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Amplification of the proto-oncogene MYCN is a key molecular aberration in
high-risk neuroblastoma and predictive of poor outcome in this childhood
malignancy. We investigated the role of MYCN in regulating the protein
cargo of extracellular vesicles (EVs) secreted by tumour cells that can be inter-
nalized by recipient cells with functional consequences. Using a switchable
MYCN system coupled to mass spectrometry analysis, we found that
MYCN regulates distinct sets of proteins in the EVs secreted by neuroblas-
toma cells. EVs produced by MYCN-expressing cells or isolated from
neuroblastoma patients induced the Warburg effect, proliferation and
c-MYC expression in target cells. Mechanistically, we linked the cancer-
promoting activity of EVs to the glycolytic kinase pyruvate kinase M2
(PKM2) that was enriched in EVs secreted by MYC-expressing neuroblastoma
cells. Importantly, the glycolytic enzymes PKM2 and hexokinase II were
detected in the EVs circulating in the bloodstream of neuroblastoma patients,
but not in those of non-cancer children. We conclude that MYC-activated can-
cers might spread oncogenic signals to remote body locations through EVs.
1. Introduction
Neuroblastoma is a childhood malignancy originating from the peripheral ner-
vous system that is still a leading cause of oncological death. About 50% of
high-risk neuroblastomas are MYCN amplified and a causational link between
MYCN activation in the nervous system and tumourigenesis has been firmly
established [1,2]. The product of the MYCN amplicon is a transcription factor
belonging to the MYC family of oncoproteins, frequently activated in
neuroblastoma and other childhood malignancies [3].

In previous studies, it was shown that cancer cells expressing MYC proteins
modify the tumour microenvironment via the activation or inactivation of
growth factors, cytokines and immune checkpoint regulators [4–6]. The hypoth-
esis that MYC expression could induce non-cell autonomous effects is also
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supported by evidence of heterogeneous (focal) amplification
of MYCN in neuroblastoma tumours. Focally amplified
neuroblastomas have a negative prognosis, indistinguishable
from uniformly amplified cases, suggesting that MYCN
could promote a cross-talk between parts of the cancer with
a different amplification status [7]. We therefore hypothesized
that MYCN could promote neuroblastoma growth by regu-
lating the secretion or content of extracellular vesicles (EVs)
which would modify the metabolic activity of recipient
cells. EVs are formed by exosomes, of endocytic origin, and
microvesicles, produced by membrane budding, that
change the behaviour of recipient cells by the delivery of pro-
teins and nucleic acids [8]. Cancer-produced EVs play a key
role in the metastatic dissemination and/or pro-angiogenic
activity of solid tumours [9]. While the pro-tumourigenic or
pro-metastatic role of EVs has been highlighted in different
types of adult cancers [10–16] it is not known whether they
play a role in the context of MYCN-amplified neuroblastoma.

Using neuroblastoma as a model, we have therefore
investigated the hypothesis that MYC-activated tumours
could spread oncogenic signals to other body and tissue
compartments via regulation of EVs protein cargo.
2. Material and methods
2.1. Clinical material
Plasma samples (10 NB patients with MYCN amplification
and 10 neuroblastoma patients without MYCN amplification)
were provided by the BIT-Gaslini Biobank of the IRCCS
G. Gaslini Institute in Genova (Italy). The use of human bio-
logical specimens stored in the BIT-Gaslini Biobank was
approved by the Ethical Committee of the Gaslini Institute.
Plasma was collected by centrifuging blood at 1 200 x g
for 10 min at room temperature and immediately stored at
−80°C. Twenty age-matched plasma samples were obtained
from leftover plasma after routine clinical analyses from out-
patients. A written consent allowing the collection of samples
and the use of clinical and non-genetic data for clinical
research was signed by patients’ guardians.

2.2. Cell culture, plasmid and siRNA transfections
The human neuroblastoma cell lines SH-EP and KELLY were
purchased from the ATCC. TET21-N were kindly supplied
by Prof Giovanni Perini. Neuroblastoma cells were cultured
in DMEM supplemented with 10% FBS and 100 units ml−1

Penicillin/Streptomycin. TET21-N cells were routinely main-
tained in medium containing 0.2 mg ml−1 G-418 (11811031,
GIBCO) and 0.15 mg ml−1 Hygromycin B (10453982, Invitro-
gen), and to switch off MYCN expression cells were cultured
in the presence of 1 µg ml−1 doxycycline (D9891, Sigma-
Aldrich). For EV preparation, cells were cultured in micro-
vesicles depleted medium prepared as follows. In brief,
DMEM supplemented with 20% FBS was ultra-centrifuged
at 100 000 x g for 20 h. The pellet was discarded, the
medium was diluted 1 : 2 with fresh DMEM and used.
TET21-N cells were transfected using the transfection reagent
jetPrime (114–01, Polyplus transfection) with 50 µM siRNAs
targeting pyruvate kinase M2 (PKM2) (SASI_Hs01_
00217689, EHU147561), Rab27a (EHU091501) or rLuc as a
control (EHURLUC) purchased from Sigma-Aldrich. Forty-
eight hours after transfection, the cells were collected and
equal numbers were seeded on tissue culture inserts with
0.4 µm pores (83.3932.040, Sarstedt) for co-culture with SH-
EP cells. The remaining cells were used for protein analysis.
CD63-pEGFP C2 (62964) and pEGFP-C1-PKM2 (64698)
plasmids were purchased from Addgene and transfected
using the transfection reagent jetPrime.

2.3. Extracellular vesicle isolation and quantification
Cell supernatants were centrifuged at 3000 x g for 30 min and
100 000 x g for 70 min at 4°C. The pellet was resuspended in
PBS and ultra-centrifuged at 100 000 x g for 70 min. The
concentration of EV proteins was quantified with the bicincho-
ninic acid (BCA) protein assay (23225, Pierce). For EVs
preparations from patients, 500 µl of frozen plasmas were pro-
cessed using the Qiagen ExoEasy Maxi EVs isolation kit (76064,
Qiagen). EVs were enumerated by lipophilic cationic dye
staining and polychromatic flow cytometry, as described [17].

2.4. Transmission electron microscopy
EVs resuspended in PBS were fixed by mixing them in an
equal volume of 4% paraformaldehyde (PFA). Glutaralde-
hyde was added to reach a final concentration of 1%. For
negative staining, the fixed EVs were mixed with 1%
sodium phosphotungstate (K-PTA), and a drop of this mix-
ture was placed onto a carbon-coated electron microscope
grid, glow discharged for 20 s. The mixture was left on the
grid for 1 min and then removed almost completely with a
filter paper.

2.5. Nanoparticle tracking analysis
The size distribution of EVs was quantified with a NanoSight
N300 using a 640 nm laser (Malvern Instruments, Malvern).
The samples were injected in the NanoSight sample cubicle
and the data were analysed with the NanoSight NTA3.2
software.

2.6. PKH67 staining and Imagestream analysis
For the membrane staining of the EVs, the PKH67 green
fluorescent cell linker mini kit (MINI67, Sigma-Aldrich) was
used. Briefly, EVs pellets were resuspended in 200 µl diluent
C; 0.8 µl of the PKH67 dye were added to 200 µl of diluent C
and mixed with the resuspended EVs and incubated at room
temperature for 4 min. The reaction was stopped with an
equal volume (400 µl) of 1% BSA in PBS. The EVs were
ultra-centrifuged at 100 000 x g at 4°C for 70 min and the
pellet resuspended in PBS. The stained EVs were visualized
with ImageStream flow cytometry. All samples were
acquired on an ImageStreamX Mk II imaging cytometer,
X60 magnification with low flow rate/high sensitivity with-
out EDF using INSPIRE software. Channel 01 was set for
bright field, channel 06 as a scattering channel and channel
02 for the required fluorescence channel (laser 488).

2.7. Proteomic analysis
The EVs preparations were resuspended in RIPA buffer
(150 mM NaCl, 1 mM EDTA, 0.5% sodium deoxycolate,
0.1% SDS, Sigma) with freshly added protease and
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phosphatase inhibitors (Protease Inhibitor Cocktail, Sigma).
After 30 min of mild sonication to extract proteins attached
to the EV membranes, protein content was quantified by
the Bradford method (BIO-RAD). Three aliquots of protein
extracts from each condition (20 µg) were transferred onto
Microcon-10 Centrifugal Filter (cut-off 10 kDa) for FASP
protein digestion [18]. Proteins were reduced by 8 mM DTT
and alkylated using 0.05 M iodacetamide. Each sample was
then digested with trypsin overnight, after which digestions
were blocked by adding formic acid to a final concentration
of 0.2% (v/v). Peptides were recovered in 0.05 M AMBIC-
SDS, concentrated in a speedvac and stored at −80°C until
use. The digested peptides were loaded onto a Symmetry
C18 (5 µm, 180 µm × 20 mm) precolumn (Waters Corp.) and
subsequently separated by a 120 min reversed phase gradient
at 300 nl min−1 (linear gradient, 2–85% ACN over 120 min)
using a HSS T3 C18 (1.8 µm, 75 µm× 150 mm) nanoscale
LC column (Waters Corp.) maintained at 40°C. The peptides
were analysed by a High Definition Synapt G2-Si mass spec-
trometer directly coupled to the chromatographic system.
Differential protein expression was evaluated with a data-
independent acquisition of shotgun proteomics analysis by
expression configuration mode (MSe). The mass spectrometer
operated in ‘expression mode’ switching between low (4 eV)
and high (15–40 eV) collision energies on the gas cell, using a
scan time of 1.5 s per function over 50–2000 m/z. All spectra
were acquired in ion mobility mode by applying a wave vel-
ocity for the ion separation of 900 m s−1 and a transfer wave
velocity of 175 m s−1. The processing of low and elevated
energy, added to the data of the reference lock mass
([Glu1]-Fibrinopeptide B Standard, Waters Corp) provided
a time-aligned inventory of accurate mass-retention time
components for both the low and elevated energy. Each
sample was run in three technical replicates.

The analysis of differentially expressed proteins was
performed according to Silva et al. [19] and Visser et al. [20].
Continuum LC-MS data from three replicates for each
sample was processed for qualitative and quantitative analysis
using the ProteinLynx Global Server v. 3.0.2 software (PLGS,
Waters Corp.). Proteins were identified by searching the
Homo Sapiens (UniProt KB/Swiss-Prot Protein reviewed)
and ExoCarta databases to which sequence from Saccharomyces
cerevisiae Enolase (UniProtKB/Swiss-Prot AC: P00924) was
appended in order to perform the quantitative analysis.
Search parameters were set as: automatic tolerance for precur-
sor ions and for product ions, minimum three fragment ions
matched per peptide, minimum three fragment ions matched
per protein, minimum two peptides matched per protein,
one missed cleavage, carbamydo methylation of cysteines
and oxidation of methionines as fixed and variable modifi-
cations, false-positive rate of the identification algorithm
under 1% and 100 fmol of the enolase set as calibration protein
concentration. The expression analysis was performed consid-
ering technical replicates available for each experimental
condition (i.e. untreated and treated with doxycycline) follow-
ing the hypothesis that each group is an independent variable.
The protein identifications were based on the detection of
more than two fragment ions per peptide, more than two pep-
tides measured per protein. The list of normalized proteins
was screened according to the following criteria: protein ident-
ified in at least two out of three runs of the same sample with a
fold change of regulation higher than ±20%; only modulated
proteins with a p < 0.05 were considered significant.
A different EV preparation was re-suspended in lysis
buffer (7 M urea, 2 M thiourea and protease inhibitors).
Proteins were reduced with 10 mM DTT (Sigma-Aldrich)
for 30 min at room temperature, alkylated with 40 mM iodoa-
cetamide (Sigma-Aldrich) for 30 min in the dark and digested
with trypsin (Promega) in the ratio 1 : 50 (μg trypsin : μg
protein) in 50 mM ammonium bicarbonate solution at 30°C
overnight. The reaction was stopped with 1% formic acid
and then the sample was desalted with C18 columns (Stage-
Tips). Three biological replicates were prepared for each
condition. Peptides were separated by Reprosil-Pur C18-AQ
column (3 μm; Dr. Maisch GmbH, Germany) using Easy
nano-LC HPLC (Proxeon, Odense, Denmark). The HPLC
gradient was 0–34% B solvent (A = 0.1% formic acid;
B = 90% ACN, 0.1% formic acid) in 70 min at a flow of
250 nl min−1 for a total of 93 min run. The MS analysis was
performed using the LTQ-Orbitrap Velos (Thermo Scientific,
Bremen, Germany). The mass range was 350–1500 m/z at a
resolution of 60 000 at 400 m/z. For each MS scan, collision-
induced dissociation (CID) fragmentation was performed
on the 15 most intense ions in the linear ion trap. The par-
ameters for data acquisition were activation time = 5 ms,
normalized energy = 35, Q-activation = 0.25, exclusion =
available with repeat count 1, exclusion duration = 30 s and
intensity threshold = 5000. The mass spectrometry proteo-
mics data have been deposited to the ProteomeXchange
Consortium via the PRIDE repository on https://www.ebi.
ac.uk/pride/. The raw files were searched using the Max-
Quant version 1.2.7.429 and the MS/MS spectra were
searched using the Andromeda search engine against the
Uniprot-reviewed Human Protein Database. The initial maxi-
mal allowed mass tolerance was set to 20 ppm for precursor
and then set to 4.5 ppm in the main search and to 0.5 Da for
fragment ions. Enzyme specificity was set to trypsin with a
maximum of two missed cleavages. Carbamidomethylation
of cysteine (57.02 Da) was set as a fixed modification, and oxi-
dation of methionine (15.99 Da) and protein N-terminal
acetylation (42.01 Da) were selected as variable modifi-
cations. Bioinformatics analysis was performed using the
software Perseus v. 1.5.2.6 available in the MaxQuant
environment and reverse and contaminant entries were
excluded from further analysis. Protein FDR was calculated
in the MaxQuant software and kept below 1%. Label-free
quantification intensity values were considered to relatively
compare the abundance of proteins present in the two con-
ditions and regulated proteins were identified with
statistical t-test with p-value < 0.05 with Benjamini–Hochberg
correction.

2.8. Western blot analysis
Equal amounts of proteins were separated by SDS-PAGE
electrophoresis, transferred onto nitrocellulose membranes
which were blocked with 5% milk in TBS with 0.1%
Tween-20 for 1 h at room temperature. The membranes
were incubated over night at 4°C with primary antibodies
against CD63 (1 : 200, sc-5275 Santa Cruz), eukaryotic
elongation factor 2 (eEF2) (1 : 1 000, 2332, Cell Signalling),
glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
(1 : 1000, 5174S, Cell Signalling), Hexokinase I (1 : 1000,
C35C4, Cell Signalling), Hexokinase II (1 : 100, C64G5, Cell
Signalling), MYCN (1 : 200, sc-53993, Santa Cruz), phospho-
fructokinase PFKP (1 : 1 000, 8164S, Cell Signalling), PKM1/
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2 (1 : 1 000, 3190S, Cell Signalling), PKM2 (1 : 1 000, 4053S,
Cell Signalling), rib. L10a (1 : 500, sc-100827, Santa Cruz)
and β-actin (1 : 1000, 3700, Cell Signalling). After washing
with TBS 0.1% Tween-20 three times for 5 min at room temp-
erature, the membranes were incubated with horseradish
peroxidase (HRP)—conjugated secondary antibodies for 1 h
at room temperature (anti-mouse-HRP, 1 : 10 000, sc-2031,
Santa Cruz, anti-rabbit-HRP, 1 : 10 000, sc-2313, Santa Cruz).
The membranes were washed three times for 5 min at room
temperature with TBS 0.1% Tween-20 and incubated with
enhanced chemiluminescent substrate (32106, Pierce). The
protein bands were visualized with X-ray films.

2.9. Cell counts and MTS proliferation assays
2 × 103 SH-EP cells were plated into each well of 96-well
plates in the presence or absence of EVs that were replenished
every day (10 µg of EV proteins per well). Cells were
harvested at 24, 48 or 72 h and counted with a haemocyt-
ometer. For MTS assays, 20 µl of MTS/PMS solution
(G3582, Promega) were added to each well and incubated
for 4 h. Absorbance at 490 nm was measured with a
spectrophotometer and expressed as optical density units.

2.10. Glycolysis assays
2 × 103 SH-EP cells were seeded in each well of 96-well plates
and incubated overnight in a 5% CO2-humidified incubator at
37°C. The next morning, EVs were added to the cells (10 µg of
EV proteins per well). After 24 h, the production of L-lactate
was evaluated with the glycolysis cell-based assay kit
(600450, Cayman Chemical). Briefly, the cell supernatants
were centrifuged at 1 200 rpm for 5 min; 90 µl of assay
buffer were transferred to each well of a 96-well plate plus
10 µl of cell supernatants or 10 µl of L-lactate solution used
as a positive control. A 100 µl of reaction solution was
added to each well and the mix was incubated for 30 min
at room temperature with gentle shaking. The absorbance
was measured at 490 nm using a spectrophotometer. For
the SH-SY5Y cells, the consumption rate of glucose was quan-
tified using a Glucose Uptake Colorimetric Assay Kit (Sigma-
Aldrich, MAK083) according to manufacturer’s instructions.

2.11. Seahorse analysis
Mitochondrial bioenergetics assays were carried out using an
XFe96 analyser fromAgilent Seahorse Bioscience (Santa Clara)
following published protocols [21]. The XF assay medium
(HCO3-free modified DMEM, Seahorse Bioscience) was sup-
plemented with 10 mM glucose, 2 mM l-glutamine and
1 mM sodium pyruvate. 15 × 103 cells were grown in each
well of Seahorse assay plates. After 4 h, at the step of Seahorse
medium exchange, 100 µg ml−1 of EVs from MYCN-positive
or -negative TET21-N cells or PBS were added and the cells
where incubated for 20 h. The mitochondrial respiration test
was performed by sequential addition of μM oligomycin,
1.5 µM FCCP and 1 µM rotenone/antimycin A to the cells.
Using the XF cell Mitostress test kit (103015–100; Seahorse Bio-
science), we examined the following mitochondrial
parameters: basal mitochondrial respiration (basal cellular res-
piration minus non-mitochondrial respiration), maximal
respiratory capacity (maximal uncoupled respiration minus
non-mitochondrial respiration) and non-mitochondrial respir-
ation (rotenone/antimycin A-inhibited respiration).

2.12. Immunofluorescence
The cells were cultured on coverslips or in microwells
(154534, Thermo Scientific). The cells were fixed in 4% PFA
for 10 min at room temperature. After washing with PBS
for three times, the cells were permeabilized with 0.5%
Triton X-100 in PBS for 10 min at room temperature. After
washing with PBS for three times, cells were blocked with
5% BSA in PBS for 30 min at 37°C. The cells were incubated
with the primary antibody against p-H3 (T11) (1 : 100, ab5168,
Abcam) or cMYC (1 : 800, 5605, Cell Signalling) diluted in 3%
BSA in PBS for 30 min at 37°C. After washing with PBS for
three times, the cells were incubated with anti-rabbit FITC
secondary antibody (711-095-152, Jackson ImmunoResearch)
diluted 1 : 200 in BSA 1% in PBS for 30 min at 37°C. One
drop of Vectashield antifade mounting medium, containing
DAPI, (H-1200, Vector Laboratories) was added to each
sample before analysis. Fiji software was used for the
quantification of the intensity.

2.13. Immunohistochemistry
Tumour sections were incubated in HistoChoice clearing
agent (H2779, Sigma Aldrich) to remove the wax and then
sequentially in 100%, 90%, 70% and 50% ethanol. In the
final step, the sections were incubated in dH2O twice for
5 min. Antigens were unmasked by boiling the sections in
citrate solution in a microwave oven. Endogenous peroxidase
was removed with incubation in 3% H2O2 (216763, Sigma
Aldrich) in distilled H2O for 20 min at RT. The sections
were next incubated with mouse on mouse (MOM) mouse
IgG blocking reagent (BMK-2202, Vector Laboratories) for
1 h at room temperature. After blocking, the sections were
washed in PBS, incubated for 5 min in MOM diluent
(BMK-2202, Vector Laboratories), the excess of diluent was
removed and the sections were incubated with mouse anti-
MYCN (1 : 100, OP13, Calbiochem) or anti-c-MYC (1 : 50, sc-
40, Santa Cruz) primary antibodies diluted in blocking
buffer 1 : 10 and incubated overnight at 4°C. The sections
were washed in PBS 1X twice for 2 min and then incubated
with biotinylated anti-mouse IgG reagent (BMK-2202, Vector
Laboratories) for 10 min followed by incubation with Avidin,
NeutrAvidin HRP conjugate (A2664, Molecular Probes)
diluted 1 : 1000 in PBS for 2 h at room temperature. One
drop of ImmPACT DAB chromogen (SK-4105, Vector Labora-
tories) was diluted in 1 ml of ImmPACT DAB diluent and
applied on the sections for 2–10 min until desired colour inten-
sity was developed. After staining with hematoxylin (H3136,
Sigma Aldrich), the sections were dehydrated and mounted
with a glass coverslip using one drop of DPX mountant
(O6522, Sigma Aldrich).

2.14. Statistical analysis
All data are expressed as means ± s.e.m. Statistical tests used
were comparison of means with two-tailed paired samples or
independent samples t-test, as indicated in the figure legends;
p-values less than 0.05 were considered significant. All exper-
iments were replicated independently and the number of
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replicates is indicated in the figure legends. All statistical tests
were performed with the IBM SPSS software.
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3. Results
3.1. Extracellular vesicles secreted by neuroblastoma

cells with activated MYCN are enriched in
oncogenic glycolytic enzymes

The relationship between MYCN expression and EV protein
cargo was investigated using the TET21-N neuroblastoma
cell line. TET21-N have been stably transfected with a
MYCN, doxycycline-repressible and expression vector [22];
in the absence of doxycycline, MYCN protein is constitutively
expressed (figure 1a). The supernatant of TET21-N cells,
expressing or non-expressing MYCN, was collected and
EVs were purified by differential ultracentrifugation. Nano-
particle tracking analysis and transmission electron
microscopy confirmed the presence of exosome-like EVs
with an average diameter of 100–200 nm (electronic sup-
plementary material, figure S1A, B). The membrane
integrity of the vesicles preparations was validated by stain-
ing with the membrane-specific dye PKH67 and observing
the EVs with ImageStream flow cytometry (electronic sup-
plementary material, figure S1C). The classical EV marker
CD63 was used to validate the vesicles preparation (electronic
supplementary material, figure S1D). Subsequently, a label-
free quantitative mass spectrometry-based proteomic analysis
was performed on EVs isolated from TET21-N cells expres-
sing or non-expressing MYCN. In total, 152 EV proteins
were differentially regulated between the two conditions
with 111 proteins upregulated and 41 proteins downregu-
lated upon MYCN expression (figure 1b; electronic
supplementary material, Dataset S1). Pathway analysis
suggests that glycolytic enzymes, ribosomal and extracellular
matrix (ECM) interaction proteins were mostly enriched in
the EVs secreted by the MYCN-positive cells (figure 1c).
The differential expression of proteins implicated in glycoly-
sis was validated by western blotting. PKM2, hexokinase I
and hexokinase II were upregulated in the EVs secreted by
TET21-N cells expressing MYCN compared to the condition
in which MYCN gene expression was switched off. Other
proteins linked to metabolism such as eEF2, PFKP, GAPDH
and ribosomal protein L10a were also confirmed to be
enriched in the EVs secreted by MYCN-positive neuroblas-
toma cells (figure 1d ). The expression levels of vesicular
proteins did not reflect those observed in the corresponding
cellular lysates (figure 1d ), indicating that MYCN might
control their loading into EVs.

3.2. Vesicles circulating in the plasma of neuroblastoma
patients contain pyruvate kinase M2 and
hexokinase II

Since PKM2 and hexokinase II are glycolytic enzymes with
oncogenic potential [23], detectable in the EVs of neuroblas-
toma cells, we wondered whether we could also detect
glycolytic enzymes in the EVs circulating in the plasma of
patients bearing neuroblastomas. We therefore isolated EVs
from the plasmas of neuroblastoma or non-cancer patients,
which were used as controls. We detected vesicles of sizes
similar to those detected in the supernatant of neuroblastoma
cells, which were positive to the CD63 marker (electronic sup-
plementary material, figure S2A, B). To further validate the
plasma vesicles preparations, we used an antibody against
galectin-3-binding protein (Gal-3BP), which was shown to
detect exosomes secreted by neuroblastoma cells [24] (elec-
tronic supplementary material, figure S2C). Remarkably,
PKM2 and hexokinase II were detected in the EVs isolated
from plasma samples of neuroblastoma patients, but were
completely absent in the vesicles of non-cancer patients
(figure 2a). The expression of the enzymes was similar in ves-
icles preparations from patients with MYCN-amplified or
non-amplified tumours. However, MYCN non-amplified
tumours often present high levels of expression of MYC
(c-MYC) [25], which might explain why PKM2 and hexoki-
nase II levels were similar in vesicles from the two groups
of patients. We determined that the prominent 50 kD protein
band detected in all plasma samples is of spurious nature
(electronic supplementary material, figure S2D). The
expression of the PKM and HK2 genes strongly correlates
with poor patient prognosis, suggesting that their products
might confer a growth or survival advantage to neuroblas-
toma cells (figure 2b,c). We analysed EVs secreted from
multiple neuroblastoma cell lines to confirm that glycolytic
enzymes with oncogenic potential were enriched in MYC-
expressing cells. EVs or total cell lysates were prepared from
MYCN-amplified (LAN5, Kelly) and non-MYCN-amplified
(SH-SY5Y, SH-EP and GIMEN) neuroblastoma cell lines. The
MYCN non-amplified cell lines, as expected, did not display
detectable levels of MYCN protein. However, SH-SY5Y and
SH-EP expressed high levels of MYC (c-MYC), whereas
GIMEN cells did not express either MYC family members
(electronic supplementary material, figure S3A). Consistent
with the hypothesis that MYC family members regulate EV
protein cargo, vesicles derived from MYC/MYCN-positive
cell lines were enriched for the glycolytic enzymes hexokinase
II and PKM2 in comparison to MYC-negative GIMEN cells
(electronic supplementary material, figure S3B).

3.3. Extracellular vesicles secreted by MYCN-positive
cells induce glycolysis, increase respiration capacity,
ATP production and proliferation of recipient cells

To assess the biological function of EVs in recipient cells, we
used the neuroblastoma cell line SH-EP, which is stromal-
type, therefore simulating the Schwann stroma surrounding
the nests of highly proliferating neuroblasts in tumours.
SH-EP cells were incubated with EVs purified from TET21-N
neuroblastoma cells in MYCN-off or MYCN-on conditions.
Vesicles were also stained with PKH67 and the ability of
SH-EP cells to incorporate them was confirmed by fluor-
escence microscopy. The fluorescent EVs were mainly
localized in the cytoplasm of recipient cells (figure 3a). To
investigate whether the incorporation of EVs had biological
consequences, we exposed SH-EP cells to EVs secreted by
TET21-N cells in induced or un-induced conditions and
measured cell proliferation and metabolic activity. Neuroblas-
toma cells receiving EVs produced by MYCN-activated cells
were stronger inducers of cell proliferation and metabolism
compared to EVs produced by MYCN non-expressing cells
(figure 3b,c). Since glycolytic enzymes were particularly
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enriched in EVs produced by MYCN-activated cells, we also
measured the glycolytic activity of recipient cells. SH-EP cells
were incubated with EVs for 24 h and we observed that
the secretion of L-lactate was significantly increased in the
presence of EVs produced by MYCN-expressing cells
(figure 3d). This effect was also observed in SH-SY5Y cells, a
MYCN single-copy cell line (figure 3e). Non-mitochondrial
oxygen consumption, basal respiration, maximum respiration,
spare respiration capacity, proton leak and ATP production
were also significantly increased in SH-SY5Y cells upon
incubation with EVs secreted from MYCN-positive cells
(figure 3f–j). Taken together, these experiments suggest that
EVs secreted by MYCN-positive cells increase the
proliferation rates and metabolic activity of stromal and
MYCN single-copy neuroblastoma cells by inducing a
Warburg switch.
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3.4. Neuroblastoma extracellular vesicles induce
increased mitotic index and histone H3 (T11)
phosphorylation in a pyruvate kinase
M2-dependent manner

In addition to its role in glycolysis, PKM2 has been shown to
cause epigenetic modifications by entering the nucleus and
phosphorylating histone H3 on threonine 11. This results in
the activation of signalling, transcription of target genes,
such as cyclin D1 and c-MYC, and increased cell cycle pro-
gression [26]. Thus, we hypothesized that EVs enriched in
PKM2 could induce phosphorylation of histone H3 in recipi-
ent cells. Indeed, histone H3 (T11) phosphorylation was
increased in SH-EP cells incubated with EVs purified from
MYCN positive, but not negative, cells (figure 4a). To study
the role of EV PKM2 in a more physiologically relevant set-
ting, we used a co-culture chamber system in which
induced or un-induced TET21-N cells were separated by
0.4 µm pores tissue culture inserts from recipient SH-EP

https://hgserver1.amc.nl/cgi-bin/r2/main.cgi
https://hgserver1.amc.nl/cgi-bin/r2/main.cgi
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Figure 3. (Overleaf.) EVs secreted by MYCN-expressing cells promote glycolysis, respiration, ATP production and proliferation of recipient neuroblastoma cells.
(a) Fluorescence microscopy of SH-EP cells after 24 h incubation with PKH67-labelled EVs isolated from TET21-N cells expressing or not expressing MYCN. Quantification
of the percentages of cells positive to the dye in different conditions is shown on (iii). Error bars indicate mean values ± s.e.m. Scale bar 25 μm. (b) SH-EP cells were
counted at 1 day intervals after being cultured in the presence or absence of EVs purified from MYCN-positive or -negative TET21-N cells (n = 3). (c) SH-EP cells were
subjected to MTS assays 24 or 48 h after being cultured in the presence or absence of EVs purified from MYCN-positive or -negative TET21-N cells (n = 5). (d ) L-lactate
production in SH-EP (n = 4) and (e) SH-SY5Y (n = 3) neuroblastoma cells incubated for 24 h with EVs isolated from TET21-N cells with and without MYCN expression.
( f–j) Seahorse analysis. MYCN single-copy cell line SH-SY5Y was used as a recipient for EVs purified from TET21-N cells with or without MYCN (n = 3). PBS was used as
a control (untreated). OCR indicates oxygen consumption rate. Error bars represent mean values ± s.e.m. *p≤ 0.05, **p≤ 0.01, ***p≤ 0.001.
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cells (electronic supplementary material, figure S4A). The
transfer of EVs from donor to recipient cells was confirmed
by transfecting TET21-N cells with a construct expressing a
CD63-GFP fusion protein (electronic supplementary material,
figure S4B), and observing the GFP signal in the SH-EP reci-
pient cells after 24 h (electronic supplementary material,
figure S4C). Using the same methodology, we confirmed
that PKM2 is delivered to SH-EP cells co-cultured with
TET21-N cells transfected with a construct expressing a
PKM2-GFP fusion protein (figure 4b). To increase the clinical
relevance of these results, we investigated whether EVs iso-
lated from the plasmas of neuroblastoma patients could
also induce phosphorylation of histone H3 on threonine 11,
focusing on interphase cells. The intensity of histone H3
phosphorylation in interphase SH-EP cells was statistically
significantly increased after incubation with EVs purified
from patients with MYCN-amplified neuroblastomas, com-
pared to patients with non-MYCN-amplified tumours or
children without cancer, supporting the results obtained
with the cell line systems (figure 4c).
3.5. Vesicular trafficking of pyruvate kinase M2 is
required for the increased levels of histone H3
phosphorylation in recipient cells following
activation of MYCN in donor cells

To link the biological effects observed in recipient SH-EP cells
to the transfer of vesicular PKM2, we used two independent
siRNAs that caused a reduction of PKM2 expression in donor
TET21 N cells (figure 5a). Histone H3 phosphorylation in
SH-EP cells was significantly downregulated in the presence
of the PKM2 siRNAs or when the expression of MYCN was
turned off in donor cells, strongly suggesting that the transfer
of PKM2 is essential to induce histone H3 phosphorylation in
recipient cells (figure 5b). Since histone H3 phosphorylation is
tightly linked to mitosis, we calculated the mitotic index of
SH-EP cells cultured in the different conditions and verified
that the mitotic index was high when MYCN was activated,
but reduced to baseline levels when MYCN was switched
off or PKM2 was inhibited by siRNAs in donor cells
(figure 5c). To further demonstrate that the increase of histone
H3 phosphorylation was caused by the transfer of PKM2 in
the recipient cells, we transfected SH-EP cells with plasmids
encoding GFP or PKM2-GFP, and 48 h later, we assessed
phospho-histone H3 (T11). There was a significant increase
of histone H3 (T11) phosphorylation in cells transfected
with PKM2-GFP compared to GFP control transfection,
demonstrating the direct role of the kinase in this effect
(figure 5d ). To ascertain whether the induction of histone
H3 phosphorylation was mediated by exosomes or exo-
some-like EVs, we used siRNAs to downregulate Rab27a,
which were previously shown to inhibit exosome secretion
[27], in TET21-N cells (figure 5e). Rab27a silencing caused
intracellular accumulation of the tetraspanin and EV marker
CD63 fused to GFP, suggesting that exosomes were not
released in the extracellular space in this setting (figure 5f ).
Silencing Rab27a phenocopied the loss of PKM2 expression
in co-culture experiments, demonstrating that vesicular
transfer of PKM2 is required to induce histone H3
phosphorylation in recipient cells (figure 5g).
3.6. MYCN-regulated extracellular vesicles activate
c-MYC expression in neuroblastoma stromal cells

A consequence of epigenetic modification of histones induced
by nuclear PKM2 is activation of c-MYC [26]. We therefore
quantified c-MYC expression by immunofluorescence analy-
sis in SH-EP cells exposed to purified EVs or co-cultured in
transwell chambers with TET21-N cells in induced or un-
induced conditions. EVs purified from TET21-N cells with
activated MYCN induced higher expression of c-MYC than
EVs purified from cells in which MYCN expression has
been switched off (figure 6a,b). Similarly, c-MYC expression
was significantly increased in SH-EP cells co-cultured with
TET21-N cells with MYCN switched on, compared to the
condition in which MYCN was switched off (figure 6c). In
a syngeneic mouse model of neuroblastoma (TH-MYCN),
c-MYC expression is detected in stromal cells surrounding
nests of MYCN-positive neuroblastomas (figure 6d ). Overall,
these experiments corroborate the hypothesis that the transfer
of EVs from MYCN-positive cells induces activation of
c-MYC in recipient stromal cells. A cartoon illustrating how
the MYCN-regulated vesicles could change the tumour
microenvironment is shown in figure 7.
4. Discussion
The role of MYC as a regulator of the tumour microenviron-
ment, in addition to its intrinsic effects on cancer cells, is
emerging. For example, c-MYC has been shown to alter
immune cells metabolism and the cancer microenvironment
by supporting the expression of HIF-1 and secretion of
VEGF in tumour cells [28]. In neuroblastomas, MYCN ampli-
fication is conducive to reduce immune infiltration [29,30]
and neuroblastoma cells have been shown to secrete macrove-
sicles able to stimulate the production of pro-tumourigenic
signals by bone marrow stromal cells [31]. These studies
prompted us to investigate the hypothesis that MYCN
could exert non-cell autonomous effects by regulating EVs.

Using mass spectrometry analysis, we have identified
MYCN-regulated vesicular proteins mainly clustered in
three functional groups: ribosomal proteins, proteins
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involved in ECM interactions and glycolytic enzymes. We
focused our attention on the latter group since it is well estab-
lished that MYC proteins are regulators of cell metabolism
and the Warburg effect. The regulation of metabolism is criti-
cal for the function of cellular processes and aggressive
cancer cells are able to adapt their metabolism in a way
that sustains tumour growth and metastatic dissemination.
While most differentiated cells use mitochondrial oxidative
phosphorylation as their main source of energy production,
cancer cells shift towards aerobic glycolysis by increasing
their glucose uptake and metabolizing it to lactate in aerobic
conditions, a process known as the Warburg effect [32,33]. A
number of enzymes implicated in the glycolytic pathway
have been shown to be overexpressed in multiple cancers
[34]. The M2 splice isoform of pyruvate kinase is increased
in cancer with respect to the M1 variant, mainly found in
normal tissues, and contributes to the metabolic adaptations
required in tumourigenesis [35,36]. PKM2 has been shown to
be modified by acetylation by p300, which transforms it from
a cytoplasmic metabolic kinase to a nuclear protein kinase
[37,38]. In glioma, PKM2 mediates phosphorylation of his-
tone H3 on threonine 11, resulting in the transcriptional
activation of c-MYC, cyclin D1 and tumour progression
[26]. In addition, PKM2 regulates chromosome segregation
and mitosis in cancer by interacting with the spindle
checkpoint protein Bub3 [39].

MYC regulates lactate production, glutaminolysis, and
increase protein translation by promoting ribosome
biogenesis [40]. MYCN is also involved in metabolic repro-
gramming of neuroblastoma cells by enhancing glycolytic
metabolism [41]. Among the glycolytic enzymes enriched in
the EVs of MYCN-expressing neuroblastoma cells, we ident-
ified hexokinase II and PKM2. Notably, we detected the
presence of hexokinase II and PKM2 in EVs circulating in
the bloodstream of neuroblastoma patients and more
frequently in those bearing MYCN-amplified tumours. The
glycolytic enzymes were undetectable in the EVs of non-
cancer patients, supporting the hypothesis that they are of
cancer origin. Given that the expression of PKM and HK2
in neuroblastoma samples is strong predictors of negative
clinical outcome, analysis of the protein content of circulating
EVs could be used as a prognostic indicator and a non-
invasive method for stratification of neuroblastoma patients.

MYCN-amplified cells are more sensitive to the depletion
of PKM2 than MYCN non-amplified cells, suggesting onco-
genic addiction [42]. This is because the PKM2 isoform is
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enriched in MYCN-amplified neuroblastoma cells due to the
ability of the MYC transcription factors to transactivate the
splicing factors PTBP1 and HNRNPA [42,43]. It is tempting
to speculate that the transfer of oncogenic kinases via EVs
operated by MYC mutant cells could contribute to the aggres-
sive behaviour of the overall tumour mass by promoting the
metabolic activity of cancer or stromal cells that do not carry
oncogenic mutations. PKM2-enriched neuroblastoma EVs
have the potential to modify epigenetically recipient cells
by enhancing histone H3 phosphorylation. This would
permanently fix transient oncogenic signals, perhaps explain-
ing why MYCN-amplified tumours can revert to focally
amplified, and focally amplified to non-amplified, during
the evolution of the disease [7].

A limitation of this study is that we have not examined
the role of nucleic acids in neuroblastoma EVs, although
functional microRNAs have been previously detected in
EVs secreted by neuroblastoma cell lines or immune cells
infiltrating neuroblastomas [44,45]. It is not possible to
exclude that the transfer of MYCN-regulated microRNAs
might have contributed to some of the biological effects
observed in our study. Indeed, two research groups have
independently shown that microRNAs belonging to the
17–92 cluster are enriched in vesicles secreted by MYCN-
amplified cells and their transfer stimulate proliferation and
migration of recipient, MYCN non-amplified cells [45,46].
However, RNAi inhibition of PKM2 in MYCN-expressing
donor cells completely reversed the increase in histone H3
phosphorylation in recipient MYCN single-copy cells,
suggesting that this effect is regulated specifically by protein
transfer. In conclusion, the results of our study suggest that
MYCN-amplified neuroblastomas might promote the spread-
ing of oncogenic kinases and other biologically active
proteins to the tumour microenvironment and remote body
locations.
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