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Abstract
SARS-CoV-2, the virus responsible for COVID-19, uses angiotensin converting enzyme 2 (ACE2) as its primary cell-surface 
receptor. ACE2 is a key enzyme in the counter-regulatory pathway of the broader renin-angiotensin system (RAS) that has 
been implicated in a broad array of human pathology. The RAS is composed of two competing pathways that work in opposi-
tion to each other: the “conventional” arm involving angiotensin converting enzyme (ACE) generating angiotensin-2 and the 
more recently identified ACE2 pathway that generates angiotensin (1–7). Following the original SARS pandemic, additional 
studies suggested that coronaviral binding to ACE2 resulted in downregulation of the membrane-bound enzyme. Given the 
similarities between the two viruses, many have posited a similar process with SARS-CoV-2. Proponents of this ACE2 defi-
ciency model argue that downregulation of ACE2 limits its enzymatic function, thereby skewing the delicate balance between 
the two competing arms of the RAS. In this review we critically examine this model. The available data remain incomplete 
but are consistent with the possibility that the broad multisystem dysfunction of COVID-19 is due in large part to functional 
ACE2 deficiency leading to angiotensin imbalance with consequent immune dysregulation and endothelial cell dysfunction.

Keywords Renin angiotensin system · Angiotensin converting enzyme · Angiotensin converting enzyme 2 · Angiotensin-2 · 
Angiotensin 1–7

Abbreviations
SARS-CoV-1  Severe Acute Respiratory Syn-

drome Coronavirus 1
SARS-CoV-2  Severe Acute Respiratory Syn-

drome Coronavirus 2
RAS  Renin Angiotensin System
AT1  Angiotensin-1
AT2  Angiotensin-2
AT(1–7)  Angiotensin (1–7)
AT(1–9)  Angiotensin (1–9)
ACE  Angiotensin Converting 

Enzyme
ACE2  Angiotensin Converting 

Enzyme 2
AT1R  Angiotensin-2 Receptor Type 1
AT2R  Angiotensin-2 Receptor Type 2
MasR  Mas Receptor

ADAM17  A Disintegrin and Metallopro-
tease 17

TMPRSS2  Transmembrane Protease Ser-
ine 2

BK  Bradykinin
NRP-1  Neuropilin-1
SR-B1  HDL Scavenger Receptor B1
ACE Inhibitors (ACEIs)  Angiotensin Converting 

Enzyme Inhibitors
ARBs  Angiotensin Receptor Blockers

1 Introduction

In January 2020, the world first began to hear of a cluster 
of cases of adult respiratory distress syndrome (ARDS) in 
Wuhan, China, marking the beginning of the COVID-19 
pandemic. Soon thereafter, scientists isolated the culprit, a 
novel coronavirus known as severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) and confirmed that it 
primarily uses the same cell receptor as severe acute respira-
tory syndrome coronavirus 1 (SARS-CoV-1): angiotensin 
converting enzyme 2 (ACE2) [1–3]. Since this discovery, 
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there has been renewed interest in defining the role of ACE2 
in normal physiology in attempts to elucidate its potential 
involvement in COVID-19 pathology. As a critical com-
ponent of the ubiquitous renin-angiotensin system (RAS), 
ACE2 is primarily involved in maintaining homeostasis 
within an array of normal physiologic functions ([4–8]. Fur-
thermore, it is directly involved in bradykinin metabolism 
and has numerous non-catalytic functions in the gut [4, 6, 9]. 
Following the SARS pandemic, studies primarily in animal 
models confirmed that SARS-CoV-1 binding to ACE2 led 
to downregulation of the membrane-bound enzyme [10–12]. 
Extrapolating from this experience, a growing number of 
authors have posited that SARS-CoV-2 also induces down-
regulation of this critical enzyme, creating a functional 
ACE2 deficiency [4, 13–15]. In this review we will dissect 
the merits of this hypothesis. As we will discuss, there is 
evidence to suggest initial upregulation of ACE2 in airway 
cells, likely triggered by interferon signaling [16–19]. At 
the same time, mounting evidence suggests that COVID-
19 phenocopies a functionally ACE2 deficient state. Taken 
together, these seemingly incongruous statements raise the 
distinct possibility that ACE2 deficiency occurs later in the 
disease course thereby driving the second, inflammatory 
phase of COVID-19 [20].

2  Overview of the renin‑angiotensin system

The RAS is complex and incompletely understood, compris-
ing two “arms” with both tissue-level and systemic compo-
nents [4–8]. Historically, our understanding of the RAS has 
been limited to the angiotensin converting enzyme (ACE)-
mediated pathway and its involvement in the regulation of 
intravascular volume. However, over the past two decades, a 
second, counterregulatory arm mediated by ACE2 has come 
into focus [4–8]. Given these additional complexities, it is 
now believed that the RAS is involved in an array of human 
physiology extending beyond its role in the maintenance of 
intravascular volume and that dysfunction of this system 
contributes to human disease, potentially including COVID-
19 [4–8, 13–15, 21, 22].

The traditional RAS pathway involves numerous key pep-
tides and enzymes: angiotensinogen, angiotensin 1 (AT1), 
angiotensin 2 (AT2), renin, ACE, and aldosterone [6, 21] 
(Fig. 1). Angiotensinogen, an inactive precursor peptide, is 
cleaved by renin to form AT1, which in turn is processed 
by ACE to AT2. Angiotensin-2 can be converted to angio-
tensin-3 and -4, but AT2 is considered the active signaling 
effector of the pathway [6, 21]. AT2 performs its multiple 
physiologic roles via signaling through two receptors: angio-
tensin-2 receptor type 1  (AT1R) and angiotensin-2 receptor 
type 2  (AT2R) [6, 23, 24]. Of the two, activation of  AT1R 
is better studied and thought to be the primary mediator of 

angiotensin-2’s diverse biological effects [23]. Indeed, it is 
via  AT1R that AT2 regulates aldosterone release from the 
adrenal cortex in response to changes in volume status [25]. 
In addition to its crucial role in fluid balance, AT2 activa-
tion of  AT1R can promote vasoconstriction, angiogenesis, 
thrombosis, inflammation, and fibrosis [4, 23]. Interestingly, 
activation of  AT2R may oppose the vascular actions of  AT1R 
in certain contexts, but our understanding of this pathway is 
incomplete [23, 24].

Chymase, an endopeptidase primarily derived from mast 
cells, has also been shown to drive AT2 production [6, 26]. 
This ACE-independent mechanism of angiotensin-2 genera-
tion likely plays an important role in certain pathologic pro-
cesses [6, 26]. In fact, in animal models there is a high level 
of compartmentalization between chymase and ACE [26]. 
Accumulating evidence indicates that chymase is the major 
regulator of tissue angiotensin-2 levels; in ACE-deficient 
mice, AT2 levels in the heart, lung, and kidneys are pre-
served despite undetectable levels in the circulation [26–28].

Although portrayed as a centralized mediator of systemic 
physiologic parameters, the spatial organization of the RAS 
is nested, featuring activities at the systemic, tissue, and cel-
lular levels [6, 26, 29, 30]. Moreover, its activities may be 
differentially regulated among various tissues or cell types. 
As such, its local components can act independently from 
the central pathway [4–8, 29, 30]. The latter point may be 
critical to any potential RAS involvement in COVID-19 as 
tissue angiotensin-2 levels can be significantly higher than 
systemic values within multiple organ systems [6, 26, 31, 
32].

The critical components of the second arm of the RAS 
include ACE2, angiotensin (1–9) [AT(1–9)], and angiotensin 
(1–7) [AT(1–7)] [4–8, 33]. ACE2 is an ectoenzyme present 
in most human tissues that is primarily membrane-bound 
but may be cleaved by protease ADAM17 to produce solu-
ble ACE2 (sACE2), a process ramped up in certain disease 
states [4, 33]. ACE2 catalyzes the alternative conversion 
of AT1 to AT(1–9) – which subsequently is converted to 
AT(1–7) by a non-ACE2 mediated process – and of AT2 
directly to AT(1–7) [33]. AT(1–7) likely binds to Mas recep-
tors (MasR), promoting vasodilatory, anti-inflammatory, and 
anti-fibrotic effects [4, 23, 33]. Consequently, activation of 
this arm is thought to oppose the activity of the conventional 
ACE/AT2 pathway.

Secondarily, ACE2 acts in a non-catalytic fashion in the 
gut and participates in the enzymatic regulation of brady-
kinin (BK) signaling, which itself has been implicated in 
COVID-19 pathophysiology [4, 6, 9, 34]. ACE2 catabolizes 
bradykinin’s active metabolite, des-Arg9-bradykinin, and 
thus ACE2 deficiency is expected to disinhibit bradykinin 
signaling [9]. A detailed analysis of BK’s distinct impact 
on COVID-19 is beyond the scope of this review; however, 
given its role in vasodilation, inflammation, and vascular 
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permeability, it is plausible that bradykinin dysregulation 
contributes to the overall clinical picture of ACE2 deficiency 
[34]. Additionally, BK likely increases chymase activity, 
providing additional avenues for AT2 production [35].

Under normal circumstances it is thought that the two 
arms of the RAS are balanced such that that an increase in 
ACE and AT2 is countered by a coordinate increase in ACE2 
and AT(1–7) in order to maintain the physiologic status quo 

[21, 33]. However, in certain disease states, an imbalance 
between the two arms arises, typically in the form of unop-
posed ACE/AT2 activity [21]. In fact, we propose, as have 
others, a bipartite model for the pathogenesis of COVID-19: 
following an initial phase of illness resulting from direct 
viral toxicity to target cells, the disease enters an inflamma-
tory phase in which SARS-CoV-2 induces functional ACE2 
deficiency. This effective loss of ACE2, in turn, leads to an 
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Fig. 1  An overview of the renin angiotensin system pathways
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imbalanced RAS with a skewed ratio of AT2 to AT(1–7) [4, 
13–15]. It has been argued that this imbalance is a driver 
of COVID-19 pathology [13–15]. Moving forward, we 
will examine the evidence in support of this theory first by 
exploring how ACE2 deficiency itself manifests.

3  Angiotensin imbalance causes widespread 
deleterious effects

Regulation of angiotensin balance by the systemic and local 
RAS has been confirmed to play a role in optimal function-
ing of most organ systems [6]. Numerous studies antedating 
COVID-19 have explored the physiologic consequences of 
angiotensin imbalance. We will review these data in order to 
highlight the diverse, multi-system failure that broad ACE2 
deficiency incites (Table 1).

Lungs  Cytokine signaling increases local ACE production, 
which in turn promotes the pathologic processes underpin-
ning many features of ARDS: enhanced vasoconstriction and 
vascular permeability, further cytokine production, apopto-
sis of alveolar epithelial cells, and fibroproliferation [36, 37]. 
Indeed, ACE polymorphisms that augment its enzymatic 
activity correlate with increased mortality in ARDS [22, 38]. 
By contrast, ACE2 deficiency in the setting of superimposed 
illness can exacerbate acute lung injury or ARDS in animal 
models secondary to a relative increase in AT2 activation of 
 AT1R [10, 36, 39–41], while administration of recombinant 
ACE2 improves lung pathology [10, 40]. Bronchoalveolar 
lavage (BAL) fluid from rats with lipopolysaccharide (LPS)-
induced ARDS likewise contains upregulated ACE at the 
expense of ACE2, while recombinant AT(1–7) and the  AT1R 
antagonist losartan decrease lung inflammation [41].

Cardiovascular system  AT2 promotes left ventricular 
hypertrophy and myocardial dysfunction, while pharmaco-
logic blockade of this pathway has become a cornerstone 
of the management of both ischemic heart disease and con-
gestive heart failure [23, 42]. Additionally, AT2 is thought 
to upregulate ADAM17, inducing a shift from membrane-
bound to soluble ACE2, plausibly explaining the strong cor-
relation between circulating sACE2 and cardiovascular mor-
bidity and mortality [4, 43, 44]. To wit, high sACE2 levels in 
patients with cardiovascular disease (CVD) likely reflect an 
increased baseline AT2 tone rather than an active pathologic 
role for sACE2 per se. Downstream off AT2, aldosterone 
also causes deleterious effects on the cardiovascular system 
as evidenced by the all-cause mortality benefit conferred 
by mineralocorticoid receptor antagonists in patients with 
heart failure with reduced ejection fraction [45, 46]. The 
ACE2 pathway likely serves in a counter-regulatory capac-
ity [4, 22]. Data on ACE2 deficiency in compensated states 

are mixed [47, 48]. However, superimposed insults such as 
volume overload or AT2 infusion can trigger more overt 
cardiac dysfunction [47–49]. The effect of ACE2 on heart 
function may proceed in part through conversion of AT(1–7) 
to almandine, as loss of the almandine receptor (MrgD) in an 
animal model results in severe cardiomyopathy [50].

Excretory (renal) system  Perhaps the best-known function 
of AT2 is its regulation of intravascular volume via its effects 
on renal water and sodium handling [51, 52]. However, a 
broader spectrum of ACE activity is implicated in chronic 
kidney disease, including increased oxidative stress, fibro-
sis, and inflammation [51]. On the other hand, the ACE2 
arm largely opposes these effects, resulting in vasodilation, 
natriuresis and diuresis, and reduced oxidative stress and 
inflammation [51, 52]. An altered balance of ACE/ACE2 
may be an important driver of renal pathology [51–53]. For 
example, murine knockout of the genes encoding ACE2 or 
the Mas receptor promotes proteinuria and renal inflamma-
tion that is attenuated by treatment with recombinant human 
ACE2 (rhACE2) [54–56]. The loss of ACE2 potentiates acti-
vation of  AT1R by AT2, in turn upregulating the oxidative 
stress response; increased production of cytokines leads to 
inflammation and breakdown or malfunction of the glomeru-
lar filtration barrier [56].

Endocrine system  AT2 infusion has been shown to reduce 
blood flow to pancreatic islet cells, thereby hindering first-
phase glucose-stimulated insulin secretion [57, 58]. At 
higher doses, AT2 may reduce both basal and pulsatile insu-
lin secretion in humans [59–61]. The negative effects of the 
ACE pathway on insulin production likely result from β-cell 
damage from increased oxidative stress and fibrosis as well 
as specific impairments in insulin synthesis and secretion 
[59, 61]. Congruently, Ace2 and MasR knockout mice are 
glucose intolerant, while treatment of diabetic ob/ob mice 
with rhACE2 improves hyperglycemia along with indices of 
β-cell number and function [62–64]. Additionally, treatment 
with angiotensin(1–7) enhances insulin secretion in diabetic 
rats through improvements in β-cell microperfusion [65].

Neurological system  Activation of the ACE arm increases 
risk of stroke, perhaps secondary to increased vasoconstric-
tion, inflammation, fibrosis, and oxidative stress [66]. Knock-
out of  AT1R or administration of an AT2 “vaccine” reduces 
stroke risk in mice while increased angiotensin-2 levels in 
mice, via genetic manipulation of the renin and angiotensino-
gen genes, increases stroke risk [66–69]. The ACE2/AT(1–7) 
arm is less well characterized but has been identified as a neu-
roprotective pathway [66, 70]. In rats, both ACE2 and angio-
tensin(1–7) are increased within 48 h of an ischemic stroke, 
and intracerebroventricular infusion of AT(1–7) or adminis-
tration of an ACE2 activator can reduce infarct size [71, 72].
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Gastrointestinal system  The small intestine hosts the 
body’s highest tissue concentration of both ACE and 
ACE2 [73]. High doses of exogenous AT2 administered 
enterally to rats impair jejunal sodium-water reabsorption 
– potentially explaining the increased risk of diarrhea in 
COVID-19 – while ACE inhibitors and angiotensin receptor 
blockers (ARBs) reduce intestinal inflammation in rodent 
models [73, 74]. The effects of ACE2 in the gut are less 
well recognized but it appears to act in a non-catalytic man-
ner to regulate tryptophan transport and the expression of 
antimicrobial peptides [4, 7, 73]. It has been more broadly 
hypothesized that ACE2’s impact on cardiovascular and 
pulmonary physiology may also proceed in part through 
alteration of the gut microbiome [4, 7].

Hematologic The RAS modulates cardiovascular risk 
beyond the myocardium through direct effects on the vas-
culature, principally with regard to endothelial cell function 
and regulation of thrombotic pathways. A detailed account-
ing of the molecular pathways involved in the effects of the 
RAS on endothelial cell function is beyond the scope of 
this review. Nonetheless, activation of the ACE pathway has 
been shown to promote endothelial cell dysfunction [75–79]. 
The hallmark of endothelial cell dysfunction is failure to 
promote vasodilation by vascular smooth muscle cells, for 
example due to insufficient generation of nitric oxide (NO) 
by endothelial NO synthase (eNOS) [80]. AT2 and AT(1–7) 
have been shown to participate in the regulation of this pro-
cess, as endothelial cells express both AT2 and Mas recep-
tors [78, 81]. Local AT2 may act in a paracrine or endocrine 
fashion to impair production of NO by endothelial cells [76–
79]. In an animal model, increasing doses of AT2 stimu-
lated interleukin 6 (IL-6) production and promoted vascular 
macrophage accumulation, both of which correlated with 
increasing degrees of endothelial cell dysfunction [75]. By 
contrast, the ACE2 pathway is felt to protect endothelial cell 
function [4, 81–83]. AT(1–7) activation of Mas receptors has 
been shown to stimulate eNOS [83]; the resulting increase in 
NO synthesis promotes vasodilation as well as anti-fibrotic 
and anti-inflammatory effects, thereby helping to preserve 
endothelial cell function. The second major role of the RAS 
in vascular biology is regulation of thrombotic pathways by 
AT2 and AT(1–7) [13, 84]. ARBs and ACE inhibitors may 
reduce thrombosis in an AT(1–7)-dependent manner via 
enhanced fibrinolysis and reduced platelet activation [84, 
85]. AT2 infusion in hypertensive rats promotes thrombus 
formation, particularly within the microvasculature, in an 
 AT1R-independent manner [86]. The anti-thrombotic effect 
of AT(1–7) likely proceeds via activation of MasR on plate-
lets that increases NO release as well as endothelial cell 
release of NO and prostacyclin (PC) [84]. Increased local 
NO and PC release reduces platelet activation and promotes 
vasodilation [84].

Immune system  The renin-angiotensin system is intricately 
involved in both innate and adaptive immunity [4–6, 87–91]. 
This interaction is highly complex and incompletely under-
stood. Nevertheless, it is important to note some salient 
points to better contextualize the importance of a balanced 
RAS for normal immune function. In general, upregulation 
of the systemic ACE pathway – via activation of NFκB, a 
key regulator of inflammatory cytokine gene expression – 
leads to a pro-inflammatory state, while ACE2 dampens 
this inflammatory response [4–6, 89, 90, 92]. In reality, the 
interaction between the RAS and immune function is far 
more complex. For instance, more recent data suggest that 
activation of  AT1R in lymphocytes tempers the inflamma-
tory response, perhaps in an effort to brake the global inflam-
mation triggered by AT2 [88]. As such, it is plausible that a 
functional ACE2 deficiency could simultaneously upregulate 
a systemic inflammatory response while inhibiting certain 
aspects of T-cell function.

4  Evidence for ACE2 downregulation model

4.1  Clinical similarities between COVID‑19 
and ACE2 deficiency

COVID-19 results in broad organ system dysfunction [93, 
94]. In its severe form, it leads to life-threatening ARDS 
and extra-pulmonary manifestations are common [93, 94]. 
Studies have confirmed an increased risk for cardiovascu-
lar dysfunction, acute kidney injury, stroke, exacerbation of 
pre-existing diabetes or development of new-onset hypergly-
cemia, gastrointestinal pathology, and thrombosis [93, 94]. 
Additionally, in an animal model, SARS-CoV-2 has been 
shown to cause endothelial cell dysfunction via reduction in 
pulmonary artery endothelial NO synthase activity [95] sug-
gesting that endothelial cell dysfunction plays an important 
role in COVID-19 pathology [96, 97]. These derangements 
phenotypically recapitulate functional ACE2 deficiency, 
solidifying the mechanistic plausibility of this model.

The parallels between the dysregulated immune function 
that characterizes COVID-19 and ACE2 deficiency are par-
ticularly compelling. Dysregulated immunity in COVID-19 
may take various forms: cytokine storm, leukopenia, propaga-
tion of neutrophil extracellular traps (“NETosis”), and aber-
rant B-cell function [93, 98–101]. Intriguingly, a dysregulated 
RAS can produce a similar immunologic fingerprint. For 
example, unopposed AT2, likely via its functional interaction 
with NFκB and subsequent upregulation of IL-6, could play 
an active role in “cytokine storm” [102, 103]. Extrapolating 
from our discussion above, AT2 may exert direct inhibitory 
effects on T-cell function – perhaps an explanation for the 
leukopenia seen in COVID-19 patients [88]. AT2’s ubiquitous 
activation of  AT1R may also be linked to the development 
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of NETosis in an NADPH oxidase-dependent manner [104, 
105]. Lastly, the lymph nodes of a subset of COVID-19 
patients exhibit loss of germinal centers, thereby impairing 
durable immunity [100]. Interestingly, expression of B-cell 
lymphoma 6 protein (BCL6), a well-known regulator of ger-
minal center dynamics, can be suppressed by AT2 [106–108]. 
Overall, experimental data support a negative impact of func-
tional ACE2 deficiency on both innate and adaptive immunity.

4.2  Mechanisms of SARS‑CoV‑1 and ‑2 infection

The close resemblance of the multisystem pathology of 
COVID-19 to the physiologic consequences of angioten-
sin imbalance described above suggests but does not prove 
that SARS-CoV-2 infection causes functional ACE2 defi-
ciency. However, the closely related SARS-CoV-1, which 
also caused both pulmonary and diffuse extra-pulmonary 
complications [109, 110], has been shown to downregulate 
ACE2 [10–12]. SARS-CoV-2 does appear more infectious 
perhaps secondary to its use of three additional viral co-
factors: neuropilin-1 (NRP-1), HDL scavenger receptor B1 
(SR-B1), and CD147 [111–113]. Interestingly, AT2 has been 
linked to upregulation of these co-receptors [114–118]. If 
these findings are confirmed in COVID-19, it would sug-
gest a pathologic feed-forward cycle in which the SARS-
CoV-2-mediated decrease in ACE2 leads to a downstream 
proliferation of viral co-receptors. Despite this important 
difference between SARS-CoV-1 and SARS-CoV-2, the 
similar clinical characteristics of the two viral infections is 
compelling. It may speak to ACE2’s ubiquity and simply 
reflect direct viral toxicity to a variety of target cell types 
but alternatively, the data could support the loss of ACE2 
function per se as a key driver of disease.

To understand how SARS-CoV-2 could induce a func-
tional ACE2 deficiency, one must look to its site of cell entry 
at the plasma membrane. SARS-CoV-2 binding to ACE2 
activates two important enzymes: ADAM17 and transmem-
brane protease serine 2 (TMPSSR-2), both of which cleave 
membrane-bound ACE2 (mACE2) but do so at distinct 
sites [119]. Cleavage of ACE2 by ADAM17 results either 
in internalization of ACE2 by endocytosis or release of solu-
ble ACE2 (sACE2), which retains some catalytic activity, 
into the extracellular fluid [119]. By contrast, TMPSSR-2 
cleavage of ACE2 leads only to ACE2 internalization and, 
presumably, loss of function [119]. The reduction in mACE2 
activity likely sets the stage for an imbalance between the 
key RAS effector peptides, AT2 and AT(1–7). Relatively 
unopposed AT2 activity can propagate the angiotensin 
imbalance by promoting further downregulation of mACE2 
through its activation of ADAM 17 [4, 120]. Although 
plasma ACE2 activity rises during COVID-19 and may 
remain increased for weeks [121], it is not clear that this 
increase represents the full catalytic potential of ACE2 due 

to the possible presence of circulating endogenous inhibitors 
[122]. Additionally, the loss of mACE2’s obligatory locali-
zation once solubilized prevents the enzyme from acting 
efficiently in the original tissue microenvironment where it 
may be needed most. Interestingly, SARS-CoV-2 may also 
co-opt rising sACE2 levels in service of cell entry by form-
ing ternary complexes with sACE2 and vasopressin that 
can be internalized upon binding to  AT1R and vasopressin 
receptors [123]. Formation of such viral-protein complexes 
may further attenuate sACE2 activity, thereby compounding 
functional ACE2 deficiency.

In summary, there is good evidence to support SARS-
CoV-1 downregulation of ACE2 [10–12]. Until recently, 
direct evidence for ACE2 downregulation by SARS-CoV-2 
was lacking, but a new study reports that its spike protein 
is able to induce downregulation of ACE2 in hamster lung 
tissue and in human pulmonary artery endothelial cells [95]. 
To the best of our knowledge, this is the only study directly 
demonstrating ACE2 downregulation by SARS-CoV-2. 
Nonetheless, given the similarities between SARS-CoV-1 
and SARS-CoV-2, coupled with the strong mechanistic pos-
sibility of ADAM17- and TMPSSR-2-mediated ACE2 shed-
ding, it is reasonable to suspect that ACE2 downregulation 
occurs in COVID-19. Furthermore, given that COVID-19 
closely phenocopies SARS – a disease state in which ACE2 
downregulation is established – ACE2 downregulation is 
likely an important aspect of COVID-19 pathology. Indeed, 
multiple other lines of evidence that we will review support 
the ACE2 downregulation model.

4.3  Epidemiologic data

Additional support for the ACE2 deficiency model may lie 
in a more detailed examination of high-risk patient popu-
lations. Numerous groups have been identified as at high 
risk for poor COVID-19 outcomes: male gender, older age, 
obesity, and pre-existing co-morbidities with heart disease, 
hypertension, diabetes, and possibly vitamin D deficiency 
[93, 124–127]. These high-risk groups for COVID-19 
share at least one common factor: elevated baseline ACE 
pathway tone, which may arise from the increased preva-
lence of chronic inflammation in many of these groups [87, 
128–132]. Unsurprisingly, modulation of this pathway with 
ACE inhibitors or ARBs is common practice in many of 
these patient cohorts. Less well known but equally com-
pelling is the evidence for direct interaction of both testos-
terone and vitamin D with the ACE pathway [133–140]. 
Studies predating COVID-19 have shown that testosterone 
can potentiate AT2 activity, in part via modulation of the 
relative levels of each angiotensin receptor [133–136]. Addi-
tionally, vitamin D deficiency may adversely impact on the 
RAS. Calcitriol suppresses renin gene expression and poten-
tiates the angiotensin(1–7) arm, and was shown to improve 
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LPS-induced ARDS in rats through favorable changes in 
both RAS arms [137–140].

Our understanding of baseline ACE2 activity in these 
high-risk populations is far less extensive due to an overall 
paucity of data, inconsistent reporting of endpoints across 
studies (e.g., ACE2 levels vs. activity, soluble vs. membrane-
bound ACE2, angiotensin-2 vs. angiotensin (1–7) levels), 
and the innate complexity of ACE2 regulation. ACE2 activ-
ity can vary by organ system within a single disease state, as 
well as within an individual organ system based on clinical 
status (e.g., compensated or decompensated heart failure) 
[141, 142]. Definitively characterizing baseline ACE2 status, 
therefore, is challenging; any discussion must be tissue spe-
cific and clearly delineate the endpoint(s) under evaluation. 
For example, in nasal epithelium, a critical site of SARS-
CoV-2 entry, ACE2 gene expression increases with age 
[143]. Similarly, a recent study found ACE2 gene expression 
in airway epithelial cells higher in older male patients, even 
as its expression pattern varied in other organs and in women 
[144, 145]. Lastly, sACE2 levels are elevated in numerous 
high-risk groups [43, 44, 146].

By contrast, epidemiologically low-risk groups – primarily 
women and younger patients – benefit from lower baseline 
ACE activity. Children generally lack chronic comorbidities 
that could drive inflammation-based activation of the RAS 
[87]. Direct assessment of ACE2 levels are complicated for 
reasons aforementioned but ACE2 expression may be lower 
in multiple organ systems in younger patients [143, 145]. The 
lower risk of women is likely attributable to a high ratio of 
estrogen to testosterone. The effects of estrogen on the RAS 
are complex but on the whole, in contrast to testosterone, it 
tilts the balance toward angiontensin(1–7), both via attenua-
tion of the ACE pathway and upregulation of the ACE2 path-
way [135, 136, 147–149]. The ACE2 gene promoter contains 
numerous estrogen and androgen receptor binding motifs 
– the former outnumbering the latter – suggesting direct regu-
lation of the ACE2 pathway by sex steroids [145]. If ACE2 
levels are upregulated in women, it is important to note this 
would reflect a non-compensatory, or “primary”, increase, 
in stark contrast to high-risk patients. As such, according to 
this model, higher ACE2 levels may increase risk for initial 
infection in women but, as with children, a favorable initial 
ratio of AT2 to AT(1–7) would position them to fare better 
once infected.

In summary, the critical difference between high- and 
low-risk groups relates to baseline ACE tone and the nature 
of their baseline ACE2 status. High-risk groups start out 
with a relatively high basal ACE tone while low-risk groups 
do not. Characterizing differences in ACE2 status is more 
difficult but the dynamic relationship between the two arms 
of the RAS is far more important than a single snapshot of 
ACE2 levels. Increased levels of ACE2 in high-risk patients, 
if present, likely reflect a compensatory attempt to counter 

a tonically activated ACE pathway. These patients have lit-
tle or no ACE2 “buffer”, and any loss of ACE2 translates 
immediately into excess AT2, setting the stage for a more 
severe disease course. By contrast, for patients at lower risk, 
relatively elevated levels of ACE2 are “primary” rather than 
compensatory as their basal ACE tone is relatively low. As 
such, these low-risk patients benefit from a built-in AT(1–7) 
“buffer” that helps to forestall the development of relative 
AT2 excess.

4.4  Clinical trial data

The compendium of COVID-19 therapeutic trials performed 
within the past year also hint at involvement of the RAS in 
COVID-19 pathology. Each of the following agents require 
further study to confirm their true impact on COVID-19, 
and each may have RAS-independent effects that could help 
explain the findings. It is intriguing, however, that they all 
interact with the RAS; collectively these studies add to the 
body of evidence favoring a skewed RAS as a cardinal fea-
ture of COVID-19 pathophysiology.

ACEI/ARB studies The most obvious candidates for demon-
stration of perturbations of the RAS in the pathophysiology 
of COVID-19 are ACE inhibitors (ACEI) and angiotensin 
receptor blockers (ARB). Unsurprisingly, multiple such 
studies have been conducted [150–160] (Table 2). Unfortu-
nately, the data are mixed and significantly confounded for 
numerous reasons: most are observational studies, medica-
tions have typically been stopped once patients are hospital-
ized, and most authors combine ACEI and ARB use with-
out considering differences between these two medication 
classes. Nonetheless, the overwhelming consensus that has 
emerged is that ACEIs and ARBs are not contraindicated 
despite the potential for upregulation of ACE2. A large 
meta-analysis assessed 86 studies involving 459,755 patients 
and found no increased risk for infection or severe infec-
tion among hypertensive patients on ACEIs or ARBs [156]. 
In fact, there appears to be a possible survival benefit with 
their use (OR 0.75, 0.61–0.92). Additional, smaller studies 
have also hinted at improved outcomes, especially among 
subgroup analysis of hypertensive patients, but this finding 
has not been universal [151, 153–155, 159].

The relatively modest results with ACEIs and ARBs 
do raise some fundamental questions regarding the ACE2 
downregulation hypothesis. Confounding aside, a clear 
reduction in mortality might be expected if the hypothesis 
is correct, but several additional factors must be consid-
ered. For example, ACE inhibitors alone do not completely 
curtail AT2 production: studies predating COVID-19 have 
confirmed ACE-independent production of AT2, most nota-
bly by chymase derived from mast cells [6, 22, 26, 161]. 
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Perhaps not coincidentally, mast cell activity is thought to 
be increased in COVID-19, providing a viable alternative 
source for ongoing AT2 production in the face of ACE inhi-
bition [162]. Furthermore, ACE inhibitors impair the ACE-
mediated breakdown of bradykinin, compounding the effect 
of ACE2 depletion. Increased levels of bradykinin may fur-
ther activate chymase pathways to establish a vicious feed-
forward cycle [35]. Given these alternative mechanisms, 
ACE inhibition may not be sufficient to reduce AT2 activity.

Similarly, the modest effect of ARB treatment may be due 
to several additional factors. For one, their use is known to 
cause a compensatory rise in AT2 which has been shown to 
induce microvascular thrombosis in an  AT1R-independent 
fashion [86]. Although  AT1R is blocked, AT2 can also be 
converted to angiotensin-3 and angiotensin-4 [163]. These 
peptide fragments, though not well studied, may cause harm 
not suppressible by  AT1R blockade. For instance, it is thought 
that angiotensin-4 raises thrombotic risk by increasing plas-
minogen activator inhibitor-1 [163, 164]. Furthermore, the 
downstream effects of  AT1R activation entail certain subtle-
ties that would be lost with wholesale blockade by ARBs. 
These include, first, the possibility of differential activation 
by “biased agonists” that bind  AT1R and oppose the actions 
of classical AT2/AT1R signaling [23]. Second, activation 
of  AT1R in lymphocytes appears to attenuate their immune 
response, contrary to the generally pro-inflammatory theme 
of  AT1R activation, as a check against runaway inflamma-
tion [88]. At the same time, buildup of AT2 in the setting 
of  AT1R blockade would be expected to translate into an 
increase in  AT2R signaling that would oppose some of the 
effects of AT2/  AT1R activation [23, 24]. Overall, the com-
plex interplay between the various peptides and receptors of 
the conventional ACE pathway poses challenges in predicting 
a straightforward response to  AT1R blockade in the context 
of ACE2 deficiency.

Glucocorticoids One of the most important milestones in 
the development of effective COVID-19 treatment was the 
discovery that dexamethasone reduces mortality in patients 
receiving supplemental oxygen or ventilator assistance 
[165]. Dexamethasone’s main impact on COVID-19 may 
be through its known anti-inflammatory effect. However, 
glucocorticoids also have a strong, albeit complicated, rela-
tionship with the RAS (Table 3). Glucocorticoids appear to 
upregulate the ACE pathway in animal models by inducing 
synthesis of ACE, angiotensinogen, and  AT1R in smooth 
muscle cells, and by potentiating AT2-mediated vasocon-
striction [166–168]. On the other hand, steroids may impair 
ACE-independent AT2 production by diminishing mast cell 
numbers and activity [169]. Glucocorticoids are also thought 
to upregulate neprilysin, a key ACE2-independent media-
tor of AT1 to AT(1–7) conversion, and may downregulate 
bradykinin receptors; reduction in bradykinin-stimulated 

chymase activity is thereby expected to further curb AT2 
production [170–173]. Dexamethasone also favorably 
affects mineralocorticoid receptor activity. By suppression 
of adrenocorticotropic hormone (ACTH), dexamethasone 
can profoundly reduce the high levels of endogenous cor-
tisol expected in critical illness that can cross-stimulate the 
mineralocorticoid receptor. Finally, glucocorticoids have 
been shown to inhibit NFκB, which mediates many of the 
pro-inflammatory actions of AT2 [89, 102, 174]. Thus, dexa-
methasone’s beneficial effect in COVID-19 could speak to 
its impact on the RAS through multifactorial rebalancing 
ACE/AT2 and ACE2/AT(1–7).

Aspirin  A retrospective observational cohort study of 98 
patients who received aspirin within 24 h of admission or 
7 days prior to admission found a reduced risk of mechani-
cal ventilation, ICU admission, and mortality relative to 314 
controls [175]. This finding has not yet been validated by a 
prospective clinical trial. It is presumed that the principal 
mechanism is via aspirin’s well-established anti-platelet or 
anti-inflammatory effects. However, aspirin may also coun-
teract some deleterious effects of AT2, potentially through 
inhibition of NFκB activation and preservation of endothe-
lial cell function through promotion of nitric oxide release 
[176–179]. Additionally there is evidence that aspirin can 
down-regulate  AT1R [180, 181].

Statins  A recent large retrospective study of COVID-19 
patients analyzed 648 statin users vs controls and found 
a significant reduction in mortality [182]. Considerable 
data support a direct link between statins and downregula-
tion of the ACE pathway suggesting that statins decrease 
AT2 receptor expression, inhibit AT2-induced downstream 
signaling, reduce AT2-mediated oxidative stress, and 
potentially impair AT2 and aldosterone production [183]. 
Furthermore statins might potentiate the ACE2/AT(1–7) 
pathway [184].

Metformin  The authors of a retrospective analysis of 25,326 
subjects tested for COVID-19 at one tertiary care center 
found a significant reduction in mortality in patients treated 
for diabetes with metformin [185]. If this benefit is proven 
in larger, prospective, randomized studies, the mechanism 
will likely be multifactorial. However, in numerous animal 
models, metformin has been shown to down-regulate  AT1R 
and antagonize AT2 pathways [186–188].

Recombinant ACE2 Treatment of COVID-19 in a patient 
requiring mechanical ventilation with recombinant soluble 
human ACE2 quickly raised AT(1–7) levels at the expense 
of AT2 [189]. Viral load fell by two orders of magni-
tude within two days of starting treatment, while markers 
of endothelial function and levels of pro-inflammatory 
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cytokines – as well as the overall clinical picture – markedly  
improved. Recombinant ACE2 likely restores healthier 
angiotensin balance while simultaneously serving as a 
decoy receptor for SARS-CoV-2. Although sACE2 may 
enhance SARS-CoV-2 cell entry via  AT1R in cultured cells, 
this rhACE2 trial suggests that it may not be as significant 
a pathway in humans [123]. It is difficult to parse out the 
specific impact of this treatment within the overall intensive 
care milieu and the variable natural history of the illness but 
the striking temporal effect of the treatment lends credence 
to the ACE2 deficiency model

AT2R agonist A recent randomized clinical trial employing 
a “first in class” agonist of  AT2R has demonstrated reduced 
oxygen requirements and trends toward reduced intubation 

and mortality, although the data are not yet peer reviewed 
[Tornling G et al., 2021]. Our understanding of the  AT2R 
remains very incomplete though evidence suggests that acti-
vation of this receptor opposes some functions of AT2/AT1R 
signaling thereby paralleling increased ACE2 activity [23, 
24].

5  Evidence against the ACE2 deficiency 
model?

While we have shown the growing evidence in support of 
the theory that ACE2 down-regulation by SARS-CoV-2 is a 
critical driver of COVID-19 pathology, there are lingering, 
important concerns about the accuracy of the model.

Table 3  Medications with positive endpoints in COVID-19 and their potential association with RAS

Drug Therapy Study Design + Findings Proposed Association to RAS

Dexamethasone Design: randomized open label trial of 6,425 patients
Protocol: Randomized to dexamethasone 6 mg × 10 days vs 

standard of care
Findings: 28-day mortality improved in patients receiving 

oxygen and/or mechanical ventilation

ACE Pathway:
–Induces synthesis of ACE, AT1 and  AT1R
–Potentiates AT2 vasoconstriction
–Suppresses AT2 induced inflammation (via effects on 

NFκB)
ACE2 Pathway
–Suppress non-ACE mediated AT2 production
–Increase AT(1–7) levels via NEP mediated activation

Aspirin Design: retrospective, observational cohort study involving 
412 patients

Protocol: 98 patients received ASA within 24-h of admis-
sion or 7-days prior

Findings: reduction in risk for mechanical ventilation, ICU-
admission, and in-hospital mortality

ACE Pathway:
–Protects against AT2-induced end organ damage via 

inhibition of  NFKB and promotion of NO release in 
endothelial cells

–Downregulates  AT1R

Statin Design: retrospective study of 648 matched COVID-19 
patients vs controls

Findings: significant reduction in mortality in COVID-19 
patients taking statins

ACE Pathway:
–Decreases  AT1R expression
–Inhibits AT2 down-stream signaling
–Impairs AT2 and aldosterone production
ACE2 Pathway
–Upregulates ACE2 and AT(1–7) pathway

Metformin Design: retrospective study 25,326 patients at one tertiary 
center

Findings: significant reduction in mortality in DM patients

ACE Pathway:
–Inhibits  AT1R expression
–Antagonizes AT2 pathways

Recombinant ACE2 Design: case study
Findings: 45-year-old woman with DM2 admitted with 

7-days cough, weakness, myalgia, fever, dyspnea and 
4-days GI symptoms. Course worsened requiring intuba-
tion. Hospital day 2 started rhACE2 bid × 7 days. Defer-
vesced after first dose. AT(-1–7) levels rose, AT2 levels 
fell. Markers of endothelial cell function and inflammatory 
markers improved as did overall clinical picture

ACE Pathway:
–Retains ACE2 catalytic function
–Decreases AT2 levels
ACE2 Pathway:
–Increases AT(1–7) levels

C21 Design: double-blind RCT of 106 patients
Protocol: COVID-19 patients with high CRP but not on 

mechanical ventilation, randomized to C21 × 7 days or 
standard of care

Finding: at day 14, 90% reduction in need for supplemental 
O2

NOT YET PEER REVIEWED

ACE Pathway
–Stimulates AT2R receptors
–Opposes some activity of AT-2/  AT1R signaling
ACE2 Pathway:
–May act as functional equivalent of a partial ACE2 activa-

tor
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6  Is ACE2 downregulated by SARS‑CoV‑2?

Most of the support for downregulation in vivo are limited 
to studies of the isolated SARS-CoV-2 spike protein [95] or 
of SARS-CoV-1 infection in mice [10–12]. However, human 
– but not mouse – airway epithelial cells appear capable of 
upregulating ACE2 in response to the burst of interferon 
signaling expected to accompany SARS-CoV-2 infection 
[19]. Beyond interferon, in vitro work has even suggested 
direct enhancement of ACE2 catalytic activity by SARS-
CoV-2 or its isolated spike protein, particularly with regard 
to the active metabolite of bradykinin [190, 191]. It is dif-
ficult to extrapolate these data to the in vivo situation, how-
ever, as one study was performed in a cell-free system using 
only soluble ACE2 [190], and a second study confirmed the 
spike protein did downregulate ACE2 in vivo [95]. These 
divergent findings highlight that viral potentiation of ACE2 
activity and downregulation of ACE2 need not be mutually 
exclusive, a distinction necessarily lost in a cell-free system. 
Crucially, despite a general increase in ACE2 activity, its 
metabolism of AT2 was minimally affected by the presence 
of the virus or its spike protein. Finally, the spike protein of 
SARS-CoV-1 was also found to accelerate ACE2 activity 
despite its likely ability to trigger downregulation of mem-
brane-bound ACE2 [190].

7  Clinical Studies

We have only scanty, mixed data on the status of the 
RAS in humans with COVID-19. In one study, BAL 
fluid from patients with COVID-19 contained increased 
ACE2 mRNA relative to controls while that of ACE was 
decreased [34]. However, no assessment was made of pro-
tein levels or activity of ACE2 versus ACE, nor of AT2 
versus AT(1–7) levels. The increase in ACE2 mRNA may 
therefore have been a compensatory mechanism occurring 
in the setting of already established ACE and AT2 excess. 
Moreover, ongoing ACE-independent production of AT2 
may play an important role in angiotensin balance within 
the ARDS microenvironment [22, 26, 161]. A second 
study of SARS-CoV-2-infected lung tissue found increased 
ACE2 expression at up to 48 h, while prior studies sug-
gested immediate ACE2 downregulation by SARS-CoV-1 
[12, 16]. As previously mentioned, this study is supported 
by additional data showing upregulation of ACE2 in lung 
epithelial cells upon infection [17, 18]. However, the rela-
tively short observation window in these studies may not 
be generalizable to later changes in ACE2 levels. Based 
on the previously mentioned bipartite nature of COVID-
19, an early interferon-induced upregulation of ACE2 in 
response to initial viral infection may later give way to 

virus-induced ACE2 downregulation as viral multiplica-
tion overwhelms the stimulatory effects of interferon. This 
proposition is particularly salient given the latency period 
of up to two weeks between initial infection and onset of 
severe disease [20].

A related challenge to the model arises from difficulties in 
evaluating RAS peptides in COVID-19. This challenge may 
be more problematic insofar as AT2 and AT(1–7) are the 
main downstream effectors of the two RAS arms; thus their 
relative levels would be expected to better reflect the prevail-
ing RAS tone than would levels of their upstream converting 
enzymes. Surprisingly, few such studies exist, but the data 
available do not convincingly or consistently demonstrate 
AT2/AT(1–7) imbalance [192–196]. In an early study, the 
authors found elevated AT2 levels in COVID-19 patients 
that correlated with degree of illness [193]. However, the 
study only contained 12 subjects, the authors compared 
values to healthy controls and the findings have since been 
questioned due to concerns about methodology [193, 195]. 
Two subsequent studies found no evidence for increased 
AT2 levels but critically neither measured AT(1–7), thus 
preventing interpretation of angiotensin balance in this set-
ting [194, 195]. Another, more recent paper cited reductions 
in renin, AT1, AT2, and AT(1–7) in COVID-19 patients rela-
tive to patients with other respiratory illnesses; in this study, 
the decrease in AT2 exceeded that of AT(1–7) [192]. How-
ever, it is important to interpret these data in view of their 
limitations: 50% of the COVID-19 patients did not qualify 
for inclusion and the heart rate of the control group was 
statistically greater [192]. The latter could indicate a more 
severe degree of illness in the control group, as alterations 
in volume status or evolving sepsis are expected to stimulate 
the ACE pathway. Different interpretations of the data are 
also possible when taking into account the significant gaps 
in our knowledge of this complex system. These include, for 
example, inopportune timing of sample collection within 
the course of disease as previously mentioned, as well as 
the possibility that serum levels of the RAS peptides do not 
serve as a reliable surrogate for tissue or intracellular levels 
[6, 26]. With the potential upregulation of mast cell-derived 
chymase activity, it is conceivable AT2 levels within tissues 
are high in COVID-19 patients independent of serum levels 
[162]. As the authors found low AT(1–7) levels, prior sys-
temic or ongoing local RAS imbalance remains plausible 
[192].

Further highlighting the enigmatic volatility of the RAS, 
another group has shown just the opposite of these studies: 
reduced levels of AT(1–7) while AT2 levels were preserved, 
albeit with the caveat that levels of the two angiotensins 
were reported in separate publications drawn from a single 
common batch of patient samples [195, 196]. This group 
also found decreased levels of AT1, which they construe as 
evidence of global RAS downregulation [196]. However, we 
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can alternatively interpret the low AT1 levels as a reflection 
of rapid turnover in order to maintain the relatively high 
AT2 levels they report, particularly as angiotensinogen lev-
els were not measured [196].

These mixed data do not unequivocally support the ACE2 
downregulation model but limitations, both methodologic 
and inherent to the system itself, muddy interpretation of 
the data. We note in particular the considerable variability 
in AT2 levels, as some studies report a range of values span-
ning two orders of magnitude even within a single patient 
group. This may be due to technical issues with sample han-
dling or non-standardized assay performance but also may 
simply reflect extreme biological variation within a notori-
ously mercurial system [192–196].

Overall, unanswered questions pertaining to the ACE2 
deficiency model remain. Most importantly, more defini-
tive data in support of actual downregulation are needed. 
Thus far the most relevant evidence emerges from mouse 
experiments in the SARS-CoV-1 literature, highlighting the 
need for human studies to quell any lingering doubt of ACE2 
downregulation. If confirmed, additional studies demonstrat-
ing that such downregulation does drive the endothelial cell 
dysfunction and dysregulated immunity seen with COVID-
19 would cement the ACE2 deficiency  angiotensin imbal-
ance hypothesis as a central explanatory model. To date, 
however, the current data support the possibility of a delayed 
ACE2 deficiency occurring later in the disease process.

8  Conclusions

SARS-CoV-2 is a novel coronavirus that causes COVID-
19. Early studies confirmed the virus uses ACE2, a key 
regulatory enzyme in the RAS, as its primary cell recep-
tor. Drawing from studies with SARS-CoV-1, many have 
speculated that SARS-CoV-2 downregulates ACE2, creat-
ing a functional deficiency that may define COVID-19. In 
this review, we have dissected the merits of this argument. 
Confirmatory evidence for this theory is clearly limited 
and the available data would suggest early upregulation 
of ACE2 by the immune response, even as ACE2 down-
regulation has also been demonstrated in endothelial cells 
exposed to the SARS-CoV-2 spike protein. It is therefore 
entirely conceivable that COVID-19 pathology simply 
reflects the ubiquity of the ACE2 receptor facilitating 
widespread viral cytotoxicity. Yet, on many levels the 
ACE2-downregulation hypothesis fits with the data cur-
rently available. The parallels between the clinical picture 
seen with COVID-19, as with SARS, and the expected 
consequences of multi-system ACE2 deficiency are strik-
ing. Unifying pathologic themes that may link the multio-
rgan pathology of COVID-19 to ACE2 deficiency include 
the endothelial cell dysfunction and immune dysregulation 

that arise in the setting of angiotensin imbalance. We feel 
that the preponderance of evidence points to RAS dysregu-
lation – even if confined to individual tissues – occurring 
as a relatively late event in the pathogenesis of COVID-19, 
which would support its primacy in driving the deadly 
second, inflammatory phase of the disease.

9  Summary key points

1. This paper explores the hypothesis that ACE2 down-
regulation plays a central role in COVID-19 pathology

2. Data support a biphasic model of COVID-19 patho-
physiology, in which initial interferon-driven upregula-
tion of ACE2 during a phase of direct viral toxicity is 
later superseded by viral-induced ACE2 downregula-
tion. ACE2 downregulation plays an important role in 
the second phase of COVID-19 pathology.

3. ACE2 deficiency, possibly confined to the tissue or cel-
lular level, appears to drive the inflammatory phase of 
COVID-19

a. The inflammatory phase of COVID-19 phenocopies 
ACE2 deficiency

b. COVID-19 clinically parallels SARS-CoV-1 disease 
in which ACE2 downregulation is better established

c. High- and low-risk groups for COVID-19 can be 
risk stratified by baseline RAS balance

d.  Multiple clinical studies have shown some benefit 
in COVID-19 with therapies expected to favorably 
alter RAS balance

4. Additional evidence particularly in human studies are 
needed to confirm this hypothesis
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