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From the 1930s through the 1940s, Lowell Reed and Wade Hampton Frost used mathematical models and

mechanical epidemic simulators as research tools and to teach epidemic theory to students at the Johns Hopkins

Bloomberg School of Public Health (then the School of Hygiene and Public Health). Since that time, modeling has

become an integral part of epidemiology and public health. Models have been used for explanatory and inferential

purposes, as well as in planning and implementing public health responses. In this article, we review a selection of

developments in the history of modeling of infectious disease dynamics over the past 100 years. We also identify

trends in model development and use and speculate as to the future use of models in infectious disease dynamics.

infectious disease; mathematical modeling; public health policy

Abbreviations: AIDS, acquired immunodeficiency syndrome; CRS, congenital rubella syndrome; HIV, human immunodeficiency

virus.

From the 1930s through the 1940s, Lowell Reed andWade
Hampton Frost used mathematical models and mechanical
epidemic simulators as research tools and to teach epidemic
theory to students at the Johns Hopkins Bloomberg School of
Public Health (then the School of Hygiene and Public Health)
(1, 2). Though never published by Reed and Frost (versions of
the model were eventually published by their students (3, 4)),
their model was one of the first mechanistic models of infec-
tious disease transmission, and at a time long before digital
computing, theymay have been the first to use simulationmeth-
ods to understand the epidemic process. Reed and Frost were
pioneers in the study of infectious disease dynamics using
mechanistic models, afield of epidemiology that has developed
in parallel with the associative statistical models andmethods of
causal inference that dominatemuch of epidemiologic research.
Over the past century, mechanistic models have played an es-
sential role in shaping public health policy, the way we study
interventions aimed at controlling infectious diseases, and the
theory on which disease control is based.

Mechanistic models differ from traditional statistical mod-
els such as regression models because their structure makes
explicit hypotheses about the biological mechanisms that
drive infection dynamics. Such hypotheses range from simple

representations of the time it takes to complete some part of
the disease process (e.g., Sartwell’s lognormal representation
of the incubation period (5)) to complex agent-based models
that attempt to explicitly represent social interactions of peo-
ple in an entire country (6, 7) or even the world (8). Regard-
less of scale, approach, and complexity, these models have
more of the flavor of models in physics than the statistical
models that are used in other branches of epidemiology, and
in many cases they can be used to predict the effectiveness of
hypothetical interventions in controlling disease spread.

DISEASE CONTROL

Perhaps the first mechanistic model of infectious disease
transmission used in assessing intervention strategies was a
mathematical model of malaria transmission developed and
refined by Ronald Ross in a series of papers published be-
tween 1908 and 1921 (9–11), pre-dating the work of Reed
and Frost by decades. This model had a direct and powerful
message for public health: Malaria could be controlled and
even eliminated through mosquito control, even if the vector
could not be completely eliminated. Ross used his theoretical
framework to develop and advocate for multiple indices,
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including the prevalence rate and the entomological inocula-
tion rate (12), that could effectively characterize the intensity
of transmission in an area and identify goals for control. In the
wake of the founding of the Global Malaria Eradication Pro-
gram by the World Health Organization, George Macdonald
(13) extended Ross’s work in order to justify the use of insec-
ticide as a tool for global malaria eradication (14). In partic-
ular, he showed that increasing daily mosquito mortality from
5% to 45% would be adequate to eliminate malaria even in
locations with the highest transmission intensities in Africa.
Mechanistic models continue to play an important role in the
fight against malaria. The work of Ross and MacDonald
looms large to this day, with a recent review finding that
the majority of models published since 1940 depart from cen-
tral hypotheses of the Ross-MacDonald model in only a few
key assumptions, if any (15).
Although there are numerous instances over the past cen-

tury in which mechanistic models have contributed to the
control of a single disease (see Figure 1 for some examples),
their larger contribution may be in our general understanding
of disease control. The prime example is the concept of herd
immunity and the critical vaccination threshold. Herd immu-
nity is the indirect protection offered to members of the pop-
ulation susceptible to the disease (i.e., not immune and with
the potential to be infected) by the immunity of surrounding
individuals, and the critical vaccination threshold is the per-
centage of the population that must be vaccinated in order for
the introduction of an infectious case to not spark an epi-
demic (16). To estimate the critical vaccination threshold, we
must first understand one of the most critical concepts of in-
fectious disease dynamics, the basic reproductive number,
R0. R0 is the number of cases that a single infectious individ-
ual is expected to cause in a fully susceptible population. This
concept was first introduced in demography and underwent
significant development by Lotka while on a visit to the
Johns Hopkins University School of Hygiene and Public
Health in 1925 (see Heesterbeek (17) for a full history of
the development of R0 in infectious disease). Although this
value does vary by setting, for many pathogens it is remark-
ably consistent across contexts and serves as a rough quanti-
fication of pathogen transmissibility. Based on dynamic
models, it has been shown that if we vaccinate a proportion
of the population equivalent to 1 − 1/R0, then the pathogen
will fail to spread in that population. This is the critical vac-
cination threshold, and it has helped to set vaccination goals
for a number of diseases, particularly when elimination is
the goal.
However, the dynamics of vaccines in real populations are

complex, and mechanistic models have helped us to under-
stand what to expect after changes in vaccination policy.
For instance, immediately after the introduction of a vaccine
or improvement in vaccination rates, a disease may appear to
be eliminated from a population. However, this long honey-
moon period may be followed by a large, resurgent, outbreak
that bigger than the yearly epidemics seen before the intro-
duction of vaccination (though the cumulative number of
cases is still less than what would have been seen without
vaccination) (18). These results have helped public health of-
ficials to understand that initial apparent vaccine successes
may not last, as well as what to expect after introducing a

new vaccine. Mechanistic models have also been used to un-
derstand the optimal age range for vaccination campaigns
(19, 20), how such campaigns should be timed (21), and
how best to use vaccines when supplies are limited (20, 22).
Models have also been used to design active response strategies
for vaccine use, including ring vaccination strategies such as
those implemented in the smallpox eradication campaign
(23). Models were also used to assess strategies to respond to
a bioterrorist release of smallpox in the early part of the 21st
century and were influential in setting policy for response
(24–27).
One counterintuitive prediction of mechanistic models is

that in rare cases, increased population immunity from vacci-
nation can actually increase the incidence of severe disease.
The poster child for the phenomenon is congenital rubella
syndrome (CRS). For most people, rubella infection causes
a relatively minor infection characterized by fever and rash;
however, when pregnant women are infected during the first
trimester of pregnancy, it cause CRS, which results in severe
complications of pregnancy including congenital disorders
and death of the fetus (28). Because vaccination increases
the average age of infection (by decreasing the hazard of in-
fection), a vaccination program that does not achieve sufficient
coverage can increase the number of pregnant women who are
infected, thereby increasing incidence of CRS (29). This is not
simply a theoretical concept; although there have been no sus-
tained increases in the incidence of CRS (in part due to the pub-
lic health response), both Costa Rica and Greece experienced
transient increases in CRS burden after rubella vaccination
(30, 31). In light of the threat of CRS, mechanistic models
have played an important role in setting World Health Organi-
zation recommendations for the introduction of a rubella vac-
cine. These recommendations encourage countries to wait to
introduce the vaccine until measles vaccination rates (measles
and rubella vaccines are usually given together) are high
enough to guarantee a reduction in CRS cases and to strongly
consider vaccination campaigns in women of childbearing
age before the vaccine is introduced (32).
Vaccination is only1of a suite of controlmeasures.Another

that is of particular importance in the control of macroparasite
infections is mass drug administration. A key difference be-
tween microparasite and macroparasite dynamics is the huge
variation in transmission potential of human hosts, with some
individuals experiencing huge pathogen loads that contribute
disproportionately to transmission within populations (33).
Here, strategies have taken an eye toward reducing overall pop-
ulation burdens of macroparasites, including targeting those
with the highest burdens. Theoretical explorations of the im-
pact of heterogeneity in transmissibility have helped inform in-
terventions and aided in the development of theory exploring
the impact of heterogeneities in microparasites (34).

SURVEILLANCE

Over the years, mechanistic models have played an impor-
tant role in the interpretation of surveillance data. In the early
days of the human immunodeficiency virus (HIV) epidemic,
there was massive uncertainty about how many cases of HIV
actually existed because it took years, or even decades, for
HIV to progress to acquired immunodeficiency syndrome
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(AIDS). Ron Brookmeyer (35) used the incubation period
distribution of HIV to “back calculate” the number of HIV
infections that must have occurred over the previous course
of the epidemic and predict the number of future HIV/AIDS
cases in those already infected with HIV. He thereby linked
an observable quantity (the number of AIDS cases) with an
unobservable one (the number of people living with HIV).
Longini et al. (36) then fit a more mechanistic model of dis-
ease progression to data from HIV-infected individuals in the
United States Army, achieving similar results by explicitly
representing the biological process. When attempting to esti-
mate global mortality from measles infection, Simons et al.
(37) used a state-space model (i.e., a hidden Markov model)
which linked an underlying model of measles epidemic dy-
namics (the process model) with nationally reported measles
incidence via an observation model (38). They thereby were
able to estimate the extent to which national reports underes-
timated measles cases by reconciling these reports with what
was likely given birth rates and a known epidemic process.

EMERGING PATHOGENS

Planning for so called “black swans,” which are unlikely
but catastrophic events, is essential to ensuring security and
population health. The prime example of an infectious dis-
ease black swan is the 1918 influenza pandemic, which is

estimated to have killed 50–100 million people in 2 years
(39). Governments and policy makers depend on simulations
built on mechanistic models to decide the extent of these
threats and what can be done to confront them. For the past
decade and a half, there have been ongoing concerns that one
of several strains of influenza A that have been known to infect
humans from domestic poultry (H5N1, H9N2, etc.), might de-
velop the ability to transmit efficiently in humans and cause a
major pandemic. H5N1 strains are seen as particularly concern-
ing because of their high case fatality rate and the substantial
increase in the number of human cases (particularly in South-
east Asia) that started in 2003 (40). Independent teams of dis-
ease modeling experts developed sophisticated agent-based
models of potential emergence events to determine whether ef-
fective antiviral agents could be used to contain an emerging
influenza at the source (6, 41). These models showed that
under reasonable expectations of the transmissibility of an
emerging influenza (i.e., R0 in the 1.5–2.0 range), containment
was possible, though perhaps not practical, as it would require
the deployment of millions of courses of antiviral medication,
very early detection of the disease, and rapid response. In par-
allel work, groups considered how the impact of a pandemic
could bemitigated in theUnited States if the initial containment
attempt was unsuccessful (42–44). The efforts of independent
groups showed that something more than social-distancing
measures (e.g., school closure, case isolation) would be needed
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Figure 1. Milestones in mathematical modeling and modeling to inform public policy, from En’ko’s development of a model of transmission (88) to
the use of models to predict the impact of interventions. FMD, foot andmouth disease; HIV, human immunodeficiency virus; HPV, human papilloma
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to control a pandemic and that effective antivirals could help. In
part on the basis of this work, the United States and other coun-
tries decided to stockpile antivirals to combat a future pan-
demic, a decision that has since been criticized by some (45).
However, these criticisms have been focused on concerns
about the efficacy of the stockpiled antiviral drugs (46) rather
than the results of the modeling work itself.
The question of the probability of H5N1 influenza evolv-

ing to become transmissible in humans has itself been the
focus of mechanistic modeling (47). After 2 research groups
had identified 2 different sets of mutations to the H5N1 virus
that would be sufficient to allow airborne transmission in a
mammalian host (48, 49), Russell et al. (47) developed a
mathematical model of the within host dynamics of influenza
evolution. Although the authors were unable to confidently
estimate the probability of the emergence of a pandemic
H5N1 strain because of uncertainties about the underlying
biological processes involved, they were able to identify
the biological factors on which this probability would most
strongly depend and recommend studies (e.g., deep sequenc-
ing of viral samples from H5N1-infected hosts) that might
help to developmore precise predictions. There has been con-
siderable debate surrounding the ethics of gain-of-function
experiments for H5N1 influenza (50), but if such experiments
are to be justified, they must provide us a way to have ad-
vanced warning of a coming pandemic, a task that may only
be possible through mechanistic models. However, to be suc-
cessful, these models will require substantial additional
theoretical work on how viral evolution interacts with the dis-
tribution of immunity in the population.
In the event that an outbreak of an emerging disease does

occur, mechanistic models are one of the first tools used to
characterize the threat and plan a response. When a pandemic
influenza strain emerged in 2009, it was critical to quickly
assess whether it had the potential to cause illness with high
rates of fatality, like the virus that emerged in the pandemic of
1918, or was a more mild disease, akin to what was seen in
the pandemics of 1957 and 1968. Initial assessments relied
heavily on dynamic models of a variety of types, including
phylogenetic techniques paired with demographic models,
models based on the probability of the observed number of
introductions of pandemic H1N1 into populations outside
of Mexico, analysis of epidemic curves, and the results of
detailed investigations of early outbreaks (51, 52). Analyses
by a number of groups quickly showed that the emergent
pandemic H1N1 virus was behaving very much like already-
circulating strains, and although it was still potentially a
significant public health threat, it was unlikely to have a qual-
itatively different impact on mortality or morbidity than cir-
culating influenza strains.
In addition to its role in the response to the 2009 influenza

pandemic, mechanistic modeling has played a role in the re-
sponse to most of the emerging disease threats of this century,
from foot and mouth disease in the United Kingdom (53), to
severe acute respiratory syndrome coronavirus (54), to Mid-
dle East respiratory syndrome coronavirus in Saudi Arabia
(55), to Ebola in West Africa (56). The last of these shows
both the power of mechanistic approaches and the dangers
of its misuse. In the summer and fall of 2014, the number
of Ebola cases in West Africa was continuing to grow, and

it was unclear how severe the epidemic would eventually be-
come. To address this issue, as well as the threat of spread to
other countries, a number of modeling exercises were con-
ducted (e.g., Gomes et al. (57)). Of particular note was a
model released by the Centers for Disease Control and Pre-
vention that predicted that, without further intervention, 1.4
million cases of Ebola would occur in Liberia and Sierra
Leone by mid-January 2015 (58). This did not come to
pass, and although the authors noted that such long-term pro-
jections were tenuous, the media and many in the public
health community made much of this number. Of course in-
terventions and behavior change did occur, but the authors
had also made tenuous assumptions about how the popula-
tions of Liberia and Sierra Leone mix together, essentially
treating each country as a homogenous entity. In contrast,
the World Health Organization Ebola Response Team, who
also made projections based on an unconstrained epidemic,
declined to forecast further than 2 months into the future
(56), and though theirs was a moderate overestimate of total
cases, they avoided publishing any panic-inducing over-
estimations (they projected approximately 20,000 cases by
November 2, 2014; approximately 13,000 actually were re-
ported by that point) (59). Forecasting the course of disease
spread is difficult to do well, particularly in the context of an
active response. It also may be the least of what mechanistic
approaches to disease epidemiology have to offer. The afore-
mentioned work, particularly that of the World Health Orga-
nization Ebola Response Team, also characterized important
aspects of Ebola’s natural history and epidemiology, includ-
ing its basic reproductive number (R0), the decline in R over
the course of the epidemic, the incubation period, and the se-
rial interval, properties of the disease that will be important to
understand should it re-emerge.
Mechanistic and mathematical approaches aid not only in

the response to particular diseases but also in illuminating
basic epidemiologic principles and important parameters
that dictate whether a novel (or existing) pathogen can be con-
trolled. In a 2004 paper, Fraser et al. (60) confronted the ques-
tion of why severe acute respiratory syndrome coronavirus
was successfully contained, whereas influenza, HIV, and nu-
merous others were not. They were particularly interested in
the effectiveness of the tools available when first confronting
a novel pathogen: contact tracing, isolation, and quarantine.
They presented evidence that a critical determinant of the
controllability of a pathogen is the amount of transmission
that occurs before symptom onset, expressed by their param-
eter θ. Pathogens that had a low proportion of all transmission
occurring before symptom onset are easier to control because
symptomatic individuals can be targeted with isolation or
pharmaceuticals before they transmit to others.

PREDICTION/FORECASTING

Although forecasting is difficult, particularly in the re-
sponse to an emerging disease threat, it remains a major
goal of the disease-modeling community. Because disease
reporting is often delayed, forecasting includes not only pro-
jections into the future but also “now casting” of incidence
based on more readily available information. This has led
to a number of approaches in which models have been used
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to either process a data stream that is a proxy of the data of
interest but available more quickly (e.g., Google FluTrends)
(61) or in analyses of ongoing outbreaks to assess (with
available data) what might be the current situation given
the limitations of the observation process and temporal lags
in both reporting and outcomes being generated (e.g., cal-
culating case fatality rates for the severe acute respiratory
syndrome coronavirus and Middle East respiratory syndrome
coronavirus outbreaks when many patients had yet to re-
solve) (55, 62).

At a larger time horizon, several efforts have attempted to
forecast the impact of interventions on future incidence. One
of the most successful was a project that forecasted the impact
of respiratory syncytial virus immunization campaigns on the
temporal pattern of incidence in the United States. Usingmech-
anistic transmission models, Pitzer et al. (63, 64) made detailed
predictions of the impact of vaccination on the multiannual dy-
namics of rotavirus, as well as the impact of the vaccine on
genotype circulation. These forecasts of broad qualitative im-
pacts of interventions are critical tests of models. Detailed
prospective predictions of changes that will occur with changes
in health policy, which are then validated, will provide the best
evidence of the utility of mechanistic models in the future.

STUDY DESIGN AND INTERPRETATION

Dependent happenings is the term coined by Ronald Ross
(10) to capture the fact that for infectious diseases, an individ-
ual’s risk of infection depends on the disease status of those
around them (65). This presents challenges for trial design
and the interpretation of observational studies. Cluster random-
ization and adjustment for intra-class correlation can be used to
account for this effect in some cases (66), but mechanistic
models are often useful in trial design or in interpretation of
results when cluster randomization is imperfect or impossible.
Under these conditions, simulations studies have been used to
help in study design settings, including vaccine studies (67, 68)
and combination approaches to HIV prevention (69).

Mechanistic models have been particularly revealing for
studies of vaccine effectiveness. For example, a naïve ap-
proach would be to consider that all vaccines acted in the
same way, providing complete protection for some fraction
of the population. However, in reality vaccines may be leaky
and provide protection only in some dimensions (65). Vac-
cines may prevent infection all together (e.g., the measles
vaccine) (70), offer protection against pathogenic disease
but still allow individuals to become infected and transmit
the disease (e.g., acellular pertussis vaccines (71)), oronly pre-
vent onward transmission of the disease (e.g., transmission-
blocking vaccines for malaria (72)). In order to anticipate and
assess the impact of vaccines once scaled up to widespread
use, the specific actions of the vaccine in reducing infection,
onward transmission, and disease must be disentangled.
These specific mechanisms will contribute differently to the di-
rect, indirect, and total effects of a vaccine. These effects are
increasingly targets of inference during trials (73), and develop-
ments in infectious disease theory have driven development
of both inference tools and study design to measure specific
impacts (65).

SETTING PUBLIC HEALTH POLICY

In emerging outbreaks, simulation models have often been
used as the framework to quickly quantitatively compare pol-
icy alternatives. The application of these models has yielded
results ranging from broad information about the feasibility
and potential impact of interventions to detailed recommenda-
tions about targeting of interventions. In the foot and mouth
disease outbreak of 2001, models were used to determine opti-
mal culling strategies that specified operational details of those
strategies, including the timing and spatial extent of culling.

Even outside of public health crises, infectious disease
models play an important role in setting public health policy.
Cost-effectiveness analyses are often built on mechanistic
models of disease spread (74, 75). Models can help investi-
gators choose between different intervention strategies, deter-
mine the potential of specific interventions, and compare
investments across pathogens. Infectious disease models play
a critical role in incorporating indirect effects that can vary
substantially across alternative programs. The design of im-
munization campaigns against human papillomavirus has to
weigh the direct effects protecting women from human pap-
illomavirus infection, as well as indirect protection resulting
from immunization of both women and men. The tradeoffs of
alternative programs in protecting individuals at risk of the
most severe outcomes and those at little risk have been best
evaluated in transmission models (64).

Increasingly important is the marrying of mechanistic dis-
ease models with operations research by explicitly modeling
the logistical constraints on public health intervention. This
approach can be key when preparing for outbreaks or bioter-
rorism, as speed of deployment, hospital capacity, and other
logistical factors can severely impact the efficiency of disease
containment and its subsequent spread (25, 76). Likewise, a
logistical analysis can assess the feasibility of novel disease-
control strategies, showing whether they are practical as well
as efficacious; for instance, an analysis of the feasibility and
potential effectiveness of passive immunotherapy in Hong
Kong showed that this intervention could play an important
role in controlling a mildly severe pandemic (77).

NEW OPPORTUNITIES AND THE FUTURE

As the price of computation drops and we enter the era of
“big data,” the role of mechanistic models will only increase.
A powerful new synergy is the combination of mechanistic
models of disease spread with phylogenetic techniques out-
lining the evolutionary relationship between infecting patho-
gens. Genetic sequence data present samples of pathogens
taken from a large population of pathogens both within a
host and among all hosts. Understanding the impact of differ-
ent selective pressures on pathogens is inherently a task of
population genetics. Models of the population dynamics of
pathogens have been incorporated into models in order to ex-
plain the phylogenetic structure of pathogens. Sequence data
have been used to infer basic reproductive numbers of path-
ogens (51, 78), harkening back to Lotka’s first use of the term
to describe replication of organisms. In futurework,we expect
to see more direct integration of models with data at both
population scales, as has been the tradition, and within
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host scales. Traversing these scales will be a key challenge to
the field.
Targeted funding and the relatively new paradigm (at least

for epidemiology) of sanctioning competitions to identify the
best methods of disease forecasting continue to in invigorate
the field. In the United States, the Models of Infectious Dis-
ease Agent Study and the recently completed Research and
Policy for Infectious Disease Dynamics program have led
to well over 1,000 publications and continue to invigorate re-
search and training in the field (79, 80). Similar initiatives in
the United Kingdom and other parts of Europe, such as that
from the Medical Research Council’s Centre for Outbreak
Analysis and Modelling, have also been successful (81).
Competitions such as the National Oceanic and Atmospheric
Administration’s Dengue Forecasting Project (82), the De-
fense Advanced Research Projects Agency Forecasting
Chikungunya Challenge (83), and the US Center for Disease
Control and Prevention’s Predict the Influenza Season Chal-
lenge (84) require researchers to assess and compare the perfor-
mances of their models and stand by their predictions in the
face of actual events. Such initiative should serve to greatly im-
prove the quality and number of models of infectious diseases,
but this will only translate into improved public health if it is
paired with greater engagement with policy and practice.
In limited space, it is impossible to cover every important

contribution that mechanistic models have made over the past
century, and there is much important work that we have not
covered. These contributions range from work showing the
potential impact of test-and-treat strategies in HIV control
(85), to analyses of how to best use a limited supply of chol-
era vaccines to control disease (22, 86), to fundamental work
on the link between demographic characteristics and disease
incidence (87). These omissions should not be seen as a re-
flection of the quality of the work, but rather merely as the
result of our need to select only a few of many good options.
The use of mechanistic models in infectious disease epide-

miology has shifted over the course of 100 years. The arc of
their use spans beginnings as 1 of a group of statistical and
mathematical tools used by epidemiologists to understand a
multitude of phenomena, to use and development by an in-
creasingly specialized group of researchers over the course of
the 20th century, to more general use by a broader group of re-
searchers. This arc still bends. At their core, these methods pro-
vide frameworks of analysis that can be treated in the sameway
as other statistical tools of analysis. Refinement of methods has
led to a theoretical base and application toolkit that allows
nonspecialists to analyze and understand infectious disease dy-
namics with mechanistic models. This broader ecosystem of
modelers, which includes methods-focused researchers and
public health practitioners, has led to encouraging progress in
tying models increasingly to data and to the most salient infec-
tious disease problems facing global health.
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