Cells International



An important point for consideration is the fact that
therapeutic applications involving MSC require an initial
in vitro expansion step prior to their use and generally
hundreds of millions of cells are used per treatment. It has
been shown that several passages in vitro leads to a decrease
in BM-MSC self-renewal capacity measured by telomere
length shortening and increase in senescence markers [30].
Studies usually evaluate the immunomodulatory capacity of
MSC from different sources only in early passages, and few
data in the current literature is available on their behavior
after passaging in vitro until enough numbers of cells are
obtained for use in cell therapy [31, 32]. One study compar-
ing AD-MSC and BM-MSC from passage 4 to passage 10
showed that they had similar cell morphology, surface
marker expression, and immunomodulatory properties, even
though gene expression was different [33]. Despite a higher
lifetime in vitro, renewal of WJ-MSC ultimately will also lead
to cell arrest and replicative senescence and the result will be
the loss of stem cell functionality, even though the senescent
cells remain alive [34–36]. We previously observed [20] that
WJ-MSC from different donors exhibited different lifespans,
as measured by senescent phenotype, number of passages,
and expansion potential. Moreover, each WJ-MSC sample
presented a unique behavior, differing in patterns of cytokine
mRNA expression and immunomodulatory properties [37].
Thus, we believe that careful evaluation of senescence
markers after repeated passaging plus monitoring of the
immunosuppressant potential of each harvested cell must
be included in quality control before therapeutic use.

4. Therapeutic Uses Based on the
Immunomodulatory Effects of MSC:
Comparing WJ-MSC with BM-MSC

When a tissue is damaged, inflammation occurs and tissue-
resident MSC and even BM-MSC are mobilized to the lesion
site [29, 38]. Because of their multipotency, it was believed
that recruited MSC differentiated into functional cells to
replace the damaged ones. However, this occurrence has
eluded researchers. Studies using autologous cells mainly
from bone marrow and adipose tissue and/or allogeneic cells
from umbilical cord blood have shown that after infusion
transdifferentiation of MSC into functional cells in tissues
rarely occurs if at all [39]. In turn, it has become increasingly
clear that in response to an inflammatory milieu, MSC pre-
pare the microenvironment for tissue repair by producing
immunoregulatory molecules that modulate the progression
of inflammation, releasing growth factors to produce extra-
cellular matrix [40], stimulating the in situ progenitor cells
to differentiate and replace lost cells [41], and promoting
angiogenesis [42]. The apparent incongruity between the
benefit achieved and the lack of differentiation of the
recruited MSC into specialized tissue cells has led to the
unraveling of the surprising immunosuppressive capacity of
MSC from many different sources [43–48].

By now, it is well known that the most promising benefits
of therapy with MSC occur in patients presenting inflamma-
tory or autoimmune diseases [49, 50]. Thus, the MSC immu-

nomodulatory effects may play an important role in the
improvement of autoimmune diseases like systemic lupus
erythematosus [51, 52], type 1 diabetes mellitus [53], and
multiple sclerosis [54, 55]. Ringden and Le Blanc showed
that treatment using an allogenic source of MSC from
umbilical cord blood (UCB-MSC), not WJ-MSC, was able
to reverse partially or totally GVHD in 50% of patients
[56]. In addition, the group headed by Krampera et al.
[57] and other researchers [45, 58, 59] sought to unveil
the immunomodulatory mechanisms of BM-MSC, con-
firming their effect on proliferation and antigen-specific
responses by T lymphocytes.

WJ-MSC also appear to show a robust immunomodula-
tory potential [22]. A comparative study using MSC derived
from whole human umbilical cord (MC-MSC) WJ-MSC
and BM-MSC showed that MC-MSC proliferated faster and
survive longer in culture than WJ-MSC; however, they have
similar immunomodulatory potential [60]. Another study
comparing BM-MSC and WJ-MSC demonstrated that
inflammation affects the immune properties of MSC sources
in different ways. Priming BM-MSC enhanced the suppres-
sion of phytohemagglutinin (PHA) mitogen-stimulated T
cells only, whereas IFN-γ-primed WJ-MSC were better
suppressors of MLR (mixed lymphocyte reaction) [28].
BM-MSC, WJ-MSC, and AT-MSC were all capable of sup-
pressing T cell proliferation [61, 62]. However, high levels
of IL-17A were detected in WJ-MSC cocultures, which is
one of the key mediators in the treatment of graft-versus-
host disease [61]. In a murine experimental autoimmune
encephalomyelitis (EAE) model, WJ-MSC treated with
IFN-γ increased regulatory T (Treg) cell proliferation and
decreased the secretion of inflammatory cytokines in EAE
mice, reducing the symptoms of the disease [63].

Of note, human fetal bone marrow (FBM-MSC) and
WJ-MSC have biological advantages as compared to adult
cells [62]. WJ-MSC have a gene expression pattern similar
to AT-MSC but not FBM-MSC. Beyond that, genes associ-
ated with cell adhesion, proliferation, and immunomodula-
tory function are increased in WJ-MSC as revealed by gene
ontology. WJ-MSC intrinsically overexpress genes involved
in neurotrophic support when compared to BM-MSC, which
makes WJ-MSC an interesting candidate for cell therapy in
neurodegenerative disorders [64].

5. MSC Exert Comprehensive Effects on Cell-
Mediated Immune Responses

MSC can interact with and regulate the activation and func-
tion of immune cells, such as T and B lymphocytes [65, 66],
dendritic cells (DC) [67], and monocytes/macrophages
[68]. The effects of MSC on the immune system are generally
anti-inflammatory and are achieved by different, but comple-
mentary mechanisms.

Nicola et al. showed that human BM-MSC are capable of
suppressing T cell proliferation in a mixed lymphocyte reac-
tion (MLR) or when T cells are activated by phytohemagglu-
tinin (PHA) [45]. WJ-MSC suppress mitogen-induced T cell
responses to a greater extent than either BM-MSC or AT-
MSC [28]. Recently, our group showed that different samples
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of human WJ-MSC were capable of inhibiting mitogen-
activated CD3+ T cell proliferation, although to different
extents, though the immunomodulatory profile of each WJ-
MSC was essentially maintained even after 10 passages [37].
Another mechanism involved in immune suppression is T
cell anergy. BM-MSC can induce T cell anergy by suppress-
ing cyclin D2 expression and inhibiting CD4+ and CD8+ T
cell proliferation by producing nitric oxide [69, 70]. BM-
MSC are also capable of regulating the immune response by
the induction of Treg, and it has been reported that they
can induce T cell apoptosis via the Fas/FasL pathway. The
apoptotic cells will stimulate macrophages to secrete high
levels of TGF-β, which in turn will generate Treg cells [71].
Our preliminary results (unpublished data) showed that
WJ-MSC were also able to induce Treg cells when cocultured
with PBMC and treated with IFN-γ. BM-MSC also affect B
cell functions, inhibiting the proliferation of activated B cells,
their antibody production, and their chemotactic behavior
[72]. BM-MSC have been shown to interfere in differentia-
tion, maturation, and function of DC [67]. For example, in
coculture, DC lose their ability to induce T cell activation
[73–75]. Likewise, the differentiation of monocytes into
mature DCs was inhibited and costimulatory ligand expres-
sion was blocked when cultured with WJ-MSC [76]. Taken
together, the available literature indicates that WJ-MSC pos-
sess immunological features comparable to the better studied
BM-MSC and even to MSC from other sources, but further
detailing is needed to find the best therapeutic indications
for this allogeneic source of cells as a substitute for the autol-
ogous BM-MSC and AT-MSC. The fact thatWJ-MSC consti-
tute an allogeneic therapy may in fact favor these cells in
certain pathologies where the immunosuppressive response
is urgent and should encompass cell and humoral responses.

An additional twist in this rationale is the observation
that MSC, both in vitro and in vivo, seem capable of adopting
a pro- or anti-inflammatory phenotype. Similar to the
phenotype-switching phenomenon in macrophages mas-
sively explored throughout the literature and reviewed else-
where [77, 78], MSC are also sensitive to shifts in the local
immune milieu. Disruption towards an excessive concentra-
tion of proinflammatory cytokines such as IFN-γ and TNF-α
activates signalling pathways by way of sensors present on
human BM-MSC, causing a shift to the MSC2 phenotype
and playing an important role in the downregulation of
immune cells and their corresponding proinflammatory
mediators [79]. In contrast, to switch to a MSC1-type profile,
an anti-inflammatory microenvironment is required and
MSC1 will not only express lower levels of immunosuppres-
sive genes including IDO, NO, and PGE2 but will also be a
major source of proinflammatory molecules, which will
recruit and activate immune cells by secreting IL-6 and pro-
ducing IL-1α and IL-1β [78]. BM-MSC, under conditions of
hypoxia and stimulated with proinflammatory cytokines
such as IFN-γ, TNF-α, and IL-1β, increase the expression
of Toll-like receptors TLR2, TLR3, and TLR4, rendering
these cells more sensitive to the inflammatory medium
[80]. Waterman et al. showed that BM-MSC acquired two
distinct phenotypes after stimulation with TLR3 and TLR4
ligands and accordingly, resulted in different immunomodu-

latory effects. Indeed, LPS-stimulated BM-MSC (TLR4
ligand) exhibited a proinflammatory profile (MSC1) in con-
trast with the polyI:C stimulated BM-MSC (TLR3 ligand)
that showed an anti-inflammatory profile (MSC2) [79]. The
same group also showed that BM-MSC induced into express-
ing theMSC1 profile attenuate cancer cell growth while when
the same cells exhibit a MSC2 phenotype, they act similarly
to conventional MSC in promoting tumor growth and
metastases [81].

The bottom-line result of MSC switching to a type 1
profile is ultimately an overall immune modulation oppos-
ing the local environment [78]. In an inflammatory milieu,
the induction of a type 2 MSC will lead to the regulation
of excessive immune responses at the focal point of injury,
the desirable scenario to heal damaged tissue, sponsored
and facilitated by MSC plasticity.
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