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To manipulate nasal microbiota for respiratory health, we need to better understand
how this microbial community is assembled and maintained. Previous work has
demonstrated that the pH in the nasal passage experiences temporal fluctuations.
Yet, the impact of such pH fluctuations on nasal microbiota is not fully understood.
Here, we examine how temporal fluctuations in pH might affect the coexistence
of nasal bacteria in in silico communities. We take advantage of the cultivability of
nasal bacteria to experimentally assess their responses to pH and the presence
of other species. Based on experimentally observed responses, we formulate
a mathematical model to numerically investigate the impact of temporal pH
fluctuations on species coexistence. We assemble in silico nasal communities
using up to 20 strains that resemble the isolates that we have experimentally
characterized. We then subject these in silico communities to pH fluctuations
and assess how the community composition and coexistence is impacted. Using
this model, we then simulate pH fluctuations—varying in amplitude or frequency—
to identify conditions that best support species coexistence. We find that the
composition of nasal communities is generally robust against pH fluctuations
within the expected range of amplitudes and frequencies. Our results also
show that cooperative communities and communities with lower niche overlap
have significantly lower composition deviations when exposed to temporal pH
fluctuations. Overall, our data suggest that nasal microbiota could be robust against
environmental fluctuations.

Keywords: microbial communities, variable environment, nasal microbiota, mathematical model, species
interaction network, community ecology, coexistence

INTRODUCTION

Resident microbes in the human nasal passage protect us from respiratory pathogens (Brugger
et al., 2016; Man et al., 2017). Indeed, previous research shows the role of resident commensals in
suppressing pathogens, such as Staphylococcus aureus (Uehara et al., 2000; Iwase et al., 2010; Bomar
et al., 2016). Investigating how this microbial community is formed and maintained can therefore
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provide powerful insights into microbiota-based therapies to
prevent or treat infections. While such an investigation appears
formidable in complex environments such as the gut microbiota,
it is feasible for nasal microbiota. First, the nasal microbiota
has relatively low diversity, with the majority of composition
often attributed to 3∼8 species (Escapa et al., 2018). Second, the
majority of these species are readily culturable aerobically in vitro
under controlled environments (Kaspar et al., 2016; Escapa
et al., 2018). Third, both the species and the nasal environment
can be sampled relatively easily (Yan et al., 2013; Proctor and
Relman, 2017). The combination of these factors makes the nasal
microbiota a suitable choice for mechanistic studies of human
microbiota and a gateway for more detailed studies of human-
associated microbiota. Despite these advantages, community-
level modeling of nasal microbiota has not been discussed
adequately so far. A majority of existing work has focused
on the biology of specific members of the nasal microbiota
such as Staphylococcus aureus or Streptococcus pneumoniae
because of their disease relevance (Regev-Yochay et al., 2004;
Wertheim et al., 2004; Cespedes et al., 2005). Other reports
have characterized and investigated the interactions among
nasal microbes (Iwase et al., 2010; Bomar et al., 2016), but
often with a focus on the interaction itself, and have only
rarely involved the ecological consequences for the community
(see Margolis et al., 2010; Yan et al., 2013; Krismer et al.,
2017, for example).

Many factors, including interspecies interactions (Bomar
et al., 2016; Brugger et al., 2016, 2020), the host immune
system (Johannessen et al., 2012), and resource availability
and access (Relman, 2012) can impact the nasal microbiota.
However, all these factors take place in an environment
that may fluctuate over time and vary in space. Previous
investigations have revealed that the nasal passage is in fact
very heterogeneous, both spatially and temporally (Proctor
and Relman, 2017). In particular, pH fluctuations (in the
range of 5.8–7.2, depending on the sampling site and time)
were observed within the nasal passage (Washington et al.,
2000; Hehar et al., 2001). Previous studies also demonstrate
that temporal environmental fluctuations can transition the
community to a different state (Abreu et al., 2020) or increase
and support biodiversity (Eddison and Ollason, 1978; Grover,
1988; Abrams and Holt, 2002; Jiang and Morin, 2007; Kremer
and Klausmeier, 2013). The explanation is often based on
the temporal niche partitioning mechanism; i.e., environment
variations creates additional niches and allow for more species
to coexist (Chesson, 2000; Amarasekare, 2003). The purpose
of our work is not to introduce a new theoretical framework
for modeling microbial communities. Instead, we aim for a
predictive mathematical model to study the impact of temporal
pH fluctuations on the nasal microbiota composition. Other
factors notwithstanding, we specifically ask whether, and when,
incorporating temporal pH fluctuations is necessary to accurately
predict compositional outcomes.

To answer the above question, we first characterize six nasal
bacterial isolates as representative of members present in the
nasal community. The rationale behind choosing these nasal
bacteria was that (1) we can culture these strains reliably in

the same cultivation medium and conditions in the lab; (2)
covering different Corynebacterium and Staphylococcus species,
these strains capture some of the natural diversity of microbiota
(Escapa et al., 2018); and (3) Some interactions among these
strains has already been identified (Brugger et al., 2020). For
instance, Corynebacterium have been used to inhibit S. aureus
colonization (Uehara et al., 2000; Kiryukhina et al., 2013)
and S. aureus promotes the growth of C. accolens and gets
inhibited by C. pseudodiphtheriticum (Yan et al., 2013). We then
use in vitro communities constructed from nasal isolates to
quantify the community response to temporal pH variations.
Then, with parameters relevant to nasal microbiota, we use
a phenomenological model to represent microbes and their
interactions in an environment with a temporally fluctuating
pH. Based on our empirical characterizations of nasal bacteria,
we construct in silico examples of nasal microbiota and
quantify their response to temporal pH fluctuations. Our
simulation results suggest that temporal pH fluctuations do
not have a major impact on the stable coexistence of nasal
bacteria. The outline of our procedure to assess the impact
of temporal pH fluctuations on nasal microbiota is shown
in Figure 1.

MATERIALS AND METHODS

Nasal Bacterial Strains
Six strains used in this study were isolated from two healthy
individuals and kindly shared with us by Dr. Katherine
Lemon (Table 1). Interactions between some of these
strains and other nasal bacteria has been studied recently
(Brugger et al., 2020).

Cultivation Conditions and Medium
in vitro
As growth medium, we have used a 10-fold dilution of the Todd-
Hewitt broth with yeast extract (THY, at an initial pH of 7.2). We
have diluted THY to create an environment closer to the nutrient
richness of the nasal passage (Krismer et al., 2014). For collecting
cell-free filtrates, cells were grown in 15 ml of media in sterile 50
ml Falcon tubes with loose caps exposed to the room atmosphere.
For growth rate and carrying capacity characterizations, cells
were grown in flat-bottom 96-well plates. All cultures were grown
at 37◦C with continuous shaking at 250 rpm.

Characterizing the pH Response of
Nasal Isolates in vitro
To assess the response of nasal strains, we grew them in 10%
THY after adjusting the pH within the biologically relevant
range of 5.1 and 7.5 at 0.3 intervals (pH buffered with 10 g/l
of MOPS). For each strain, we measured the growth rate at low
population sizes (before nutrients become limiting or byproducts
become inhibitory) and the final carrying capacity. These values
were measured by growing replicates of each strain (typically
6 replicates) in 96-well microtiter plates incubated inside a
Synergy Mx plate reader. Growth rate and carrying capacity were
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FIGURE 1 | The outline of the procedure for assessing the impact of temporal pH fluctuations on nasal microbiota is shown. To assemble in silico nasal
communities, we characterized 6 bacterial nasal isolates. We then created in silico strains by randomly modulating the parameters of each characterized
strain—schematically illustrated as different shades for each species. Using random assemblies of such strains, we simulated the enrichment process to find
instances of stable nasal communities. We exposed these communities to a fluctuating pH and compared how the community composition was affected.

estimated by measuring the absorption in each well (OD600) at 10
min intervals over 24 h at 37◦C. Between absorption reads, the
plate was kept shaking to ensure a well-mixed environment.

Mathematical Model
To model the growth of species, we assume that in the absence of
interactions, the population growth follows the logistic equations:

dSi

dt
= ri

(
p
) [

1−
Si

Ki
(
p
)] Si − δSi.

In which ri(p) and Ki(p) are the pH-dependent growth rate and
carrying capacity of species i. In our simulations, the growth
rate and carrying capacity values at any given pH are found
using a linear interpolation from experimentally measured values
(pH 5.1–7.5 at 0.3 intervals). pH dependence is experimentally
characterized for each strain in a monoculture, as described
above, and δ is the dilution rate.

TABLE 1 | Nasal strains used in this study are listed along with their designation
based on 16S rRNA gene similarity.

Strain name Genus Most likely species designation

KPL1821 Corynebacterium Corynebacterium tuberculostearicum

KPL1828 Staphylococcus Staphylococcus aureus

KPL1839 Staphylococcus Staphylococcus epidermidis

KPL1850 Staphylococcus Staphylococcus non-aureus 1

KPL1989 Corynebacterium Corynebacterium pseudodiphtheriticum

KPL1867 Staphylococcus Staphylococcus non-aureus 2

When multiple species are present, we assume that the
presence of other species takes away resources from the
environment; as a result, the growth of each species will be
modulated as

dSi

dt
= ri(p)

[
1−

Si − γi

Ki(p)

]
Si − δSi.

where γi =
∑
j 6=i

cijSj and ri(p)cij/Ki(p) represents the interaction

strength exerted on species i by species j. Positive values
of cij indicate growth stimulation (e.g., via facilitation by
producing resources) whereas negative values of cij indicate
growth inhibition (e.g., via competition).

Model Parameters
Unless otherwise specified, the following parameters are used in
the model:

Some of these parameters, such as the range, frequency, and
amplitude of pH values are chosen to keep the simulations
close to what is expected in the nasal environment (Washington
et al., 2000; Hehar et al., 2001). Some of the other parameters,
such as the dilution rate or the initial and extinction
population densities are not expected to be critical for the
overall conclusions of this work. We have chosen these
parameters to reflect realistic parameters that can be later
tested experimentally. Finally, parameters such as the number
of instances simulated (Ns) and the number of generations
simulated (Ngen) are chosen to give us enough confidence for our
claims, while keeping the practical considerations of simulation
time and effort in mind.
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Parameter Description Value

Nc Maximum number of strains for in silico
community assembly

20

Ns Number of instances of assembly simulations
run for each case

10,000

Ngen Number of generations simulated to obtain
stable resident communities; also the number
of generations simulated to assess response to
environmental fluctuations

100

pHrng Range of pH values (both in experiments and in
simulations)

5.1–7.5

δ Dilution rate 0.03–0.3 h−1

Next Extinction population density per species (OD) 10−6

fp Inter-strain parameter variation within each
species

20%

S0 Average initial cell density per strain (OD) 10−4

fpH Frequency of sinusoidal temporal pH
fluctuations

1 h−1

1pH Amplitude of sinusoidal temporal pH
fluctuations

0.5

Characterizing the Interspecies
Interactions Using a Supernatant Assay
To characterize how species j affects the growth of other species
i, we use a supernatant assay in which species j is grown to
saturation, then all the cells are filtered out using a 0.22 µm
filter (PVDF syringe filters from Thomas Scientific). The growth
rate and carrying capacity of species i is then measured when
growing in the supernatant taken from cultures of species j.
This formulation allows us to use the experimentally measurable
supernatant responses to formulate a dynamical model for mixed
cultures of multiple species.

Assuming a Lotka-Volterra model, the presence of another
species modulates the growth rate proportionally to the size of
the interacting partner, i.e.,

dSi

dt
= ri

[
1−

Si − cijSj

Ki

]
(1−

Si − cijSj

Ki
)Si.

Calculating the parameters obtained from the cell-free spent
media (CFSM), the carrying capacity for species i is reached at
population Si,cc level when growth rate becomes zero, thus(

1−
Si,cc − cijKj

Ki

)
= 0.

Therefore, the carrying capacity in the supernatant assay (Kij) is

Kij = Si,cc = Ki + cijKj.

And the interaction coefficient (cij, effect of species j on species i)
can be calculated as

cij =
Kij − Ki

Kj
.

In the particular that species i and j are similar (self-effect), we
have Kii = 0 and cii = −1. It should be noted that there are

limitations in using a Lotka-Volterra model. Such models may
not accurately represent microbial interactions (Momeni et al.,
2017). Additionally, under certain conditions, the solutions will
exhibit instability. Particularly for this latter case, we examine
the situations under which “runaway” growth instability may
happen. Consider two mutualistic populations:

dS1

dt
= r1

[
1−

S1 − c12S2

K1

]
S1 and

dS2

dt
= r2

[
1−

S2 − c21S1

K2

]
S2

Instability can happen when the carrying capacity terms fail
to act as a negative feedback to bound the population. This can
happen when

[
1−

S1 − c12S2

K1

]
> 1 and

[
1−

S2 − c21S1

K2

]
> 1

This happens when S1 < c12S2 and S2 < c21S1. Satisfying both
of these inequalities requires that c12 and c12c21 > 1, which
means strong mutual facilitation. In our dataset, we do not
have examples of mutual or cyclic facilitation and facilitation
interaction terms are small, suggesting that instability is not
expected in our simulations. Nevertheless, these conditions
should be kept in mind for other datasets, especially those with
strong facilitation between community members.

Calculating Community Composition
Deviations
To compare community composition of a community that
experienced pH fluctuation with that of the same community
simulated at a fixed pH, we calculated the Bray-Curtis
dissimilarity measure using the f_dis function (option “BC”)
in MATLAB. The necessary files to reproduce the analysis are
included in the accompanied source codes1.

Estimating the Impact of pH Fluctuations
We consider two extremes, when the fluctuations in pH are (1)
much faster or (2) much slower than the population dynamics
of community members. In both cases, for our formulation we
define cii = −1 and use the simplified model of populations at
different pH:

dSi

dt
= ri

(
p
) [

1+
γ̂i

Ki
(
p
)] Si − δSi

and
γ̂i =

∑
cijSj

Case 1. Fast pH fluctuations: To estimate how the community
responds under a rapidly changing pH, we use the framework
of the Wentzel–Kramers–Brillouin (WKB) approximation. For
the general case of dS

dt = r(t)S, we split the population dynamics
into two terms, the primary exponential term and an envelope

1https://github.com/bmomeni/temporal-fluctuations
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function, E, for which E(t) = e−r0tS(t) and thus,

dE
dt
= [r (t)− r0] E

Using the WKB approximation E can be written using the
expansion

E = exp

[
1
ε

∞∑
n=0

εnEn(t)

]

By inserting this expansion into the differential equation, we
obtain (

1
ε

∞∑
n=0

εn d
dt

En(t)

)
exp

[
1
ε

∞∑
n=0

εnEn(t)

]
=

(r (t)− r0) exp

[
1
ε

∞∑
n=0

εnEn(t)

]

Thus
1
ε

∞∑
n=0

εn d
dt

En(t) = r (t)− r0

Assuming sinusoidal changes in pH, p (t) = p0 + pdsin(2πft),
to the first order, the temporal changes in growth rate can be
approximated as, r (t) = r0 + rdsin(2πft). Therefore,

1
ε

∞∑
n=0

εn d
dt

En(t) ≈ rd sin
(
2πft

)
.

In the limit that ε→ 0the first terms of expansion for E are
obtained as

d
dt

E0 (t) = 0, .

d
dt

E1 (t) ≈ rd sin(2πft)

Since the continuous dilutions in our setup keeps the
populations finite, E0 does not affect the solution. The dominant
term for E thus becomes E1 and we have

E1 (t) ≈
−rd

2πf
cos

(
2πft

)
Aa a result,

E (t) ∝ exp
[
−rd

2πf
cos

(
2πft

)]
Importantly, the magnitude of change in this equation drops
inversely proportional to the frequency of pH fluctuations f.
This means that the impact of pH fluctuations diminishes
at high frequencies, consistent with our intuition that
in this case the community dynamics are incapable of
following the environmental fluctuations and only respond
to the mean value.

Case 2. Slow pH fluctuations: In this case, we assume the quasi-
static approximation, in which fluctuations are so slow that the
community approaches its steady-state at each temporal value

of pH. In this situation, assuming dSi
dt = 0, we can rearrange the

equation at steady-state as

[
ri
(
p
)
− δ

]
Si = −

ri
(
p
)

Ki
(
p
)Si

∑
cijSj

Rearranging this, we get[
δ− ri

(
p
)] Ki(p)

ri(p)
=

∑
cijSj.

This can be written in matrix form as

[C] S = b,

where [C] contains the interaction coefficients and bi =[
δ− ri

(
p
)] Ki(p)

ri(p) ; underline in our notation designates a vector.
Since the interaction matrix [C] is pH-independent in our model,
the change in composition within this quasi-static approximation
can be expressed as

[C]
(
S (t)− S0

)
= b(t)− b0,

or.

1S (t) =
(
S (t)− S0

)
= [C]−1 (b(t)− b0

)
= [C]−11b(t)

We make an additional simplifying assumption that Ki
and ri change similarly with pH. This leads to 1bi ≈

(ri0 − ri (t))Ki0
ri0

. This means that the magnitude of change in
community composition is the same as the change in the
growth rate of species, regardless of the frequency of fluctuations,
under this regime.

Allowing pH-Dependent Interaction
Coefficients
To examine how pH-dependent interaction coefficients may
affect our results, we assumed that each interaction coefficient has
a linear dependence on pH with a slope (per unit pH) randomly
selected from a uniform distribution in the range of [−m, m]. In
other words,

cij
(
p
)
= cij

(
p0
)
+m(p− p0),

where p0 = 7.2 is the pH at which our characterization is
performed. We examined how the community composition
deviated from the reference with a fixed pH, as m (and thus the
pH-dependency) increased.

RESULTS

In vitro Characterization of Nasal
Bacteria
We experimentally characterized how six representative
nasal bacterial strains respond to different pH values in
their environment. These bacterial strains were chosen
from a set of isolates (see section “Materials and Methods”)
based on three major considerations: (1) they reliably grow
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in our cultivation media under an aerobic environment;
(2) they include commonly observed Staphylococcus and
Corynebacterium species; and (3) they span the phylogenetic
landscape of both closely and distantly related bacteria found in
the nasal environment (Escapa et al., 2018). We assumed that
each of these characterized strains is a representative strain of the
corresponding species.

We first characterized the pH response of each strain
by growing them under different environmental pH values.
Different strains exhibited different degrees of pH dependency
in their growth rates and carrying capacities (Figure 2
and Supplementary Figures S1, S2). Among these strains,
S. epidermidis, S. non-aureus 1, and S. non-aureus 2 show fairly
similar growth properties. We chose to treat these as separate
species in our investigation, because—as shown later—they had
considerably different interactions with other species (Figure 3).

We then examined how different species interact with one
another. For this, we grew each species to its stationary phase
in a monoculture, filtered out the cells, and measured how
other strains grew in the resulting cell-free filtrates (see section
“Materials and Methods”; similar to De Vos et al., 2017; Brugger
et al., 2020). From these measurements, we estimated the inter-
species interaction coefficients based on the generalized Lotka-
Volterra model (Figure 3; see section “Materials and Methods”).
In this formulation, baseline competition with complete niche
overlap will result in an interaction coefficient of −1. Of note,
from our experimental data we cannot distinguish the relative
contribution of competitive niche overlap and interspecies
facilitation. Nevertheless, for simplicity we only use “facilitation”
for extreme cases in which facilitation outweighs competition and
the interaction coefficient turns positive. We interpret different
gradations of negative interaction coefficients from −1 to 0 as
different degrees of niche overlap (with −1 indicating complete
niche overlap), and cases with interaction coefficients less than
−1 indicate inhibition beyond competition for resources. Among
the 30 pairwise interaction coefficients, there were 3 positive
values (bright blue, marked by “+” in Figure 3). For simplicity,
throughout this manuscript, we assume that these interaction
coefficients are not pH-dependent.

In silico Assembly of Nasal Bacterial
Communities
To capture some of the diversity of nasal microbiota, we propose
that other in silico strains of each species can be constructed by
randomly modulating the measured properties of that species
(i.e., growth rate, carrying capacity, and interaction coefficients).
We chose the degree of strain-level modulation to be up to
20%, as a balance between intraspecies and interspecies diversity
(Supplementary Figure S3).

To assess the response of nasal microbiota to temporal
fluctuations in the environment, we first construct an ensemble
of in silico communities that represent a subset of possible nasal
communities. This is chosen as an alternative to performing
an in vivo study, because performing these experiments with
human subjects is not feasible and there is no reliable animal
model for human nasal bacteria. Our approach is, in essence,
similar to several other previous work that have used simple
models to describe the dynamics of human-associated microbiota
(Stein et al., 2013; Fisher and Mehta, 2014; Song et al.,
2014; De Vos et al., 2017; Venturelli et al., 2018). Compared
to in vitro studies, these in silico communities give us full
control over confounding factors and allows us to examine
the mechanisms contributing to sensitivity to pH fluctuations
(Momeni et al., 2011). To construct in silico communities,
we mimicked enrichment experiments (Goldford et al., 2018;
Niehaus et al., 2019) by simulating the dynamics of an initial
assemblage of 20 strains (sampled from the space of in silico
strains) until the community reached stable coexistence. These
in silico communities were largely robust against experimental
noise in characterization (Supplementary Figure S4). The
interspecies interactions in our model appear to be instrumental
in the assembly of these in silico communities, as evidenced by
changes when we assigned the interaction coefficients at given
levels (Supplementary Figure S5A) or modulated the measured
interactions (Supplementary Figure S5B). To assess how pH
fluctuations in the environment influence nasal communities,
we take several instances of in silico nasal communities, expose
them to a fluctuating pH, and quantify how the community
composition is affected. The entire process is outlined in Figure 1.

FIGURE 2 | Growth properties of nasal bacterial isolates are pH-dependent. Growth is characterized using the growth rate in the early exponential phase (A), and
the carrying capacity based on optical density (OD, absorption measured at 600 nm) as a proxy (B). Each data point is the average of at least 6 replicates from two
independent experiments. Error-bars are not shown to avoid overcrowding the plot but the values are available in the raw data. In all cases, growth is experimentally
tested in a 10-fold diluted Todd-Hewitt broth with yeast extract (10% THY).
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FIGURE 3 | Interaction coefficients among pairs of nasal bacteria. Values represent interaction coefficients in a Lotka-Volterra model. In each case, the growth of a
recipient strain is measured when the strain is exposed to cell-free filtrate derived from the effector strain. Positive mean coefficients (indicating facilitation) and
negative mean coefficients below –1.2 (indicating strong inhibition) across different replicates are marked by “+” and “–,” respectively. Standard deviations (shown for
each value) are calculated based on empirical standard deviations of measured carrying capacities in monocultures and supernatant experiments. Diagonal elements
are set to –1, indicating complete niche overlap.

In silico Nasal Communities Are Diverse
and Favor Facilitation
We first examined the properties of assembled in silico
communities at various pH values with no temporal fluctuations.
We found that the prevalence of different species was distinct and
pH-dependent (Supplementary Figure S6). This prevalence is a
result of nasal species’ pH-dependent growth properties as well as
their interspecies interactions.

We also found that during the process of assembling
in silico communities, the prevalence of interspecies facilitation
interactions increased. Comparing the prevalence of facilitation
in initial assemblages of strains vs. the final stable communities,
we found that among the communities that had at least one
facilitation interaction at the start of the in silico enrichment (89%
of communities), facilitation was enriched in ∼66% of the final
community assemblies (Supplementary Figure S7).

Temporal pH Fluctuations Only Minimally
Impact Nasal Microbiota Composition
Next, we asked how the temporal variation in the environment
might influence the community composition. To answer this

question, we used instances of in silico communities to evaluate
the impact of temporal pH fluctuations. We assumed a
continuous growth situation in which all community members
experience a constant dilution rate. This dilution mimics the
turnover in microbiota, for example, when the mucosal layer
gets washed away. To avoid situations in which the in silico
community itself was not stable, we changed the dilution rate
by ± 50% and only kept the communities for which the
modified dilutions only caused a small deviation in community
composition (see section “Materials and Methods”). Indeed,
we found that communities with compositions more sensitive
to dilution rates are also more sensitive to pH fluctuations
(Supplementary Figure S8). In all cases, composition deviations
were calculated using the Bray-Curtis dissimilarity measure (see
section “Materials and Methods”).

To evaluate the impact of pH fluctuations, we simulated
a controlled sinusoidal pH variation over time, with two
parameters: the amplitude and frequency of temporal variations.
Thus, p(t) = p0 +1pH sin(2πfpHt). Keeping the frequency
of fluctuations fixed (f pH = 0.2/h), we observed that the
deviation in population composition increased with an increasing
pH fluctuation amplitude (1pH). However, the resulting
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FIGURE 4 | Nasal microbiota composition is robust against pH fluctuations. (A) For a fixed fluctuation frequency (fpH = 0.2/h), larger fluctuation amplitudes increase
how the community composition deviates from the no-fluctuation steady state (as quantified with composition dissimilarity). (B) The impact of temporal fluctuations is
maximum at intermediate frequencies. Here, the pH fluctuation amplitude is fixed (1pH = 0.5). Number of in silico communities examined for each condition:
n = 10,000.

dissimilarity in population composition was mostly minor,
with> 85% of cases showing less than 0.2 dissimilarity even when
the amplitude of pH fluctuation was set to 1 (Figure 4A). We then
examined the impact of the frequency of pH variations, while
we kept the amplitude of pH fluctuations fixed (1pH = 0.5). At
intermediate frequencies, the pH fluctuations caused the largest
dissimilarity in community composition compared to stable
communities with fixed pH (Figure 4B).

We repeated the assessment of pH fluctuations by assuming
a pH that randomly fluctuated between two discrete pH
values to ensure that our results were not limited to sinusoidal
fluctuations. The results were overall consistent with sinusoidal
pH fluctuations (Supplementary Figure S9): (1) larger pH
fluctuation amplitudes increased the deviation in population
composition, but overall the majority of communities only
experienced modest deviations; and (2) pH fluctuations
at intermediate frequencies had the largest impact on
community composition.

Interspecies Facilitations Dampen the
Impact of Temporal Fluctuations
To explain the low sensitivity of community composition to
pH fluctuations, we hypothesized that interspecies facilitation
stabilizes the composition by creating interdependencies within
the community. From the data in Figure 4, we picked
and compared communities with low (“competitive,” 0%
facilitation) and high (“cooperative,” 50% facilitation) prevalence
of facilitation. The 0% facilitation corresponds to situations
where none of the strains facilitate any of the other members
of the in silico community. In contrast, 50% facilitation happens
when half of the pairwise interactions among the in silico
community are facilitative. Since in our dataset (Figure 3) there
were no instances of mutual facilitation, 50% facilitation is the
maximum fraction that cooperative communities can reach. The
results show that cooperative communities have a consistently
and significantly lower composition deviation when exposed to
temporal pH fluctuations (Figure 5).

To further explore the impact of facilitation, we asked
how interspecies niche overlap (the magnitude of negative

interspecies interactions) and prevalence of facilitation (the
fraction of interspecies interactions that are positive) contribute
to sensitivity to pH fluctuations. In our results, we found that
larger interspecies niche overlap leads to more sensitivity to
pH fluctuations (Figure 6A). This trend holds except when
interspecies niche overlap approaches 1; at such high overlaps the
community loses diversity (Figure 6B), becoming less sensitive
to pH fluctuations. When we directly changed the prevalence
of facilitation, we observed that with higher prevalence of
facilitation the communities became more diverse and less
sensitive to pH fluctuations (Figures 6C,D).

FIGURE 5 | Cooperative communities are more robust against pH fluctuations
compared to competitive communities. For competitive (those with 0%
facilitation among members) and cooperative (those with 50% facilitation
interactions among members) communities, dissimilarity medians were 0.057
and 0.055 and dissimilarity means were 0.12 and 0.058, respectively
(p = 1.2 × 10-6 with a Mann-Whitney U-test). pH fluctuates sinusoidally with a
frequency of fpH = 0.2/h and an amplitude of 1pH = 0.5.
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FIGURE 6 | Lower niche overlap and more prevalent facilitation decrease the sensitivity to pH fluctuations. (A) As we artificially increased the strength of niche
overlap (by setting all off-diagonal coefficients in the interaction matrix to be a fixed negative number and making that number more negative), the sensitivity to pH
fluctuations increased. This trend is disrupted when niche overlap approaches 1, because a majority of communities under such conditions lose interspecies
diversity (B). As we increased the prevalence of interspecies facilitation by randomly setting a given fraction of interaction coefficients to be positive, the communities
became less sensitive to pH fluctuations (C) and more diverse in species richness (D). Here pH fluctuations are sinusoidal, with fpH = 0.2/h and 1pH = 0.5.

DISCUSSION

Using empirically measured species properties, we assembled
stable in silico communities that show coexistence of nasal
bacteria. When these communities were exposed to a fluctuating
pH environment, we observed that the composition of stable
communities was only modestly affected. Larger pH fluctuations
increased the deviation, as expected; however, even at a pH
fluctuation of 1 which exceeds the observed temporal variation
in the nasal passage, the composition of the majority of
communities remained minimally affected. We also found that
intermediate frequencies of temporal pH fluctuations caused the
largest deviations in community compositions. Finally, in our
results, communities with more facilitation interactions were
more robust against pH fluctuations.

In choosing an appropriate model, one must carefully
consider the processes of interest and the required level of
abstraction to capture those processes (Momeni et al., 2011;
Silverman et al., 2018b). Models originally designed for single
species populations have been adapted to characterize microbial
communities. Community ecology modeling frameworks
designed to understand interactions at the macro scale—in both
space and time—have also been applied to microbial populations
to study the dynamics of succession and restoration, along with
the impact of environmental disturbances (Byrd and Segre, 2016;
Gilbert and Lynch, 2019). For example, flux balance analyses,

a mainstay in microbial metabolic models, can be modified
to describe species interactions within a complex microbial
community over time (Larsen et al., 2012; Gerber, 2014; Bucci
et al., 2016; Fukuyama et al., 2017; Äijö et al., 2018; Silverman
et al., 2018a; Shenhav et al., 2019). To create a predictive
model for nasal microbiota, we have extended the generalized
Lotka-Volterra (gLV) equations to study the impact of pH
fluctuations on community composition. Generalized Lotka-
Volterra equations have been previously used to investigate
species interactions in the human gut (Fisher and Mehta,
2014; Song et al., 2014) and in a cheese-associated microbial
community (Äijö et al., 2018; Song et al., 2014). It has also been
similarly extended to describe the impact of environmental
fluctuations (antibiotics) on gut microbiota (Stein et al., 2013;
Song et al., 2014). For our data, the Lotka-Volterra-type model
has proven to—at least to the first-order—capture species
growth, interactions, and pH-dependence.

One important aspect of temporal fluctuations is their time
scale. Even though in nature the fluctuations are not completely
regular, our investigation with sinusoidal temporal fluctuations
reveal the time scale at which the influence on community
composition is the strongest. Our analysis reveals that the
fluctuations are more impactful at intermediate frequencies
between two extremes (see section “Materials and Methods”).
At very low frequencies of pH fluctuations, the community
dynamics are faster than pH changes; thus we can assume
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the quasi-static approximation applies. In this regime, the
community reaches its stable state locally (in time), and the
composition follows the value of pH at any given time,
regardless of the frequency of the pH fluctuations. In the
other extreme, at very high frequencies of pH fluctuations, the
population dynamics cannot follow rapid changes in pH and
essentially the species “see” the average pH. An analysis based on
the Wentzel–Kramers–Brillouin (WKB) approximation suggests
that in this regime, the magnitude of change in composition
(compared to the composition at the average pH) is inversely
proportional to the pH fluctuation frequency. Between these
two extremes is the zone that exhibits the most change in
community composition with pH fluctuations (Figure 4B and
Supplementary Figure S9B). However, for parameters relevant
to the nasal strains we are analyzing, even in this zone the changes
in community composition are not drastic.

Our focus in this manuscript is on how composition of
stable communities changes when environmental pH fluctuates.
Another relevant question is how fluctuations in pH affect
the process of community assembly. For this, we repeated the
community assembly simulations (Supplementary Figures
S6,S7), but under an environment in which the pH temporally
fluctuated. Contrary to our expectation, the richness of resulting
communities did not monotonically increase with an increase
in the amplitude of pH fluctuations, regardless of fluctuation
frequency (Supplementary Figure S10). Instead, we found
that richness only changed in a small fraction of in silico nasal
communities. Furthermore, in cases with increased richness,
S. non-aureus 1 (most facilitative species in our panel) was
most frequently added to the community, whereas in cases with
decreased richness, S. epidermidis (most inhibitory species in
our panel) was most frequently dropped from the community
(Supplementary Figure S11). This observation underscores
the relative importance of interaction (compared to niche
partitioning) in richness outcomes in our model of nasal
communities. Our finding is also consistent with predictions
about augmentation and colonization resistance using a
mediator-explicit model of interactions (Kurkjian et al., 2020).

There are some limitations and simplifications in our study.
First, in our investigation we have assumed that fluctuations in
pH are imposed externally (e.g., by the host or the environment).
It is also possible that species within the nasal community
contribute to the environmental pH. Although outside the
scope of this work, we speculate that if species within the
community drive the pH to specific values (Ratzke and Gore,
2018; Ratzke et al., 2018), the impact of external temporal
fluctuations of pH on community composition will be even
more diminished. Second, in our model, we assumed that
interactions among species remained unchanged at different
environmental pH values. We examined in silico how pH-
dependent interaction coefficients might affect our results. For
this, we assumed that interaction coefficients changed linearly
with pH in each case (see section “Materials and Methods”) and
asked how strong the dependency had to be to considerably
change the community composition under a fluctuating pH.
We observed a significant impact only when the interaction
coefficients were strongly pH dependent (i.e., to the level that

the sign of interactions would change within the range of pH
fluctuations) (Supplementary Figure S12).

Our work suggests that a shift in pH can change the
community composition and coexistence (Supplementary
Figure S6). This is consistent with previous observations from
profiling different locations along the nasal passage (Yan et al.,
2013). However, our prediction is that temporal pH fluctuations
often do not cause a major shift in community structure. As a
future step, we plan to verify this prediction experimentally by
testing how pH fluctuations affect in vitro nasal communities.
If confirmed, our prediction is that the spatial position of
sampling and the heterogeneity of the environment will have
a stronger effect on community composition compared to the
temporal resolution of sampling. The practical implication is
that microbiome profiling of nasal microbes may not require a
high temporal resolution. We proposed that high throughput
sampling of the nasal microbiome along with the corresponding
pH would be an insightful future step to test our predictions.

Finally, one of the main messages of our work is that nasal
microbiota is insensitive to temporal fluctuations in pH. It
is tantalizing to speculate, when examining other microbial
communities, under what conditions this statement is valid.
Recent work by Shibasaki et al. (2020) shows that under a
fluctuating environment species properties play an important
role in community diversity. Our results corroborate their
finding. Insensitivity of the members to the environmental
fluctuations—as trivial as it may sound—is a defining factor for
how sensitive the community is. In the nasal microbiota, species
that we are examining are adapted to the nasal environment and
the range of pH fluctuations experienced in this environment
is not large. As a result, the community is not majorly
affected by pH fluctuations. On top of this, we also observe
that interactions—in particular, facilitation and competition—
can act as stabilizing or de-stabilizing factors for how the
community responds to external variations. In other words,
facilitation between community members acts as a composition
stabilizing factor between populations, which lowers the impact
of external fluctuations (Figure 6A). In contrast, inhibition
between community members typically exaggerates the changes
introduced by external fluctuations (Figure 6C).

DATA AVAILABILITY STATEMENT

Codes related to this manuscript can be found at: https://github.
com/bmomeni/temporal-fluctuations. The raw data supporting
the conclusions of this article will be made available by the
authors, without undue reservation.

AUTHOR CONTRIBUTIONS

SD, NZ, Y-YL, and BM conceived the research. SD and
BM designed the simulations and experiments and wrote the
manuscript. SD ran the experiments. SD, MA, SKD, NZ, and BM
ran the simulations. SD, MA, SKD, NZ, Y-YL, and BM edited the
manuscript. All authors contributed to the article and approved
the submitted version.

Frontiers in Microbiology | www.frontiersin.org 10 February 2021 | Volume 12 | Article 613109

https://github.com/bmomeni/temporal-fluctuations
https://github.com/bmomeni/temporal-fluctuations
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-613109 February 4, 2021 Time: 15:25 # 11

Dedrick et al. pH Fluctuations and Bacterial Coexistence

FUNDING

SD was supported by the NIH T32 training grant.
Work in the Momeni Lab was supported by a start-
up fund from Boston College and by an Award
for Excellence in Biomedical Research from the
Smith Family Foundation. NZ was supported by
the China Scholarship Council. Y-YL acknowledges
grants R01AI141529, R01HD093761, UH3OD023268,
U19AI095219, and U01HL089856 from National Institutes
of Health.

ACKNOWLEDGMENTS

We would like to thank Dr. Katherine Lemon for kindly sharing
the nasal bacterial strains with us. This manuscript has been
released as a pre-print at (Dedrick et al., 2020).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmicb.
2021.613109/full#supplementary-material

REFERENCES
Abrams, P. A., and Holt, R. D. (2002). The impact of consumer-resource cycles

on the coexistence of competing consumers. Theor. Popul. Biol. 62, 281–295.
doi: 10.1006/tpbi.2002.1614

Abreu, C. I., Andersen Woltz, V. L., Friedman, J., and Gore, J. (2020). Microbial
communities display alternative stable states in a fluctuating environment. PLoS
Comput. Biol. 16:e1007934. doi: 10.1371/journal.pcbi.1007934

Äijö, T., Müller, C. L., and Bonneau, R. (2018). Temporal probabilistic modeling of
bacterial compositions derived from 16S rRNA sequencing. Bioinformatics 34,
372–380. doi: 10.1093/bioinformatics/btx549

Amarasekare, P. (2003). Competitive coexistence in spatially structured
environments: a synthesis. Ecol. Lett. 6, 1109–1122. doi: 10.1046/j.1461-
0248.2003.00530.x

Bomar, L., Brugger, S. D., Yost, B. H., Davies, S. S., and Lemon, K. P. (2016).
Corynebacterium accolens releases antipneumococcal free fatty acids from
human nostril and skin surface Triacylglycerols. mBio 7:e01725-15. doi: 10.
1128/mBio.01725-1715

Brugger, S. D., Bomar, L., and Lemon, K. P. (2016). Commensal-pathogen
interactions along the human nasal passages. PLoS Pathog. 12:e1005633. doi:
10.1371/journal.ppat.1005633

Brugger, S. D., Eslami, S. M., Pettigrew, M. M., Escapa, I. F., Henke, M. T., Kong,
Y., et al. (2020). Dolosigranulum pigrum cooperation and competition in human
nasal microbiota. mSphere 5:e0852-20. doi: 10.1128/mSphere.00852-820

Bucci, V., Tzen, B., Li, N., Simmons, M., Tanoue, T., Bogart, E., et al. (2016).
MDSINE: Microbial Dynamical Systems INference Engine for microbiome
time-series analyses. Genome Biol. 17:121. doi: 10.1186/s13059-016-0980-6

Byrd, A. L., and Segre, J. A. (2016). Adapting Koch’s postulates. Science 351,
224–226. doi: 10.1126/science.aad6753

Cespedes, C., Saïd-Salim, B., Miller, M., Lo, S. H., Kreiswirth, B. N., Gordon, R. J.,
et al. (2005). The clonality of Staphylococcus aureus nasal carriage. J. Infect. Dis.
191, 444–452. doi: 10.1086/427240

Chesson, P. (2000). Mechanisms of maintenance of species diversity. Annu. Rev.
Ecol. Syst. 31, 343–366. doi: 10.1146/annurev.ecolsys.31.1.343

De Vos, M. G. J., Zagorski, M., McNally, A., and Bollenbach, T. (2017).
Interaction networks, ecological stability, and collective antibiotic tolerance
in polymicrobial infections. Proc. Natl. Acad. Sci. U.S.A. 114, 10666–10671.
doi: 10.1073/pnas.1713372114

Dedrick, S., Akbari, M. J., Dyckman, S., Zhao, N., Liu, Y.-Y., and Momeni, B.
(2020). Impact of temporal pH fluctuations on the coexistence of nasal bacteria.
bioRxiv [Preprint], doi: 10.1101/2020.09.15.298778

Eddison, J. C., and Ollason, J. G. (1978). Diversity in constant and fluctuating
environments [11]. Nature 275, 309–310. doi: 10.1038/275309a0

Escapa, I. F., Chen, T., Huang, Y., Gajare, P., Dewhirst, F. E., and Lemon, K. P.
(2018). New insights into human nostril microbiome from the expanded
human oral microbiome database (eHOMD): a resource for the microbiome
of the human aerodigestive tract. mSystems 3:e0187-18. doi: 10.1128/mSystems.
00187-118

Fisher, C. K., and Mehta, P. (2014). Identifying keystone species in the human gut
microbiome from metagenomic timeseries using sparse linear regression. PLoS
One 9:e0102451. doi: 10.1371/journal.pone.0102451

Fukuyama, J., Rumker, L., Sankaran, K., Jeganathan, P., Dethlefsen, L., Relman, D.
A., et al. (2017). Multidomain analyses of a longitudinal human microbiome

intestinal cleanout perturbation experiment. PLoS Comput. Biol. 13:e1005706.
doi: 10.1371/journal.pcbi.1005706

Gerber, G. K. (2014). The dynamic microbiome. FEBS Lett. 588, 4131–4139. doi:
10.1016/j.febslet.2014.02.037

Gilbert, J. A., and Lynch, S. V. (2019). Community ecology as a framework for
human microbiome research. Nat. Med. 25, 884–889. doi: 10.1038/s41591-019-
0464-9

Goldford, J. E., Lu, N., Bajiæ, D., Estrela, S., Tikhonov, M., Sanchez-Gorostiaga,
A., et al. (2018). Emergent simplicity in microbial community assembly. Science
361, 469–474. doi: 10.1126/science.aat1168

Grover, J. P. (1988). Dynamics of competition in a variable environment:
experiments with two diatom species. Ecology 69, 408–417. doi: 10.2307/
1940439

Hehar, S. S., Mason, J. D. T., Stephen, A. B., Washington, N., Jones, N. S.,
Jackson, S. J., et al. (2001). Twenty-four hour ambulatory nasal pH
monitoring. Clin. Otolaryngol. Allied Sci. 24, 24–25. doi: 10.1046/j.1365-2273.
1999.00190.x

Iwase, T., Uehara, Y., Shinji, H., Tajima, A., Seo, H., Takada, K., et al.
(2010). Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm
formation and nasal colonization. Nature 465, 346–349. doi: 10.1038/
nature09074

Jiang, L., and Morin, P. J. (2007). Temperature fluctuation facilitates coexistence
of competing species in experimental microbial communities. J. Anim. Ecol. 76,
660–668. doi: 10.1111/j.1365-2656.2007.01252.x

Johannessen, M., Sollid, J. E., and Hanssen, A.-M. (2012). Host- and microbe
determinants that may influence the success of S. aureus colonization. Front.
Cell. Infect. Microbiol. 2:56. doi: 10.3389/fcimb.2012.00056

Kaspar, U., Kriegeskorte, A., Schubert, T., Peters, G., Rudack, C., Pieper, D. H.,
et al. (2016). The culturome of the human nose habitats reveals individual
bacterial fingerprint patterns. Environ. Microbiol. 18, 2130–2142. doi: 10.1111/
1462-2920.12891

Kiryukhina, N. V., Melnikov, V. G., Suvorov, A. V., Morozova, Y. A., and Ilyin,
V. K. (2013). Use of Corynebacterium pseudodiphtheriticum for elimination of
Staphylococcus aureus from the nasal cavity in volunteers exposed to abnormal
microclimate and altered gaseous environment. Probiot. Antimicrob. Proteins 5,
233–238. doi: 10.1007/s12602-013-9147-x

Kremer, C. T., and Klausmeier, C. A. (2013). Coexistence in a variable environment:
eco-evolutionary perspectives. J. Theor. Biol. 339, 14–25. doi: 10.1016/j.jtbi.
2013.05.005

Krismer, B., Liebeke, M., Janek, D., Nega, M., Rautenberg, M., Hornig, G., et al.
(2014). Nutrient limitation governs Staphylococcus aureus metabolism and
niche adaptation in the human nose. PLoS Pathog. 10:e1003862. doi: 10.1371/
journal.ppat.1003862

Krismer, B., Weidenmaier, C., Zipperer, A., and Peschel, A. (2017). The
commensal lifestyle of Staphylococcus aureus and its interactions with the
nasal microbiota. Nat. Rev. Microbiol. 15, 675–687. doi: 10.1038/nrmicro.20
17.104

Kurkjian, H. M., Akbari, M. J., and Momeni, B. (2020). The impact of interactions
on invasion and colonization resistance in microbial communities. bioRxiv
[Preprint], doi: 10.1101/2020.06.11.146571

Larsen, P. E., Field, D., and Gilbert, J. A. (2012). Predicting bacterial community
assemblages using an artificial neural network approach. Nat. Methods 9,
621–625. doi: 10.1038/nmeth.1975

Frontiers in Microbiology | www.frontiersin.org 11 February 2021 | Volume 12 | Article 613109

https://www.frontiersin.org/articles/10.3389/fmicb.2021.613109/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmicb.2021.613109/full#supplementary-material
https://doi.org/10.1006/tpbi.2002.1614
https://doi.org/10.1371/journal.pcbi.1007934
https://doi.org/10.1093/bioinformatics/btx549
https://doi.org/10.1046/j.1461-0248.2003.00530.x
https://doi.org/10.1046/j.1461-0248.2003.00530.x
https://doi.org/10.1128/mBio.01725-1715
https://doi.org/10.1128/mBio.01725-1715
https://doi.org/10.1371/journal.ppat.1005633
https://doi.org/10.1371/journal.ppat.1005633
https://doi.org/10.1128/mSphere.00852-820
https://doi.org/10.1186/s13059-016-0980-6
https://doi.org/10.1126/science.aad6753
https://doi.org/10.1086/427240
https://doi.org/10.1146/annurev.ecolsys.31.1.343
https://doi.org/10.1073/pnas.1713372114
https://doi.org/10.1101/2020.09.15.298778
https://doi.org/10.1038/275309a0
https://doi.org/10.1128/mSystems.00187-118
https://doi.org/10.1128/mSystems.00187-118
https://doi.org/10.1371/journal.pone.0102451
https://doi.org/10.1371/journal.pcbi.1005706
https://doi.org/10.1016/j.febslet.2014.02.037
https://doi.org/10.1016/j.febslet.2014.02.037
https://doi.org/10.1038/s41591-019-0464-9
https://doi.org/10.1038/s41591-019-0464-9
https://doi.org/10.1126/science.aat1168
https://doi.org/10.2307/1940439
https://doi.org/10.2307/1940439
https://doi.org/10.1046/j.1365-2273.1999.00190.x
https://doi.org/10.1046/j.1365-2273.1999.00190.x
https://doi.org/10.1038/nature09074
https://doi.org/10.1038/nature09074
https://doi.org/10.1111/j.1365-2656.2007.01252.x
https://doi.org/10.3389/fcimb.2012.00056
https://doi.org/10.1111/1462-2920.12891
https://doi.org/10.1111/1462-2920.12891
https://doi.org/10.1007/s12602-013-9147-x
https://doi.org/10.1016/j.jtbi.2013.05.005
https://doi.org/10.1016/j.jtbi.2013.05.005
https://doi.org/10.1371/journal.ppat.1003862
https://doi.org/10.1371/journal.ppat.1003862
https://doi.org/10.1038/nrmicro.2017.104
https://doi.org/10.1038/nrmicro.2017.104
https://doi.org/10.1101/2020.06.11.146571
https://doi.org/10.1038/nmeth.1975
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-613109 February 4, 2021 Time: 15:25 # 12

Dedrick et al. pH Fluctuations and Bacterial Coexistence

Man, W. H., de Steenhuijsen Piters, W. A. A., and Bogaert, D. (2017). The
microbiota of the respiratory tract: gatekeeper to respiratory health. Nat. Rev.
Microbiol. 15, 259–270. doi: 10.1038/nrmicro.2017.14

Margolis, E., Yates, A., and Levin, B. R. (2010). The ecology of nasal colonization of
Streptococcus pneumoniae, Haemophilus influenzae and Staphylococcus aureus:
the role of competition and interactions with host’s immune response. BMC
Microbiol. 10:59. doi: 10.1186/1471-2180-10-59

Momeni, B., Chen, C.-C., Hillesland, K. L., Waite, A., and Shou, W. (2011). Using
artificial systems to explore the ecology and evolution of symbioses. Cell. Mol.
Life Sci. 68, 1353–1368. doi: 10.1007/s00018-011-0649-y

Momeni, B., Xie, L., and Shou, W. (2017). Lotka-Volterra pairwise modeling fails
to capture diverse pairwise microbial interactions. eLife 6:e25051. doi: 10.7554/
eLife.25051

Mounier, J., Monnet, C., Vallaeys, T., Arditi, R., Sarthou, A.-S., Hélias, A., et al.
(2008). Microbial interactions within a cheese microbial community. Appl.
Environ. Microbiol. 74, 172–181. doi: 10.1128/AEM.01338-07

Niehaus, L., Boland, I., Liu, M., Chen, K., Fu, D., Henckel, C., et al. (2019).
Microbial coexistence through chemical-mediated interactions. Nat. Commun.
10:2052. doi: 10.1038/s41467-019-10062-x

Proctor, D. M., and Relman, D. A. (2017). The landscape ecology and microbiota
of the human nose, mouth, and throat. Cell Host Microb. 21, 421–432. doi:
10.1016/J.CHOM.2017.03.011

Ratzke, C., Denk, J., and Gore, J. (2018). Ecological suicide in microbes. Nat. Ecol.
Evol. 2, 867–872. doi: 10.1038/s41559-018-0535-531

Ratzke, C., and Gore, J. (2018). Modifying and reacting to the environmental pH
can drive bacterial interactions. PLoS Biol. 16:e2004248. doi: 10.1371/journal.
pbio.2004248

Regev-Yochay, G., Raz, M., Dagan, R., Porat, N., Shainberg, B., Pinco, E., et al.
(2004). Nasopharyngeal carriage of Streptococcus pneumoniae by adults and
children in community and family settings. Clin. Infect. Dis. 38, 632–639. doi:
10.1086/381547

Relman, D. A. (2012). The human microbiome: ecosystem resilience and health.
Nutr. Rev. 70, S2–S9. doi: 10.1111/j.1753-4887.2012.00489.x

Shenhav, L., Furman, O., Briscoe, L., Thompson, M., Silverman, J. D., Mizrahi, I.,
et al. (2019). Modeling the temporal dynamics of the gut microbial community
in adults and infants. PLOS Comput. Biol. 15:e1006960. doi: 10.1371/journal.
pcbi.1006960

Shibasaki, S., Mobilia, M., and Mitri, S. (2020). Microbial species interactions
determine community diversity in fluctuating environments. bioRxiv
[Preprint], doi: 10.1101/2020.07.22.216010

Silverman, J. D., Durand, H. K., Bloom, R. J., Mukherjee, S., and David,
L. A. (2018a). Dynamic linear models guide design and analysis of microbiota
studies within artificial human guts. Microbiome 6:202. doi: 10.1186/s40168-
018-0584-3

Silverman, J., Shenhav, L., Halperin, E., Mukherjee, S., and David, L. A. (2018b).
Statistical considerations in the design and analysis of longitudinal microbiome
studies. bioRxiv doi: 10.11164/jjsps.27.3_633_1

Song, H.-S., Cannon, W., Beliaev, A., and Konopka, A. (2014). Mathematical
modeling of microbial community dynamics: a methodological review.
Processes 2, 711–752. doi: 10.3390/pr2040711

Stein, R. R., Bucci, V., Toussaint, N. C., Buffie, C. G., Rätsch, G., Pamer, E. G., et al.
(2013). Ecological modeling from time-series inference: insight into dynamics
and stability of intestinal microbiota. PLoS Comput. Biol. 9:e1003388. doi: 10.
1371/journal.pcbi.1003388

Uehara, Y., Nakama, H., Agematsu, K., Uchida, M., Kawakami, Y., Abdul
Fattah, A., et al. (2000). Bacterial interference among nasal inhabitants:
eradication of Staphylococcus aureus from nasal cavities by artificial
implantation of Corynebacterium sp. J. Hosp. Infect. 44, 127–133. doi: 10.1053/
JHIN.1999.0680

Venturelli, O. S., Carr, A. V., Fisher, G., Hsu, R. H., Lau, R., Bowen, B. P.,
et al. (2018). Deciphering microbial interactions in synthetic human gut
microbiome communities. Mol. Syst. Biol. 14:e8157. doi: 10.15252/MSB.2017
8157

Washington, N., Steele, R. J., Jackson, S., Bush, D., Mason, J., Gill, D., et al.
(2000). Determination of baseline human nasal pH and the effect of intranasally
administered buffers. Int. J. Pharm. 198, 139–146. doi: 10.1016/S0378-5173(99)
00442-441

Wertheim, H. F., Vos, M. C., Ott, A., van Belkum, A., Voss, A., Kluytmans,
J. A., et al. (2004). Risk and outcome of nosocomial Staphylococcus aureus
bacteraemia in nasal carriers versus non-carriers. Lancet 364, 703–705. doi:
10.1016/S0140-6736(04)16897-16899

Yan, M., Pamp, S. J., Fukuyama, J., Hwang, P. H., Cho, D.-Y.,
Holmes, S., et al. (2013). Nasal microenvironments and interspecific
interactions influence nasal microbiota complexity and S. aureus
carriage. Cell Host Microb. 14, 631–640. doi: 10.1016/J.CHOM.2013.1
1.005

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Dedrick, Akbari, Dyckman, Zhao, Liu and Momeni. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Microbiology | www.frontiersin.org 12 February 2021 | Volume 12 | Article 613109

https://doi.org/10.1038/nrmicro.2017.14
https://doi.org/10.1186/1471-2180-10-59
https://doi.org/10.1007/s00018-011-0649-y
https://doi.org/10.7554/eLife.25051
https://doi.org/10.7554/eLife.25051
https://doi.org/10.1128/AEM.01338-07
https://doi.org/10.1038/s41467-019-10062-x
https://doi.org/10.1016/J.CHOM.2017.03.011
https://doi.org/10.1016/J.CHOM.2017.03.011
https://doi.org/10.1038/s41559-018-0535-531
https://doi.org/10.1371/journal.pbio.2004248
https://doi.org/10.1371/journal.pbio.2004248
https://doi.org/10.1086/381547
https://doi.org/10.1086/381547
https://doi.org/10.1111/j.1753-4887.2012.00489.x
https://doi.org/10.1371/journal.pcbi.1006960
https://doi.org/10.1371/journal.pcbi.1006960
https://doi.org/10.1101/2020.07.22.216010
https://doi.org/10.1186/s40168-018-0584-3
https://doi.org/10.1186/s40168-018-0584-3
https://doi.org/10.11164/jjsps.27.3_633_1
https://doi.org/10.3390/pr2040711
https://doi.org/10.1371/journal.pcbi.1003388
https://doi.org/10.1371/journal.pcbi.1003388
https://doi.org/10.1053/JHIN.1999.0680
https://doi.org/10.1053/JHIN.1999.0680
https://doi.org/10.15252/MSB.20178157
https://doi.org/10.15252/MSB.20178157
https://doi.org/10.1016/S0378-5173(99)00442-441
https://doi.org/10.1016/S0378-5173(99)00442-441
https://doi.org/10.1016/S0140-6736(04)16897-16899
https://doi.org/10.1016/S0140-6736(04)16897-16899
https://doi.org/10.1016/J.CHOM.2013.11.005
https://doi.org/10.1016/J.CHOM.2013.11.005
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles

	Impact of Temporal pH Fluctuations on the Coexistence of Nasal Bacteria in an in silico Community
	Introduction
	Materials and Methods
	Nasal Bacterial Strains
	Cultivation Conditions and Medium in vitro
	Characterizing the pH Response of Nasal Isolates in vitro
	Mathematical Model
	Model Parameters
	Characterizing the Interspecies Interactions Using a Supernatant Assay
	Calculating Community Composition Deviations
	Estimating the Impact of pH Fluctuations
	Allowing pH-Dependent Interaction Coefficients

	Results
	In vitro Characterization of Nasal Bacteria
	In silico Assembly of Nasal Bacterial Communities
	In silico Nasal Communities Are Diverse and Favor Facilitation
	Temporal pH Fluctuations Only Minimally Impact Nasal Microbiota Composition
	Interspecies Facilitations Dampen the Impact of Temporal Fluctuations

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


