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Parasitic diseases remain as unresolved health issues worldwide. While for some parasites
the treatments involve drug combinations with serious side effects, for others, chemical
therapies are inefficient due to the emergence of drug resistance. This urges the search for
novel antiparasitic agents able to act through multiple mechanisms of action. Here, we
report the first multi-target model based on quantitative structure-activity relationships and
a multilayer perceptron neural network (mt-QSAR-MLP) to virtually design and predict
versatile inhibitors of proteins involved in the survival and/or infectivity of different
pathogenic parasites. The mt-QSAR-MLP model exhibited high accuracy (>80%) in
both training and test sets for the classification/prediction of protein inhibitors. Several
fragments were directly extracted from the physicochemical and structural interpretations
of themolecular descriptors in themt-QSAR-MLPmodel. Such interpretations enabled the
generation of four molecules that were predicted as multi-target inhibitors against at least
three of the five parasitic proteins reported here with two of the molecules being predicted
to inhibit all the proteins. Docking calculations converged with the mt-QSAR-MLP model
regarding the multi-target profile of the designed molecules. The designed molecules
exhibited drug-like properties, complying with Lipinski’s rule of five, as well as Ghose’s filter
and Veber’s guidelines.

Keywords: artificial neural network, fragment, mt-QSAR, multilayer perceptron, multi-target inhibitor, parasites,
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INTRODUCTION

Parasitic diseases are dangerous and prevalent health issues, causing high morbidities and mortalities
worldwide. Among them, malaria, Chagas’ disease (ChD), African animal trypanosomiasis (AAT),
and toxoplasmosis, deserve special attention. From one side, malaria (mainly caused by Plasmodium
falciparum), although one of the oldest illnesses known by mankind, and yet it remains the deathliest
parasitic disease, being responsible for 445,000 deaths and 216 million cases in 2016 (WHO, 2017).
On the other hand, we have ChD and AAT, which are the consequences of the infections caused by
Trypanosoma cruzi and several species belonging to Trypanosoma spp. (including Trypanosoma
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brucei brucei), respectively; while ChD continues to threaten
millions of people in Mexico, as well as Central and South
America (Molyneux et al., 2017; Perez-Molina and Molina,
2018), AAT causes great economic losses due to its
devastating mortality on livestock (Giordani et al., 2016;
Amisigo et al., 2019). In contrast to malaria, ChD, and AAT,
whose negative impacts are located in specific continental areas,
toxoplasmosis (caused by Toxoplasma gondii) has a worldwide
distribution, infecting humans as well as most warm-blooded
animals including mammals and birds (Robert-Gangneux and
Darde, 2012). In fact, in developed countries such as the
United States, toxoplasmosis infects over a million people each
year, where this illness is associated with an estimated cost of $3
billion (Aguirre et al., 2019).

In terms of treatment, the parasitic diseases mentioned here
present several factors in common that make their eradication a
challenge. First, current antiparasitic drugs are associated with
many side effects (Forsyth et al., 2016; Grabias and Kumar, 2016;
Kwofie et al., 2016; Alday and Doggett, 2017; Buckner et al., 2017;
Haeusler et al., 2018). Second, drug resistance has emerged
among these parasitic organisms, and consequently,
antiparasitic drugs are becoming (or have already become) less
effective (Baker et al., 2013; Campos et al., 2017; Montazeri et al.,
2018; Conrad and Rosenthal, 2019). Last, as a whole, parasite-
parasite interactions are very complex and have been documented
and recognized as phenomena that play a crucial role in
epidemiology, disease severity, and evolution of parasite
virulence (Hellard et al., 2015; Seppala and Jokela, 2016; Dallas
et al., 2019; Karvonen et al., 2019).

Screening chemicals through experimental validation is
without doubt the most reliable way of identifying
antiparasitic agents. However, this trial-and-error approach
currently constitutes a time- and cost-ineffective task since the
chemical space to be experimentally screened is vast (1060 small to
medium-sized organic compounds) (Jahnke and Erlanson, 2006).
In contrast, computational approaches can accelerate the search
for efficacious antiparasitic chemicals, which can later be
experimentally validated. At the biomolecular level, many
promising computational models and protocols have
demonstrated to be essential in early drug discovery, serving
as tools for the generation of inhibitors against proteins whose
roles are important for the survival or virulence of any of the
parasitic species mentioned above. For instance, in the field of
malaria research, recent works have focused on the application of
an integrative multi-kinase approach (Lima et al., 2019), the
identification of malarial allosteric modulators combining
molecular dynamics simulations and dynamic residue network
analysis (Amusengeri et al., 2019), the ensemble of ligand-based
computational models for virtual screening of falcipain-2
inhibitors (Alberca et al., 2019), and quantitative structure-
activity relationships (QSAR) for the study of
N-myristoyltransferase inhibitors (Santos-Garcia et al., 2018).
Regarding ChD, a wide range of in silico approaches have
been reported to discover protein inhibitors with a special
focus on cruzipain (Palos et al., 2017; Dos Santos et al., 2018;
Herrera-Mayorga et al., 2019). Following with AAT, several
works have reported the use of computational tools to

accelerate the search for inhibitors of different targets (Latorre
et al., 2016; Di Pisa et al., 2017; Kimuda et al., 2019; Zacharova
et al., 2019). Finally, the importance of computer-aided drug
discovery has also been evidenced in the identification of different
protein inhibitors to tackle toxoplasmosis (Welsch et al., 2016;
Rosada et al., 2019; Zhang et al., 2019).

However, despite the growing influence of the computational
methods in antiparasitic research, at least one of the three
following drawbacks remains. First, computational models use
relatively small datasets of structurally related molecules. Second,
they lack sufficiently clear physicochemical and/or structural
information to guide the design of new and potent protein
inhibitors. Last, computational models have been based on
only one therapeutic target/protein. All this urges the
development of advanced computational models, suggesting
that the efforts of the scientific community to speed up the
eradication of diseases caused by the aforementioned parasites
should focus on the multi-target drug discovery paradigm
(Ravikumar and Aittokallio, 2018). In this context, several
research groups have emphasized the development of a series
of multi-target QSAR (mt-QSAR) models to perform virtual
screening of molecules at both biomolecular- and
microorganism-based levels (Prado-Prado et al., 2008; Prado-
Prado et al., 2010a; Prado-Prado et al., 2010b; Garcia et al., 2011).
Yet, no mechanistic, physicochemical, or structural
interpretations have been reported for these models.

Currently, there is no computational approach capable of
designing and predicting multi-target inhibitors of proteins
present in different parasitic species. An in silico tool with
such capabilities could take advantage of the fact that many
parasitic proteins/targets identified to date are conserved across
parasitic species (Cowell and Winzeler, 2019); a multi-target
computational model would be of great value in both filtering
the chemical space in the search for versatile inhibitors against
diverse parasitic proteins and guiding the fast and accurate
generation of new and potent antiparasitic agents able to act
through different mechanisms of action.

Considering all the aforementioned ideas, we introduce here
the first mt-QSARmodel based onmultilayer perceptron network
(mt-QSAR-MLP), providing the theoretical foundations for the
prediction of chemicals with potential multi-target activity
against five parasitic proteins, namely plasmepsin 2 and
dihydroorotate dehydrogenase (P. falciparum), as well as
cruzipain (T. cruzi), dihydrofolate reductase (T. gondii), and
glycylpeptide N-tetradecanoyltransferase (T. brucei brucei).
Also, we computationally demonstrate that a series of newly
designed molecules are worth synthesizing in the future by
considering a combination of four factors: 1) they were
rationally designed by assembling different molecular
fragments according to the physicochemical and structural
interpretation of the mt-QSAR-MLP model, 2) they were
predicted by the mt-QSAR-MLP as potent multi-target
inhibitors of the parasitic proteins, 3) the results of the
docking calculations also converges with the predictions from
the mt-QSAR-MLP model regarding the multi-target profile of
the designed molecules, and 4) the designed molecules were
estimated to have good synthetic accessibility.
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MATERIALS AND METHODS

Database and Calculation of the Molecular
Descriptors
The chemical and biological data were extracted from ChEBML
(Gaulton et al., 2012) and contained information regarding the
inhibitory potency, i.e., the concentration required to cause 50%
inhibition (IC50) in any of the five parasitic proteins mentioned
above. The dataset was curated in terms of removing all the
molecules with missing features such as SMILES, values, units of
activity, and duplicates. The present dataset was formed by 2,249
different molecules, and each of them was experimentally tested
against only one parasitic protein. In the dataset each molecule
was classified as active [IAi(tg) � 1] or inactive [IAi(tg) � −1], with
IAi(tg) being a binary variable that indicated the inhibitory
activity of ith molecule against a defined target/protein. Thus,
a molecule was annotated as active if IC50 ≤ 800 nM for
Plasmepsin 2 (P. falciparum), IC50 ≤ 820 nM for
dihydroorotate dehydrogenase (P. falciparum), IC50 ≤ 890 nM
for cruzipain (T. cruzi), IC50 ≤ 250 nM for dihydrofolate
reductase (T. gondii), or IC50 ≤ 270 nM for glycylpeptide
N-tetradecanoyltransferase (T. brucei brucei). In any other
case, the molecules were considered inactive. It should be
pointed out that the cutoff values selected in this study
comply with two important aspects. From one side, by being
in the submicromolar range, they ensure the rigorous search for
potent hits, a process which, in most drug discovery campaigns
usually starts at the micromolar range (Anderson, 2003). On the
other hand, in general terms, these cutoff values prevent any
excessive imbalance between the number of molecules assigned as
active and those labeled as inactive. Finally, the selected cutoffs
maintain the number of molecules annotated as active as high as
possible; this increases the chemical diversity, which is required
when using the mt-QSAR-MLP model to rationally design new
molecules. Notice that if a unified cutoff value of the inhibitory
activity is selected, then, at least one of two situations will happen:
1) data involving on or more of the parasitic proteins will be
considerably imbalanced (reduced chemical diversity among
active molecules) which is detrimental to the predictive power
of any model, or 2) even if a unified cutoff is set, it will remarkably
decrease the rigor of the mt-QSAR-MLP model to search for
(and/or design) potent and versatile inhibitors against several
parasitic proteins.

The SMILES codes of all the molecules reported in the
dataset were stored in a file of type *.smi. This file was
converted to *.sdf using the program Standardizer v19.18.0
(ChemAxon, 1998–2019). During the conversion process, as
the purpose was to obtain the connectivity table for each
molecule, no standardization actions were applied.
Following, the computer program QuBiLS-MAS v1.0
(Valdés-Martini et al., 2012; Valdes-Martini et al., 2017)
used the file *.sdf as the input for the calculation of the
molecular descriptors known as total and local atom-based
quadratic indices. When doing so, QuBiLS-MAS v1.0
performed these calculations by considering theoretical
aspects such as the algebraic form (quadratic), constrains

(atom-based), matrix form (mutual probability). The
quadratic indices mentioned here considered all the
elements of the mutual probability matrix, and they used
the Manhattan distance as the aggregator operator. The
reason to select quadratic indices is based on their wide
applicability as reported in several works focused on
computer-aided drug discovery (Marrero-Ponce et al., 2011;
Medina Marrero et al., 2015; Speck-Planche et al., 2015). The
quadratic indices can be calculated according to the following
mathematical formalism:

TmpAqk(x) � ∑n
i�1

∑n
j�1

kmpij.xi.xj (1)

LmpAqk(x)Z � ∑n
i�1

∑n
j�1

kmpijZ .xi.xj (2)

In Eqs. 1, 2, TmpAqk(x) and LmpAqk(x)Z represent the total
and local atom-based quadratic indices of the mutual
probability matrix, respectively. The symbol x refers to any
atomic physicochemical property such as hydrophobicity
(HYD), electronegativity (E), atomic weight (AW),
polarizability (POL), polar surface area (PSA), or volume
(V). It should be pointed out that while in Eq. 1 kmpij
expresses the adjacency between any two atoms in a
molecule, in Eq. 2, kmpijZ has a similar meaning.
Nevertheless, kmpijZ depends on specific atoms types (Z)
such as hydrogen bond acceptors, aliphatic and aromatic
carbons, methyl groups, halogens, and heteroatoms. Both
TmpAqk(x) and LmpAqk(x)Z describe a defined atom i and
its chemical environment (formed by the jth neighbors) at the
topological distance d � k.

The purpose here is to develop an mt-QSAR-MLP model as a
computational tool able to predict inhibitory activity against
dissimilar proteins present in diverse parasites. Thus, although
the molecular descriptors calculated in Eqs. 1, 2 can characterize
the chemical structure of the molecules, they will not be able to
discriminate the structural and physicochemical information
present in a molecule when this is tested against more than
one target/protein. In this context, several works have applied an
adaptation of the Box-Jenkins approach (used in time series
analysis) to calculate multi-target molecular descriptors in a
two-steps manner (Marzaro et al., 2011; Speck-Planche and
Kleandrova, 2012a; Speck-Planche et al., 2012; Alonso et al.,
2013; Speck-Planche et al., 2013; Romero Duran et al., 2014;
Romero-Duran et al., 2016):

avgQI(tg) � 1
n(tg) × ∑

n(tg)
a�1

QIa (3)

In Eq. 3,QIa is any of the quadratic indices mentioned above. The
symbol avgQI(tg) represents the average of any quadratic index
for all the molecules in the training set labeled as active and tested
against the same parasite protein. Consequently, n(tg) denotes the
number of active molecules/cases (also present in the training set)
that were assayed against the same protein. The second step
applies the following formula:
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DQIa(tg) � QIa − avgQI(tg)
(QIMX − QIMN) ×

�����
p(tg)√ (4)

In Eq. 4, DQIa(tg) is a multi-target descriptor and depends on the
chemical structure of a molecule and the parasite protein against
which that molecule was tested; this descriptor measures how
much any molecule structurally deviates from a group of
molecules assigned as active and assayed against the same
protein. On the other hand, QIMX and QIMN are the
maximum and minimum values of each quadratic index (in
the training set), respectively. Last, p(tg) is the a priori
probability of finding a compound tested against a specific
parasite protein; it is calculated as the ratio of the number of
molecules in the training set assayed against a given protein to the
total number of compounds present in the training set.

Building the Mt-QSAR-MLP Model
Developing the mt-QSAR-MLP occurred in different steps
(Figure 1). First, the dataset containing the 2,249 molecules
was split into training and test sets according to the following
procedure. For each parasitic protein, the molecules were sorted
according to their increasing IC50 values. Then, for each protein,

the first three molecules were assigned to the training set while the
fourthmolecule was assigned to the test set. Such a ratio of 3:1 was
repeated in the whole dataset. Thus, the training set was
employed to search for the best model and was formed by
1,691 molecules (75.19%), 788 considered as active and 903
annotated as inactive. The test set was meant to demonstrate
the predictive power of the mt-QSAR-MLP model; this set
contained 558 molecules (remaining 24.81% of the dataset),
259 assigned as active and 299 considered as inactive.

Second, it is known that the random forest (RF) is one of the
most popular machine learning methods to obtain predictive
models (Hastie et al., 2009). In this work, RF was used as a
variable selection strategy. In this sense, and using the descriptors
of the type DQIa(tg) as inputs, the RF package of the computer
program software STATISTICA v13.5.0.17 (TIBCO-Software-
Inc., 2018) was employed to perform multiple runs to find the
best mt-QSAR-RF model. In doing so, we used default values for
the different parameters in the RF algorithm [number of
predictors: 259; number of trees: 100; subsample proportion:
0.5; seed for random number generator: 1; minimum number
of cases: 56; minimum number in child node: 5; maximum
number of levels: 10; maximum number of nodes: 100; cycles
to calculate mean error: 10; percentage decrease in training error:

FIGURE 1 | Steps involved in the construction of the mt-QSAR-MLP model. The abbreviations DHODH, DHFR, and GPNTDT refer to the parasite proteins named
dihydroorotate dehydrogenase, dihydrofolate reductase, and glycylpeptide N-tetradecanoyltransferase, respectively.
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5]. While selecting the most influential descriptors (highest
importance values) in the mt-QSAR-RF model, we conducted
a correlation analysis for the molecular descriptors of the type
DQIa(tg) by computing the Pearson’s correlation coefficient
(PCC) (Pearson, 1895); only the descriptors having pairwise
correlation values in the interval −0.7 < PCC < 0.7 were chosen.

Artificial neural networks (ANNs) was used as the data
analysis method to search for the best model, the architecture
known as the multi-layer perceptron (MLP) were examined
because of its popularity, accuracy, and relative ease of
convergence. When training the MLP networks, we employed
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm,
setting the number of epochs to be 300. To obtain the most
appropriate mt-QSAR-MLP model, several runs were performed
using the ANNs package of STATISTICA v13.5.0.17 (TIBCO-
Software-Inc., 2018) while inspecting the statistical indices
known as accuracy [Ac(%)] and Matthews’ correlation
coefficient (MCC) (Matthews, 1975), as well as sensitivity
[Sn(%)] and specificity [Sp(%)] and their local counterparts
[Sn(%)]tg, and [Sp(%)]tg. It should be highlighted that while
[Sn(%)] and [Sp(%)] give an idea of the global statistical quality
(training set) and predictive power (test set) of the mt-QSAR-
MLPmodel [Sn(%)]tg, and [Sp(%)]tg provide similar information
but depending on each of the five proteins reported in this work.
Only the mt-QSAR-MLP model exhibiting the highest values of
[Sn(%)] [Sp(%)] [Sn(%)]tg, and [Sp(%)]tg was selected.

Molecular Docking
When performing docking calculations, we used the software
Molegro Virtual Docker v6.0.1 (Thomsen and Christensen,
2006), employing the same protocol as recently reported in
(Speck-Planche and Scotti, 2019). We retrieved all the
crystallographic structures from the Protein Data Bank (PDB)
(Berman et al., 2000). In doing so, we considered the PDB IDs
2BJU (Prade et al., 2005), 6I55 (Pippione et al., 2019), 1ME3
(Huang et al., 2003), and 4KY4 (Zaware et al., 2013) for the
proteins plasmepsin 2 (P. falciparum), dihydroorotate
dehydrogenase (P. falciparum), cruzipain (T. cruzi), and
dihydrofolate reductase (T. gondii), respectively. These PDB
files contained the aforementioned proteins complexed with
their corresponding reference ligands. We validated the
docking protocol by redocking each reference ligand into the
active site of the protein for which the corresponding complex
with that protein was experimentally reported. In the case of the
protein glycylpeptide N-tetradecanoyltransferase (T. brucei
brucei), no crystallographic structure has been reported to
date. Therefore, we relied on homology modeling to create the
3D-structure of this protein. In this sense, we employed SWISS-
MODEL (Waterhouse et al., 2018), which is fully automated
protein homology modeling webserver. When performing
homology modeling with SWISS-MODEL, we entered the
UniprotID Q388H8, which corresponded to glycylpeptide
N-tetradecanoyltransferase (T. brucei brucei). Then, SWISS-
MODEL performed an automatic search for different proteins’
amino acid sequences to use them as templates, selecting the most
reliable model of the 3D-structure of glycylpeptide
N-tetradecanoyltransferase (T. brucei brucei). Last all the

interactions for each ligand-protein complex were visualized
by the Discovery Studio Visualizer v19.1 (BIOVIA, 2018).

RESULTS AND DISCUSSION

The Mt-QSAR-MLP Model
The best mt-QSAR-MLP model found by us had the profile MLP
9–27–2, which means that nine nodes [molecular descriptors of
the type DQIa(tg)] were used in the input layer, 27 nodes in the
hidden layer with a logistic activation function, while in the
output layer (based on a softmax function), the number two refers
to the two possible categorical values (−1 and 1) of the variable of
predicted inhibitory potency [Pred_IAi(tg)]. Details regarding the
different molecular descriptors used to build the mt-QSAR-MLP
model appear in Table 1. At the same time, all the chemical and
biological data can be gathered from SupplementaryMaterial S1.

In terms of statistical quality, the mt-QSAR-MLP model
exhibited Ac(%) � 84.68%, indicating that 1,432 out of 1,691
molecules were correctly classified. In the test set, also a good
performance was achieved; 444 out of 558 molecules were
correctly predicted [Ac(%) � 79.57%]. In addition to the
values of accuracy mentioned here, relatively high values for
the other statistical indices were obtained (Table 2). For instance,
Sn(%) and Sp(%) had values higher than 83% in the training set,
while for the test set, they exhibited values around 80%.
Simultaneously, MCC took values higher than 0.59, and given
their closeness to one (perfect performance) more than to zero
(for a random predictor), it can be inferred that there is a strong
correlation between the observed [IAi(tg)] and predicted
[Pred_IAi(tg)] values of the inhibitory activity. For each
molecule in the dataset information regarding its classification
performed by the mt-QSAR-MLP model is reported in
Supplementary Material S1.

Although any predictive model should have relatively high values
of as Sn(%) and Sp(%), for the case of an mt-QSAR model, it is also
important that the local sensitivities [Sn(%)]tg and specificities
[Sp(%)]tg for each protein should also exhibit values as high as
possible. In this context [Sn(%)]tg and [Sp(%)]tg were higher than
80% in the training set whereas, for the test set, values higher than
72% and 75% were computed for these two statistical indices,
respectively. Details of the different [Sn(%)]tg and [Sp(%)]tg
values are available in Supplementary Material S2. The only
exception was[Sp(%)]tg in the case of the protein dihydrofolate
reductase (T. gondii) for which values of 69.92% and 65.82% for
training and test sets, respectively. We attribute the wrong
predictions to the fact that the molecular descriptors DQIa(tg) are
not capable of considering all the differences in the chemical
structures of the molecules which produce the corresponding
changes in their inhibitory potency against the parasite proteins.
This is another confirmation that the ability of the molecular
descriptors reported to date to contain information on the
complexity and diversity of the molecules is limited (Todeschini
and Consonni, 2009). In any case, the joint analysis of the global
statistical indices and the local sensitivities and specificities
demonstrate the good statistical quality and predictive power of
the mt-QSAR-MLP model.
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Applicability Domain
The assessment of the applicability domain (AD) of the mt-
QSAR-MLP model was carried out by employing a modification
of the descriptor space approach (Sahigara et al., 2012), which
establishes that the maximum and minimum values of each
molecular descriptor (in the training set) are the boundaries of
the AD of a model. Here, we defined the maximum and
minimum values of each DQIa(tg) descriptor in the mt-
QSAR-MLP by considering only those molecules in the
training set that were correctly classified (Speck-Planche,
2018). For each molecule present in the dataset, a local score
of applicability domain for each of its DQIa(tg) descriptors was
assigned. In this sense, if for a molecule, a given descriptor value
was within the interval defined by the maximum and minimum
values, the local score was equal to one; otherwise, the local score
was equal to zero. This procedure was repeated for each
DQIa(tg) descriptor in the mt-QSAR-MLP model. In the end,
the sum of all the scores for each molecule was calculated,
yielding the total score of the applicability domain (TSAD).
Thus, as the mt-QSAR-MLP model was built from nine
molecular descriptors, only the molecules with TSAD � 9

were considered to be within the AD (Supplementary
Material S3).

Molecular Descriptors and Their
Physicochemical and Structural Meanings
Interpreting any QSAR model is crucial for the understanding of
the physicochemical properties and structural features that
govern the enhancement (or the diminution) of the biological
activity under study. To provide a more complete interpretation
of the mt-QSAR-MLP model developed in this work, we have
combined chemical reasoning, statistical aspects, a fragment-
based analysis into a single explanation.

Chemical reasoning focuses on the fact that the DQIa(tg)
descriptors employed to build the mt-QSAR-MLP model are
characterized by two important elements. First, the topological
distance d � k [with k being the order of each DQIa(tg)] expresses
the number of bonds (without considering bondmultiplicity) that
exist between any two atoms in a molecule. Chemically speaking,
by using this information, it is possible to know the regions in a
molecule where atoms exhibiting certain physicochemical
properties can be placed with respect to their neighbor atoms.
Second, the DQIa(tg) descriptors also cover lower topological
distances. For instance, a DQIa(tg) descriptor of order six will
describe information at the topological distance equal to six but
also at the topological distances of two and three. This is because
DQIa(tg) descriptors also measure the degree of concentration of
a physicochemical property at the topological distance d ≤ k.
Chemical reasoning will provide information in terms of the
distributions of the atoms with different physicochemical
properties throughout the entire structure of a molecule.

The statistical aspects focused on two elements, the relative
importance of each quadratic index in the mt-QSAR-MLP. Such
information was provided by carrying out a sensitivity analysis
with the ANN package of STATISTICA v13.5.0.17. This
permitted us to estimate the sensitivity values of the DQIa(tg)
descriptors; the highest SVs corresponded to those which were the

TABLE 1 | Molecular descriptors and their definitions.

Molecular descriptora Definition

D[TmpAq2(HYD)]tg Deviation of the total atom-based quadratic index (order 2) of the mutual probability matrix weighted by the HYD.
D[TmpAq5(PSA)]tg Deviation of the total atom-based quadratic index (order 5) of the mutual probability matrix weighted by the PSA.
D[LmpAq6(POL)A]tg Deviation of the local atom-based quadratic index (order 6) of the mutual probability matrix weighted by the POL. This

descriptor considers only the hydrogen bond acceptors and their neighbor atoms
D[LmpAq0(PSA)A]tg Deviation of the local atom-based quadratic index (order 0) of the mutual probability matrix weighted by the PSA. This

descriptor considers only the presence of hydrogen bond acceptors
D[LmpAq6(PSA)A]tg Deviation of the local atom-based quadratic index (order 6) of the mutual probability matrix weighted by the PSA. This

descriptor considers only the hydrogen bond acceptors and their neighbor atoms
D[LmpAq6(POL)C]tg Deviation of the local atom-based quadratic index (order 6) of the mutual probability matrix weighted by the POL. This

descriptor considers only the aliphatic carbons and their neighbor atoms
D[LmpAq1(V)C]tg Deviation of the local atom-based quadratic index (order 1) of the mutual probability matrix weighted by the atomic V. This

descriptor considers only the aliphatic carbons and their adjacent atoms
D[LmpAq5(POL)P]tg Deviation of the local atom-based quadratic index (order 5) of the mutual probability matrix weighted by the POL. This

descriptor considers only the aromatic carbons and their neighbor atoms
D[LmpAq0(PSA)Y]tg Deviation of the local atom-based quadratic index (order 0) of the mutual probability matrix weighted by the PSA. This

descriptor considers only the presence of heteroatoms

aAll these molecular descriptors depend on both the chemical structure of a molecule and the target/protein against which the molecule was experimentally assayed.

TABLE 2 | Internal quality and predictive performance of the mt-QSAR-
MLP model.

SYMBOLSa Training set Test set

NActive 788 259
CCActive 676 208
Sn(%) 85.79% 80.31%
NInactive 903 299
CCInactive 756 236
Sp(%) 83.72% 78.93%
MCC 0.694 0.591

aNActive–Number of molecules annotated as active; NInactive–Number of molecules
annotated as inactive; CCActive–Molecules correctly classified as active;
CCInactive–Molecules correctly classified as inactive; Sn(%)—Sensitivity (percentage of
molecules correctly classified as active); Sp(%)—Specificity (percentage of molecules
correctly classified as inactive); MCC–Matthews’ correlation coefficient.
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most influential in the mt-QSAR-MLP model (Figure 2). The
other statistical element is the tendency of variation of the
DQIa(tg) descriptors. We would like to emphasize that the
model developed in this work is non-linear. Consequently,
there is no equation from which the variation (increase or
diminution) in the values of each DQIa(tg) descriptor can be
determined. To solve this inconvenience, we applied the approach
reported by Speck-Planche and co-workers (Speck-Planche and
Kleandrova, 2012b; Speck-Planche, 2018; Speck-Planche, 2019).
Basically, for each DQIa(tg) descriptor present in the mt-QSAR-
MLP model, two average values were calculated: one for the
molecules annotated as active and the other for the molecules
assigned as inactive. It is important to highlight that the
calculation of the two averages of each DQIa(tg) descriptor
was carried out by considering only those molecules in the
training set that were correctly classified by the mt-QSAR-
MLP model. Comparing the two average values between each
other offers the possibility of knowing how the value of a given
DQIa(tg) descriptor should vary to enhance the biological effect
under study, in this case, the multi-target activity against different
parasite proteins. The class-based averages and the corresponding
tendency of variation for each DQIa(tg) descriptor are reported in
Table 3.

Regarding the fragment-based analysis, there is solid evidence
that demonstrates that any topological (graph-based) descriptor
calculated for a molecule can be expressed as the number of times
in which different fragments (both connected and disconnected)
appear in that molecule (Baskin et al., 1995). This means that the
information content of any topological descriptor can be
associated with a series of fragments. From a substructural
point of view, the DQIa(tg) descriptors present in the mt-
QSAR-MLP model constitute a class of topological descriptors,
and therefore, while interpreting them, different fragments whose
presence leads to favorable variations (responsible for increasing
the inhibitory activity) of these DQIa(tg) descriptors can be

extracted (Speck-Planche, 2019; Kleandrova and Speck-
Planche, 2020).

We have D[TmpAq2(HYD)]tg (the seventh most influential
descriptor), which expresses the augmentation of the joint
hydrophobic contribution (multiplication of the atomic
hydrophobicity) of any two atoms placed at the topological
distance of two. We would like to highlight that the atomic
hydrophobicities used in this work are based on the
hydrophobicity scale proposed by Ghose and co-workers
(Ghose et al., 1998). According to this scale, aliphatic carbon
atoms will have negative hydrophobicity values except for those
of the type CHX3, CR2X2, CRX3, and CX4 (X is an
electronegative atom such as O, N, S, P, Se, or any halogen).
Nitrogen and oxygen atoms have also been reported to have
negative hydrophobicity values; exceptions are pyrrolic nitrogen
(or furan oxygen) atoms, nitrogen from amines (or oxygen from
ethers) having attached two aromatic (or heteroaromatic) rings,
and all the tertiary amines. That being said, it is clear that the
presence of aliphatic amines and ethers, regardless of whether
they are acyclic or cyclic) have favorable contributions to the

FIGURE 2 | Molecular descriptors and their statistical influences in the mt-QSAR-MLP model.

TABLE 3 | Tendencies of variation of the molecular descriptors in the mt-QSAR-
MLP model according to the classes-based means’ approach.

Symbol Active Inactive Tendencya

D[TmpAq2(HYD)]tg 7.92 × 10–3 −1.14 × 10–1 Increase
D[TmpAq5(PSA)]tg 1.82 × 10–3 3 × 10–2 Decrease
D[LmpAq6(POL)A]tg 4.39 × 10–3 −6.38 × 10–3 Increase
D[LmpAq0(PSA)A]tg −3.43 × 10–3 9.63 × 10–2 Decrease
D[LmpAq6(PSA)A]tg 3.09 × 10–3 −5.63 × 10–3 Increase
D[LmpAq6(POL)C]tg −7.22 × 10–4 2.93 × 10–2 Decrease
D[LmpAq1(V)C]tg 2.32 × 10–3 −5.77 × 10–2 Increase
D[LmpAq5(POL)P]tg 4.84 × 10–3 −4.53 × 10–2 Increase
D[LmpAq0(PSA)Y]tg 6.14 × 10–4 5.26 × 10–2 Decrease

aTendency–It indicates the type of variation (increase or diminution) of a descriptor in
order to enhance the multi-target activity against the different parasite proteins.
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increase ofD[TmpAq2(HYD)]tg. A non-exhaustive but useful list
of suitable generic fragments is depicted in Figure 3.

In Table 3 and Figure 3, we can see that the diminution of the
PSA is governed by the descriptors D[TmpAq5(PSA)]tg, D
[LmpAq0(PSA)A]tg, and D[LmpAq0(PSA)Y]tg, which are
rank fourth, eighth, and ninth among the most significant
descriptors, respectively. Particularly, D[TmpAq5(PSA)]tg
considers the decrease of the PSA of any two atoms placed at
the topological distance of five whileD[LmpAq0(PSA)A]tg andD
[LmpAq0(PSA)Y]tg indicate the reduction of the PSA depending
on hydrogen bond acceptors and heteroatoms, respectively.
Altogether, these three descriptors express that fragments
containing aromatic rings (both unsubstituted and substituted)
as well as aliphatic rings and chains are desirable for the favorable
decrease of the PSA. An interesting fact is that in most of the
molecules, the PSA strongly depends on the presence of nitrogen
and oxygen atoms, which is characterized by both descriptors D
[LmpAq0(PSA)A]tg and D[LmpAq0(PSA)Y]tg. Therefore, these
two descriptors should correlate with each other. This, however,
doesn’t happen because D[LmpAq0(PSA)Y]tg also considers
other atoms with PSA such as sulfur and phosphorus. In the
database used to build the mt-QSAR-MLPmodel, there are many
compounds with different functional groups containing sulfur,
which is the main factor preventing the existence of a correlation
between D[LmpAq0(PSA)A]tg and D[LmpAq0(PSA)Y]tg. In the
end, the number of atoms with values of PSA different from zero
should be kept as low as possible.

On the other hand, DQIa(tg) descriptors such as D
[LmpAq1(V)C]tg, D[LmpAq6(POL)C]tg, and D[LmpAq5(POL)
P]tg describe the importance of controlling the steric factors

(Figure 4). Thus, D[LmpAq1(V)C]tg expresses the increase of
property V of any two atoms (at least one of them being an
aliphatic carbon) placed at the topological distance of one. This is
the third most significant descriptor and its value can be increased
by augmenting the number of aliphatic carbons in the molecule. In
case that the number of aliphatic carbons is low, these atoms
should be attached to others with relatively high bulkiness (e.g., Cl,
Br, and I). In terms of the number of aliphatic carbons that should
exist in the molecules, the descriptor D[LmpAq6(POL)C]tg
constrains D[LmpAq1(V)C]tg. This is because D[LmpAq6(POL)
C]tg (ranked fifth in terms of importance) involves the decrease of
the POL of any two atoms (one of them being an aliphatic carbon)
placed at the topological distance equal to six. Consequently, to
decrease the value of this descriptor, the number of aliphatic
carbons should be kept to a minimum, and/or the atoms placed
at the topological distance of six (or lower) with respect to these
aliphatic carbons should be preferably low-polarizability atoms
such as fluorine, oxygen, and in less degree, nitrogen.

In the case of the descriptor D[LmpAq5(POL)P]tg (the sixth
most influential descriptor), this characterizes the augmentation
of the POL of any two atoms (at least one of them must be an
aromatic carbon) which are placed at the topological distance of
five. The value of this molecular descriptor can be increased by
raising the number of aromatic carbons and/or placing bulky
atoms such as halogens (except for fluorine) at topological
distances of five or three with respect to the aromatic carbons.

Finally, Figure 5 depicts different types of fragments; some of
them have a positive influence on D[LmpAq6(POL)A]tg while
others favorably augment the value of D[LmpAq6(PSA)A]tg. In
this sense, the descriptor D[LmpAq6(POL)A]tg is the most

FIGURE 3 | Fragments with positive influence to the increase of the hydrophobic contribution {D[TmpAq2(HYD)]tg} or the decrease of the PSA
{D[TmpAq5(PSA)]tg, D[LmpAq0(PSA)A]tg, and D[LmpAq0(PSA)Y]tg}. Here, A � −NH2, −OH, or R (alkyl group); X � O or −NH−; Y � S; G � Cl, Br, or I.
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important descriptor in the mt-QSAR-MLP model and represents
the increase of the POL of any two atoms (at least one of themmust
be a hydrogen bond acceptor) placed at the topological distance
equal to six but also lower distances such as two or three. As most of
the atoms able to act as hydrogen bond acceptors (N, O, and F) have
very low POL, then, their neighbor atoms at the aforementioned
topological distance should have high polarizabilities (e.g., Cl, Br, I,
S, an aromatic carbon, or pyridinic nitrogen). On the other hand,
the descriptor D[LmpAq6(PSA)A]tg follows the same line of
thinking in terms of the topological distance and the type of

atoms involved. Nevertheless, D[LmpAq6(PSA)A]tg focuses on
the augmentation of the PSA, being the second most influential
descriptor.

We would like to point out that although each DQIa(tg)
descriptor offers information regarding a defined
physicochemical property combined with a specific structural
aspect, it must not be expected that the infinitely (seemingly
desirable) variation in the values of the DQIa(tg) descriptors will
conduct to an increase in the inhibitory activity. Noticed that, as
explained above, some DQIa(tg) descriptors are constrained by

FIGURE 4 | Substructures exhibiting with positive contributions to the desirable increase of the V {D[LmpAq1(V)C]tg} or the favorable variation of the POL
{D[LmpAq5(POL)P and D[LmpAq6(POL)C]tg}. Here, A � −CH2−, −NH−, O, or S; G � Cl, Br, or I; Z � any group lacking aliphatic carbons.

FIGURE 5 | Fragments whose presence positively increase the POL {D[LmpAq6(POL)A]tg} or the PSA {D[LmpAq6(PSA)A]tg}. Here, A � −NH2, −OH, or R (alkyl
group); X � −NH−, O, or S; Z � Cl, Br, I, or −SH; substituents R1 and/or R2 can be H, alkyl or aryl groups.
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others. Therefore, only the joint interpretation of the DQIa(tg)
descriptors in the mt-QSAR-MLP model will provide how,
through the introduction of certain molecular fragments,
these descriptors can vary harmoniously so a molecule will
comply with the structural requirements needed to exhibit
multi-target activity against the five proteins reported in this
study. The joint interpretation of the descriptors in the mt-
QSAR-MLP model indicates that the aromatic and
heteroaromatic rings (at least two) can be present in any
region. Aliphatic chains and rings (including their
heteroatom-based counterparts) can also appear in
different parts of a molecule but preferably attached to
both aromatic (or heteroaromatic) rings and bulky atoms
(e.g., Cl, Br, I, S, and P). Halogens must also be kept in the
periphery of the molecules. At least two functional groups
containing atoms capable of acting as hydrogen bond
acceptors (or donors) must be present, being also close
(topological distance lower than 6) to the aforementioned
bulky atoms and/or attached to aromatic carbons; if two or
more polar functional groups formed by at least two atoms
are present, they must be as distant as possible one from
the other.

Virtual Design of Multi-Target Inhibitors
Against Parasitic Proteins
Here, we experimented by following a series of guidelines
reported recently, which enable the virtual design of new
molecules with multi-target activity (Kleandrova et al., 2016;
Speck-Planche et al., 2016; Speck-Planche and Cordeiro,
2017a; Speck-Planche and Cordeiro, 2017b; Speck-Planche,
2018; Speck-Planche, 2019; Speck-Planche and Scotti, 2019).
The purpose of the experiment was to demonstrate that
although the presence of certain fragments is important for
the appearance and/or enhancement of the multi-target

activity, how these fragments are connected between each
other will principally define whether a molecular can
simultaneously inhibit different parasite proteins.

By rigorously following the joint interpretation of theDQIa(tg)
descriptors in the mt-QSAR-MLP model, we designed four
molecules belonging to two different chemical families
(Figure 6). While doing so, we assembled the molecules by
connecting or fusing different molecular fragments considered
to positively contribute to the desirable variations in the values of
the DQIa(tg) descriptors.

We would like to emphasize that when referring to the
potential inhibitory activity of any of the designed molecules
against a given parasitic protein, we do it always by considering
the corresponding cutoff (IC50) value of inhibitory activity
reported in this work. Thus, according to the results of the
predictions performed by the mt-QSAR-MLP mode (Table 4),
all the designed molecules were predicted as multi-target
inhibitors of at least three of the five parasite proteins
reported in this study. All the predictions fell within the
applicability domain of the mt-QSAR-MLP except for those
belonging to the inhibitory activity of the molecules MTIPP-
001 and MTIPP-002 against the protein glycylpeptide
N-tetradecanoyltransferase (T. brucei brucei). More details
regarding the calculated DQIa(tg) descriptors, the predictions
of the designed molecules, and the assessment of the applicability
for these can be found in Supplementary Material S4.

If we inspect MTIPP-001 and MTIPP-002, it will be easy to
see the remarkable similarity between their chemical structures.
The only difference is that the cyclopentane moiety fused with
the pyridinic ring in MTIPP-001 is replaced by the
chloromethyl moiety in MTIPP-002. Yet, this small change
is responsible for the differences in the multi-target profiles of
these two molecules. Although the aforementioned
replacement leads to a detrimental decrease of the value of
the descriptor D[LmpAq1(V)C]tg (which benefits from the

FIGURE 6 | Chemical structures of the molecules designed and predicted by using the mt-QSAR-MLP model.
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increment of aliphatic carbons), it desirably increases the values
of D[LmpAq6(POL)A]tg and D[LmpAq5(POL)P]tg, also
favorably decreasing D[LmpAq6(POL)C]tg. These three
DQIa(tg) descriptors account for the fact while MTIPP-001
has been predicted to inhibit three proteins, its analog MTIPP-
002 may be able to inhibit four of these biomolecular targets.

In contrast to MTIPP-001 and MTIPP-002, the molecules
MTIPP-003 and MTIPP-004 present sulfonamide moiety
which has a considerably higher PSA than any of the other
functional groups. Furthermore, in MTIPP-003 and MTIPP-
004, both fragments sulfonamide and amide are closer to the
chlorines. This arrangement of atoms, which also includes the
correct positioning of the aliphatic portions with respect to
both aromatic carbons and chlorines particularly causes the
dramatic (favorable) increment of the values of the
descriptors D[LmpAq6(POL)A]tg, D[LmpAq6(PSA)A]tg,
and D[LmpAq1(V)C]tg; these are the top three DQIa(tg)
descriptors, exhibiting the highest influence/discriminatory
power in the mt-QSAR-MLP model. Consequently, these
DQIa(tg) descriptors are the main responsible for the fact
that MTIPP-003 and MTIPP-004 were predicted as multi-
target inhibitors against the five parasite proteins reported in
this work.

Considering their potential multi-target activity, the designed
molecules were searched in different databases such as ChEMBL
and ZINC (Irwin and Shoichet, 2005). The aim here was to check
if these molecules are reported in the scientific literature. When
searching for similar compounds, the similarity cutoff was ≥0.7.
Under this condition, all the designed molecules seem to be new,
as no results of similar molecules were found.

Docking Calculations Suggest the
Multi-Target Potential of the Designed
Molecules
As depicted in Table 5, each protein was docked against four
organic compounds. The first of them is the reference ligand,
which forms the crystallized complex with the protein. The
second organic chemical is present in both the ChEMBL
database and our dataset used to build the mt-QSAR-MLP
model; the experimental IC50 value of that organic chemical
is equal to the activity cutoff selected for each protein. Notice
that these ChEMBL organic chemicals offer a point of
comparison to estimate the inhibitory activity of any query

molecule by considering the different cutoffs of activity
associated with the parasitic proteins. We also docked the
designed molecules MTIPP-002 and MTIPP-004, which
belong to different chemical families. In the case of MTIPP-
002, we selected it over its analog MTIPP-001 because the
former was predicted by the mt-QSAR-MLP model to inhibit
4 out of 5 parasitic proteins; MTIPP-001 was predicted as active
against only three proteins. We also chose MTIPP-004 over its
analog MTIPP-003 because MTIPP-004 was predicted slightly
better against two of the parasitic proteins according to their
posterior probabilities; in one protein, MTIPP-003 was
predicted better than MTIPP-004 and for the other two
remaining proteins, MTIPP-003 and MTIPP-004 had the
same value of predicted probabilities (see Supplementary
Material S4).

In general, the preliminary results of the docking calculations
depicted in Table 5 converge with the results of the predictions
performed by the mt-QSAR-MLP model regarding the multi-
target profile of the designed molecules. We, however, observed
divergencies in the proteins plasmepsin 2 (MTIPP-002 and
MTIPP-004 suggested as inactive) and dihydroorotate
dehydrogenase (MTIPP-004 indicated as inactive). This comes
from the fact that the molecular docking calculations and QSAR
modeling (e.g., the mt-QSAR-MLPmodel developed here) ‘catch’
different physicochemical and structural information regarding
the chemical diversity and complexity of the molecules when
inhibiting proteins. Therefore, these two computational
techniques can be used in a complementary manner to study
the biological profiles of the molecules in the context of protein
inhibition.

Another detail that can be extracted from Table 5 is that for
the molecule MTIPP-002, the mt-QSAR-MLP and the docking
calculations converge in 4 out of 5 parasitic proteins in the sense
that this designed molecule is a multi-target inhibitor. Notice that
the binding energy for MTIPP-002 is lower than those of the
ChEMBL organic chemicals. Similar behavior occurs for the case
of MTIPP-004 in 3 out of 5 parasitic proteins. Interestingly,
regardless of the protein, the docking calculations suggest that,
according to the energy values, MTIPP-002 is more active than
MTIPP-004 although the latter was predicted by the mt-QSAR-
MLPmodel to inhibit the five parasitic proteins whileMTIPP-002
was predicted as active against only four proteins. However, there
is no contradiction because while the docking calculations can be
used to compare if one molecule is more active than the other, the

TABLE 4 | Molecules designed and the predictions of their multi-target profiles against the parasite proteins.

ID Pred_IAi(tg)
a,b

Plasmepsin 2
(P. falciparum)

DHODH (P. falciparum) Cruzipain (T. cruzi) DHFR (T. gondii) GPNTDT
(T. brucei brucei)

MTIPP-001 1 1 −1 1 −1
MTIPP-002 1 1 1 1 −1
MTIPP-003 1 1 1 1 1
MTIPP-004 1 1 1 1 1

aPred_IAi(tg)—Predicted value of the categorical variable of inhibitory activity [IAi(tg)].
bThe abbreviations DHODH, DHFR, and GPNTDT stand for the proteins named dihydroorotate dehydrogenase, dihydrofolate reductase, and glycylpeptide N-tetradecanoyltransferase,
respectively.
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mt-QSAR-MLPmodel only predicts if a molecule will be active or
inactive against a protein by considering a defined cutoff value.

At the structural level, the results from the docking
calculations are provided in Supplementary Material S5,
which illustrates the different protein-ligands interactions.
Thus, here, for the case of each parasitic protein, we will
compare the designed molecules MTIPP-002 and MTIPP-004
with ChEMBL chemicals in terms of the strength and number of
interactions that help explain the results obtained in Table 5. In
doing so, we will focus only on the parasitic proteins where the
docking calculations converge (either partially or totally) with the
predictions performed by the mt-QSAR-MLP model. These
proteins are dihydroorotate dehydrogenase (P. falciparum), as
well as cruzipain (T. cruzi), dihydrofolate reductase (T. gondii),
and glycylpeptide N-tetradecanoyltransferase (T. brucei brucei).
Our objective is to demonstrate that the designed molecules
MTIPP-002 and MTIPP-004 are more active than the
corresponding chemicals represented in Table 5.

We would like to highlight that in some cases, some
unfavorable interactions were observed (marked in red color
in the upcoming figures). We do not discard the possibility
that these interactions may be associated with the
computational algorithm employed to perform the docking
calculations but we prefer a plausible phenomenological
explanation. This is related to the fact that none of the
ChEMBL chemicals present sufficiently optimized structures to
effectively interact with the different amino acids in the binding
site of each parasitic proteins. Nevertheless, these ChEMBL
chemicals have experimental IC50 values in the submicromolar
range against their corresponding parasitic proteins. On the other

hand, the molecules MTIPP-002 and MTIPP-004 were designed
as potential multi-target inhibitors. This means that because of
the very different physicochemical and structural characteristics
of the binding sites of the parasitic proteins, it is very probable
that they will not cause strong inhibition as in the case of a
specific/mono-target inhibitor. However, as MTIPP-002 and
MTIPP-004 were designed to inhibit most of the parasitic
proteins at the submicromolar range, this could translate into
a much higher inhibition of the growth of the parasitic species
when compared with a mono-target inhibitor. Following, we will
discuss the interactions that mainly contribute to the stability/
instability of the different protein-ligand complexes.

Starting with the protein dihydroorotate dehydrogenase (P.
falciparum), it can be seen that one of the pyridinic nitrogen
atoms in the five-membered ring of the molecule
CHEMBL1784557 (experimental IC50 � 820 nM) interacts
with the residue Arg674 via hydrogen bond (Figure 7). Also,
the ring itself makes contact with Val900 and Cys593 through pi-
sigma and pi-alkyl interactions, respectively. The benzene ring of
CHEMBL1784557 also contributes to stabilizing the complex by
interacting with Phe507 (pi-pi T-shaped). Other interactions
involve the two methyl groups of CHEMBL1784557. Yet, due
to proximity, a repulsion-based interaction takes place between
the secondary amine of CHEMBL1784557 and the residue
His594, which is detrimental to the stability of the protein-
ligand complex. In contrast, the molecule MTIPP-002 forms a
hydrogen bond with His594, as well as with Gly590 and Met904.
These hydrogen bonds together with pi-pi stacked (Phe580 and
Phe597) and pi-sulfur (Cys584) are the main contributors to the
stability of the complex formed by MTIPP-002 and

TABLE 5 | Results from the docking calculations.

PDB IDa Protein (Organism)b Ligand IDc Energy (kcal/mol) RMSDd

2BJU Plasmepsin 2 (P. falciparum) IH4 −172.78 0.25
CHEMBL3264802 −153.7 -
MTIPP-002 −150.21 -
MTIPP-004 −103.99 -

6I55 DHODH (P. falciparum) DZB −110.4 0.67
CHEMBL1784557 −80.8
MTIPP-002 −120.5
MTIPP-004 −70.9

1ME3 Cruzipain (T. cruzi) P10 −151.93 0.33
CHEMBL565866 −95.77 -
MTIPP-002 −145.7 -
MTIPP-004 −96.48 -

4KY4 DHFR (T. gondii) 1UE −123.8 0.15
CHEMBL145528 −103.4 -
MTIPP-002 −150.9 -
MTIPP-004 −114.2 -

HM_6QD9 GPNTDT (T. brucei brucei) CHEMBL3959734 −67.8 -
MTIPP-002 −111.7 -
MTIPP-004 −110.22 -

aThe IDwritten as “HM_6QD9” indicates that the 3D structure of the protein was obtained via homologymodeling by using the protein’s amino acid sequence from the PDB ID 6QD9 as the
template.
bThe abbreviations DHODH, DHFR, and GPNTDT stand for the proteins named dihydroorotate dehydrogenase, dihydrofolate reductase, and glycylpeptide N-tetradecanoyltransferase,
respectively.
cFor each protein (PDB ID), the ligands are ordered in the followingmanner: 1) the reference ligand, 2) compound from the dataset used to build the mt-QSAR-MLPmodel and whose IC50

value is equal to the cutoff of activity selected for each protein, 3) ligand belonging to the first chemical family of designedmolecules, and 4) ligand belonging to the second chemical family
of designed molecules. dRMSD is the root-mean-square deviation of the atomic coordinate during the redocking of the reference ligands.
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dihydroorotate dehydrogenase (P. falciparum), which has lower
energy than that formed by the same protein and
CHEMBL1784557. This suggests that the inhibitory potency of
MTIPP-002 is greater than that of CHEMBL1784557. In the case
of the molecule MTIPP-004, it forms a hydrogen bond with
Tyr577, as well as other interactions such as pi-sulfur (Met904),
amide-pi stacked (Leu899). Despite these and other several
interactions such as alkyl, pi-alkyl, carbon-hydrogen bonds,
MTIPP-004 presents two bumps due to steric hindrance with
Leu581 and Met904, which decreases the stability of the complex,

thus diminishing the ability of MTIPP-004 to strongly inhibit
dihydroorotate dehydrogenase (P. falciparum) at the
submicromolar concentration of 820 nM (activity cutoff based
on IC50).

Regarding cruzipain (T. cruzi), we can observe in Figure 8 that
the molecule CHEMBL565866 (experimental IC50 � 890 nM)
forms a hydrogen bond with the residue Gly23 while also having
pi-sulfur interactions with Met68 and Cys25. Simultaneously,
CHEMBL565866 is involved in other interactions such as pi-
alkyl, pi-donor hydrogen bond, and carbon-hydrogen bond. This

FIGURE 7 | Diagram depicting the interactions of CHEMBL1784557 (top center), MTIPP-002 (left bottom) and MTIPP-004 (right bottom) with dihydroorotate
dehydrogenase (P. falciparum).
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molecule has a double repulsive interaction with Cys25, which
considerably decreases the stability of the complex formed
between CHEMBL565866 and cruzipain (T. cruzi). In this
context, the molecule MTIPP-002 has several interactions,

including those with the residues His159 (hydrogen bond),
Asp60 (pi-anion), and Cys25 and Met68 (both pi-sulfur)
which are the main energetic contributors to the complex
stability. These interactions, together with those involving the

FIGURE 8 | Interactions of CHEMBL565866 (top center), MTIPP-002 (left bottom) and MTIPP-004 (right bottom) with cruzipain (T. cruzi).
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three chlorine atoms, the pyrrolic ring, and other moieties,
indicate that MTIPP-002 should have a higher inhibitory
potency (lower IC50 value) than CHEMBL565866. In the case
of MTIPP-004, despite having an unfavorable (donor-donor)
contact with His159, it greatly compensates by interacting
with the residues Cys25 (hydrogen bond, pi-sulfur, and alkyl-
alkyl), Asp60 (pi-anion), Leu67, and Ala133 (pi-alkyl), as well as
Gly23 (carbon-hydrogen bond). For the case of the complex
cruzipain-MTIPP-004, these interactions lead to an energy value
lower than that estimate for the complex cruzipain-

CHEMBL565866. This suggests that MTIPP-004 should have
IC50 ≤ 890 nM.

Following with the protein dihydrofolate reductase (T. gondii),
in Figure 9 we have several regions of CHEMBL145528
(experimental IC50 � 250 nM) interacting via a double
hydrogen bond (Asp31), pi-alkyl associations (Ala10 and
Met87), and pi-pi T-shaped configurations (Phe32 and Phe35).
Notice, however, that the two hydrogen bonds with Asp31 lack
directionality (see the 3D view in Supplementary Material S5),
and therefore they may be relatively weak. Interestingly, MTIPP-

FIGURE 9 | Chemicals interacting with dihydrofolate reductase (T. gondii): CHEMBL145528 (top center), MTIPP-002 (left bottom) and MTIPP-004 (right bottom).
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002, despite lacking hydrogen bond, forms a huge number of
hydrophobic interactions such as pi-pi stacked and pi-pi
T-shaped configurations with the amino acids Phe32, Phe35,
and Phe91. In this sense, it has been experimentally demonstrated
that the presence of simultaneous pi-interactions of a molecule
with the residues Phe32 and Phe91 are essential in achieving
inhibitory potency (IC50) at the submicromolar range (Welsch

et al., 2016). On the other hand, there is also a great number of
alkyl-alkyl and pi-alkyl interactions where the amino acids Val8,
Ala10, His27, and Met87 participate; His34 is involved in a
carbon-hydrogen bond. A key aspect of the interactions of
MTIPP-002 with the different amino acids is that most of
them seem highly directional, which, for the complex formed
by this molecule and dihydrofolate reductase (T. gondii), yield an

FIGURE 10 | Amino acids of the binding site of glycylpeptide N-tetradecanoyltransferase (T. brucei brucei) interacting with CHEMBL3959734 (top center),
MTIPP-002 (left bottom) and MTIPP-004 (right bottom).
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energy value lower than the complexes formed by the same
protein with either CHEMBL145528 or MTIPP-004.
Therefore, MTIPP-002 should have an IC50 ≤ 250 nM. For the
case of MTIPP-004, this molecule should also be expected to
exhibit IC50 ≤ 250 nM since the stability of the complex MTIPP-
004- dihydrofolate reductase (T. gondii) is favored over that of the
complex CHEMBL145528-dihydrofolate reductase (T. gondii).
This is due to the presence of adequate interactions of MTIPP-
004 with the amino acids Ile17 (hydrogen bond), Val8 (halogen
bond), Asp31 (pi-anion), Phe32 (pi-pi T-shaped), and Tyr157
(pi-sulfur). There are also other favorable interactions involving
alkyl groups (either from MTIPP-004 or the amino acids) and
carbon-hydrogen bonds.

Last, we have the glycylpeptide N-tetradecanoyltransferase (T.
brucei brucei) whose 3D structure was created by using homology
modeling. The steps and results of the homology modeling for this
protein can be found in Supplementary Material S6. The 3D
structure of glycylpeptide N-tetradecanoyltransferase (T. brucei
brucei) is now freely available at https://swissmodel.expasy.org/
repository/uniprot/Q388H8 as part of the SWISS-MODEL
Repository (Bienert et al., 2017), which is a database of annotated
3D protein structure models. In Figure 10, the pi-alkyl interactions
(and others involving alkyl groups or halogens) between the chemical
CHEMBL3959734 (experimental IC50 � 270 nM) and glycylpeptide
N-tetradecanoyltransferase prevail, particularly with the residues
Leu276, Ala280, and Val287 (Lys277 participates in less degree).
There are also three carbon-hydrogen bonds (Arg128, Leu276, and
Pro286) and a halogen bond with the residue Gln273. In any case,
Arg128 is present in an unfavorable donor-donor interaction with
CHEMBL3959734. At the same time, we can deduct from Figure 10
that both MTIPP-002 andMTIPP-004, formmore stable complexes
with glycylpeptide N-tetradecanoyltransferase (T. brucei brucei) than
CHEMBL3959734. From one side, MTIPP-002 forms a hydrogen
bond with Arg128, the same amino acid the unfavorable influences
the stability of the complex formed by CHEMBL3959734 and
glycylpeptide N-tetradecanoyltransferase (T. brucei brucei).
Besides, MTIPP-002 exhibits relatively strong amide-pi stacked
interactions with the residues Thr272 and Leu276; the latter also
participates in pi-alkyl (together with Ala280 and Val287) and other
interactions based on the presence alkyl group (together with
Ala280). Other non-covalent interactions can also be observed.
All these interactions point out to the direction of considering
MTIPP-002 to have IC50 ≤ 270 nM. On the other hand, in the
case of MTIPP-004, there is detrimental energetic contribution
because of the repulsion with Arg128 although the same residue
favorably present in a hydrogen bond, and pi-cation, pi-alkyl, and
alkyl-alkyl interactions. Anyway, MTIPP-004 counterbalances by
forming other three hydrogen bonds, one with Leu154 and two with
Leu276; Leu154 also participates in a pi-alkyl interaction together
with Pro156 (also involved in an alkyl-alkyl interaction). All these
interactions help to explain why the energy value obtained
for MTIPP-002 and MTIPP-004 are very similar when interacting
with s for the complexes of glycylpeptide N-tetradecanoyltransferase
(T. brucei brucei). Consequently,MTIPP-004 is also expected to have
IC50 ≤ 270 nM.

DRUGLIKENESS AND SYNTHETIC
ACCESSIBILITY

We examined the four designed molecules in terms of their
compliance with Lipinski’s rule of five (Lipinski et al., 2001),
the Ghose’s filter (Ghose et al., 1999), and the Veber’s rule
(Veber et al., 2002). These guidelines are based on the
estimation of a series of physicochemical properties that
permit to analyze of the druglikeness of any molecule, in
particular, their capacity to exhibit a good oral
bioavailability. The physicochemical properties were
calculated by the program AlvaDesc v1.0.14 (Alvascience-
Srl, 2019) and included the number of hydrogen bond
donors (HBD), the number of hydrogen bond acceptors
(HBA), the molecular weight (MW), the logarithm of the
partition coefficient octanol/water (logP), the number of
atoms (nAT), the molar refractivity (MR), the number of
rotatable bonds (RBN), and the PSA. A report of these
properties for the designed molecules can be found in
Supplementary Material S7; the physicochemical properties
of the molecules designed here are in agreement with Lipinski’s
rule of five and the other variants. We also employed the
webserver SwissADME to estimate the synthetic accessibility
of the designed molecules. In this sense, SwissADME predicts
the synthetic accessibility score (SAS), which ranges from 1
(easily synthesizable) to 10 (difficult to synthesize). The SAS
values for the designed molecules ranges from 3.23 to 3.48
(Supplementary Material S7). Considering the closeness to 1
of these SAS values, it can be deduced that the designed
molecules should be relatively easy to synthesize.

CONCLUDING REMARKS

A more efficient eradication of many parasitic diseases can in
principle be achieved with the use of multi-target inhibitors.
The fast search of such a class of antimicrobial therapeutics
depends in great part on the power and accuracy of modern
computational tools. The mt-QSAR-MLP built in this work
model represents an advance in early drug discovery against
parasitic diseases because with this in silico tool and the
theoretical support provided by the molecular docking
calculations, it is possible to rationally design potential
antiparasitic agents by simultaneously inhibiting diverse
targets involved in the virulence and/or survival of several
pathogenic parasites. The present report confirms the
promising applications of the mt-QSAR approaches, which
can be extended to many therapeutic areas.
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