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A B S T R A C T   

Introduction: Lung cancer is a prevalent malignancy globally, with approximately 20% of patients 
developing cardiopulmonary complications after lobectomy. In order to prevent complications, 
an accurate and personalized method based on machine learning (ML) is required. 
Methods: During the period of 2017–2021, a retrospective analysis was conducted on the medical 
records of patients who had undergone lobectomy for non-small cell lung cancer (NSCLC). We 
performed logical regression, decision tree (DT), random forest (RF), gradient boost DT, and 
eXtreme gradient boosting analyses to establish an ML model. The ten-fold cross-validation was 
used to evaluate the performance of multiple ML models based on various evaluation metrics, 
including accuracy, precision, recall, F1 score, and area under the receiver operating (AUC). 
Additionally, we also calculated the Kappa value of these model. Each model used grid search to 
optimize hyper-parameters and then used the interpretability method to provide explanations for 
the model’s Decisions. 
Results: The study included 718 eligible patients, among whom the incidence of postoperative 
cardiopulmonary complications was 20.89%. The RF model showed the best comprehensive 
performance among all models, and its ten-fold cross-validation accuracy, precision, recall, F1 
score, and AUC were (OR and 95% confidence interval [CI]) 0.786 (0.738–0.834), 0.803 
(0.735–0.872), 0.738 (0.678–0.797), 0.766 (0.714–0.818), 0.856 (0.815–0.898), respectively. 
The kappa value of the RF model was 0.696 (0.617–0.768). The SHAP method showed that 
gender, age, and intraoperative blood loss were closely associated with postoperative cardio-
pulmonary complications. 
Conclusion: The application of ML methods for predicting postoperative cardiopulmonary com-
plications based on clinical data of patients with NSCLC showed a good performance. The results 
indicate that ML combined with the SHAP individualized interpretation method has practical 
clinical value.   
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1. Introduction 

Lung cancer exhibits the highest incidence and mortality rates among all malignant neoplasms at present [1]. Among them, 
non-small cell lung cancer (NSCLC) accounts for approximately 85% of the total lung cancers in clinically. Presently, the established 
surgical treatment for early-stage lung cancer is lobectomy and systematic lymph node dissection, the utilization of this treatment has 
been shown to greatly extend the lifespan of patients and enhance their quality of life [2,3]. However, pulmonary function damage due 
to surgery can occur, which includes pulmonary tissue traction, peripheral nerve, and tissue trauma during surgery, leading to 
postoperative cardiopulmonary complications. Some studies have shown that the incidence of pulmonary function damage is 8%–20% 
and includes symptoms such as pneumothorax, pneumonia, atelectasis, and pleural effusion [4–7]. This issue is worthy of further 
clinical studies. Moreover, the occurrence of postoperative cardiopulmonary complications increases the relevant hospitalization time 
by about 30%. Furthermore, it may also increase perioperative mortality in these patients by 7%–33% [8,9]. In a word, the early 
diagnosis of postoperative cardiopulmonary complications is of great significance for guiding the perioperative management of such 
patients. 

As a means of predicting postoperative complications, previous studies used the POSSUM scoring system or the Assess Respiratory 
Risk in Surgical Patients in Catalonia (ARISCAT) scoring system [10,11]. However, these systems cannot effectively predict lung 
cancer or related complications. Previous studies have attempted to establish a prediction model for postoperative cardiopulmonary 
complications [12,13]. Early prediction models for postoperative pulmonary complications have included established risk factors, 
including advanced age, chronic lung disease, American Society of Anesthesiologists (ASA) score, and smoking history [14]. More 
recent models have included the medical histories and laboratory test results of the patients. In a previous model, several factors, 
including asthma, nutrient lymphocyte ratio, male gender, and high body mass index (BMI), are considered important factors affecting 
postoperative complications [15]. 

However, these models do not work well in China [16], and these models are based on the method of binary logical regression (LR), 
which may lead to some research bias and is a major limitation [17–19]. Fortunately, machine learning (ML) technology has been 
increasingly prevalent in the medical industry owing to its ability to efficiently handle complex and time-consuming tasks, particularly 
in disease diagnosis, drug production, and medical data analysis. Presently, it has shown good ability in the diagnosis, management, 
and prediction of lung cancer. For instance, Lu and colleagues established a diagnosis model for high-risk smokers suffering from lung 
cancer using a large dataset and used a convolutional neural network and PLCOm2012 for further analysis [20]. The study findings 
revealed a diagnostic sensitivity of 0.749 for the convolutional neural network, which was slightly better than that of the risk pre-
diction model, PLCOm2012, and could better predict lung cancer at the early stage. Wang et al. [21] used seven technologies, 
including LR, decision tree (DT), eXtreme gradient boosting (XGBoost), and support vector machines (SVM), to establish a prediction 
model for lung cancer viability in patients of different genders. In this case, the best one-year survival rate was shown by the XGBoost 
model (with 90.75% accuracy), followed by LR and SVM. Furthermore, the ML method also showed good performance in predicting 
various cancer complications. For example, Zeng et al. [22] used methods such as LR, DT C5.0, DT CART, SVM, and random forest (RF) 
under the supervision classification to predict the surgical complications after liver cancer resection and achieved an accuracy rate of 
92.45%. 

As per our understanding, there has been limited application of ML in the study of cardiopulmonary complications after lobectomy. 
Therefore, the primary aim of this investigation was to investigate the potential of utilizing ML-based methods in predicting post-
operative cardiopulmonary complications following lobectomy. To achieve this, we developed risk prediction models utilizing clinical 
and laboratory data obtained from electronic medical records. We compared the predictive performance of various supervised learning 
methods, including LR, DT, RF, gradient boost DT (GBDT), and XGBoost. Additionally, we used the SHapley Additive exPlanations 
(SHAP) method to identify the significance of the variables in prediction model. Ultimately, we aimed to provide a tool for the early 
diagnosis of patients with cardiopulmonary complications after lobectomy, which could help clinicians make better-informed de-
cisions and improve patient outcomes. 

2. Methods 

2.1. Study population 

We retrospectively reviewed medical records of patients who underwent thoracoscopic lobectomy at a thoracic oncology 
department of a cancer research center from January 2017 to December 2021. Patient eligibility criteria were as follows: (1) Patients 
who had undergone their first operation. (2) NSCLC was diagnosed by pathological examination. (3) Age of the patients ≥18 years. (4) 
The physical fitness score of Eastern Cooperative Oncology Group was in the range of 0–2. Criteria for exclusion were as follows: (1) 
Conversion to thoracotomy; (2) presence of other cancers, (3) unplanned discharge. 

2.2. Information collection indicators 

Patient information was obtained from Hospital Information System, which included (1) Demographic characteristics such as 
gender, age, and BMI. (2) Medical history: hypertension, diabetes, coronary heart disease, or smoking. (3) Tumor information: 
maximum tumor size, tumor site, and stage. (4) Auxiliary examination results: maximum size of the left atrium, pulmonary function 
(FEV1%, FEV1/FVC); (5) Operative data: preoperative ASA score, anesthesia mode, duration of time, intraoperative blood loss, and 
histological type. (6) Laboratory examination: albumin, hemoglobin (HB), fasting blood glucose, platelet (PLT), alanine 

Y. Zhai et al.                                                                                                                                                                                                            



Heliyon 9 (2023) e17772

3

aminotransferase (ALT), aspartate transaminase (AST), and neutrophils (N%). This is a retrospective study; therefore, the Ethics 
Review Committee agreed that an informed consent form is not needed. 

2.3. Operation method 

Surgeons performed a two-hole thoracoscopic lobectomy on the patients. The first hole was the observation hole, and the surgeons 
made a 1.0–2.0 cm incision at the 7th or 8th intercostal position of the midaxillary line. The second incision, known as the main 
operation hole, was made at the anterior axillary line’s 4th or 5th intercostal position, with an incision size of 3.0–4.0 cm. 

2.4. Data preprocessing 

The binary independent variable was coded by assigning a value of 1 to the positive event and 0 to the negative event. We set one- 
hot variables for unordered multi-category variables. The continuous variables were standardized by mean normalization to prevent 
errors caused by large data differences. The main results were defined as cardiopulmonary complications occurring within two weeks 
after lobectomy, including pneumothorax, pleural effusion, atelectasis, pulmonary infection, acute respiratory failure, acute heart 
failure, arrhythmia, and bronchopleural fistula. The diagnostic standard for pulmonary complications was ARISCAT study-related 
definitions [23]. Arrhythmias include atrial fibrillation and ventricular fibrillation. Data with less than 20% missing content were 
completed by multiple imputations. 

2.5. Sample equalization processing 

Postoperative cardiopulmonary complications accounted for 20.89% of the total data of the study. Supervised learning algorithms 
that are optimized for overall classification accuracy may fail to learn important features from the minority classes, which can lead to 
imbalanced classification performance. Therefore, to ensure the efficiency of ML, the SMOTE Tomek Link algorithm with oversampling 
and undersampling was used [24]. This method can remove all noise points or boundary points in the sample while balancing the 
sample size. 

2.6. Learning model 

LR, DT, RF, GBDT, and XGBoost were used for model development. 

Table 1 
General information of patients.  

Variable No event Event P value Variable No event Event P value 

Age (y) 58.0 (52.0–64.0) 62.0 (56.0–68.0) <0.001 ASA   0.041 
BMI 23.2 (20.8–25.0) 22.6 (20.7–24.5) 0.266 I/II 548 (76.32%) 139 (19.36)  
Duration of time (min) 177.0 (145.0–216.8) 186.5 (146.8–226.5) 0.188 III/IV 20 (2.79%) 11 (1.53%)  
Blood loss (ml) 80.0 (30.0–150.0) 100.0 (50.0–200.0) 0.001 Inhalation anesthesia   0.678 
GLU (mmol/L) 4.6 (4.3–5.1) 4.5 (4.1–5.0) 0.080 Yes 430 (59.89%) 116 (16.16%)  
ALB (g/L) 39.0 (37.1–41.0) 38.5 (36.1–40.6) 0.062 No 138 (19.22%) 34 (4.74%)  
N (%) 57.7 (51.2–63.3) 58.7 (51.3–65.6) 0.350 Tumor site   0.375 
WBC (10^12/L) 6.3 (5.4–7.5) 6.4 (5.2–7.9) 0.793 left upper lobe 107 (14.90%) 27 (3.76%)  
AST (U/L) 24.0 (20.0–28.0) 24.0 (20.0–30.0) 0.087 left lower lobe 86 (11.98%) 20 (2.79%)  
ALT (U/L) 17.0 (13.0–24.0) 17.0 (13.0–25.0) 0.555 right upper lobe 153 (21.30%) 43 (5.99%)  
HGB (g/L) 132.0 (121.0–142.0) 131.0 (120.8–142.3) 0.900 right middle lobe 45 (6.27%) 5 (0.70%)  
PLT (10^9/L) 247.0 (208.0–289.0) 260.5 (216.8–307.3) 0.023 right lower lobe 108 (15.04%) 30 (4.18%)  
Gender   0.205 bipulmonary lobe 69 (9.61%) 25 (3.48%)  
Male 285 (39.69%) 84 (11.70%)  Tumor size (cm)   0.027 
Female 283 (39.42%) 66 (9.195)  <3 441 (61.42%) 103 (14.35%)  
Hypertension   0.092 3–5 96 (13.37%) 37 (5.15%)  
Yes 136 (18.94%) 46 (6.41%)  >5 31 (4.32%) 10 (1.39%)  
No 432 (60.17%) 104 (14.48%)  Tumor stage   0.357 
Diabetes   0.835 I 381 (53.06%) 104 (14.48%)  
Yes 64 (8.91%) 16 (2.23%)  II 93 (12.95%) 31 (4.32%)  
No 504 (70.19%) 134 (18.66%)  IIIa 94 (13.09%) 15 (2.09%)  
Coronary disease   0.308 Histological typing   0.032 
yes 20 (2.79%) 8 (1.11%)  Adenocarcinoma 498 (69.36%) 121 (16.85%)  
no 548 (76.32%) 142 (19.78%)  SCC 45 (6.27%) 21 (2.92%)  
FEV1 (<80%)   0.039 Other 25 (3.48%) 8 (1.11%)  
normal 483 (67.27%) 117 (16.30%)  Smoking   0.027 
abnormal 85 (11.84%) 33 (4.60%)  Yes 173 (24.09%) 60 (8.36%)  
FEV1/FVC (<80%)   0.059 No 395 (55.01%) 90 (12.53%)  
normal 552 (76.88%) 131 (18.25%)      

Note: ASA:American Society of Anesthesiologists. 
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2.7. Statistical methods 

The study data were added to Excel, and the statistical software used Python 3.10. Frequency was used to express the counting data, 
while the mean ± standard deviation was used to express the normally distributed measurement data. Non-normally distributed 
continuous variables were reported as median and interquartile range (IQR). Statistical comparisons between groups were performed 
using appropriate statistical tests such as t-test, chi-square test, or non-parametric tests based on the distribution of data, with a 
significance level of α = 0.05. 

The model results were evaluated by accuracy (percentage of correct prediction results in the total sample), precision (percentage 
of all predicted positive samples in the actual value of positive samples), recall (percentage of predicted positive samples in all actual 
values of positive samples), F1 score (harmonic mean of precsion and recall), and area under the receiver operating characteristic 
curve (AUC). All indicators ranged from 0 to 1, with higher values indicating superior classification performance. Kappa values were 
used to assess the performance of classification models. The data were divided into test sets and validation sets at a ratio of 7:3. At the 
same time, to improve the generalization ability of the model, the test set was calculated by the form of ten fold cross-validation, and 
the hyper-parameters of the model were adjusted by the Gridsearch method. Finally, the mean of the evaluation metrics obtained from 
the validation set were reported as the performance indicators of the model. The 95% confidence interval (CI) was also calculated to 

Fig. 1. The diagram of thermodynamic correlations between features.  

Y. Zhai et al.                                                                                                                                                                                                            



Heliyon 9 (2023) e17772

5

estimate the variability of the results. The importance of variables was evaluated using the SHAP method. Each sample in the pre-
diction process was assigned a predictive value by the model, and for each feature in the sample, a SHAP value was calculated [25]. 

3. Results 

3.1. Patient characteristics 

In accordance with the study’s eligibility criteria, the data from 718 patients were included. Postoperative cardiopulmonary 
complications occurred in 150 patients (20.89%). Among them, 92 patients were of pneumothorax (61.33%), 18 of atelectasis 
(12.00%), 22 of pulmonary infection (14.67%), 5 patients were acute respiratory failure (3.33%), 1 of acute heart failure (0.67%), and 
39 of arrhythmia (26.00%). Table 1 shows the basic information of these patients. The average hospital stay in the normal group was 
8.79 ± 3.99 days, whereas that in the complication group was 11.86 ± 7.36 days (t = − 6.844, P < 0.001). Fig. 1 presents a ther-
modynamic correlation diagram of all features, whereas Fig. 2 depicts a violin plot showing the multi-feature after normalized. 

3.2. Prediction effect of multiple ML models 

We optimized the hyper-parameters of all models by the grid search method. Table 2 displays the effectiveness of final ten-fold 
cross-validation model and its 95% CI. Each model has its own advantages in learning cardiopulmonary complications after lobec-
tomy. Additional information regarding the ML methods used in this study, including hyper-parameter optimization and the results of 
such optimization, can be found in the appendix. The comprehensive performance indicators of each learning model were better than 
those of the LR method. Regarding the performance of the RF model, except for the recall rate, other performances were optimal. The 
AUC of RF is shown in Fig. 3. Simultaneously, we calculated the kappa value and 95% CI of the RF model by sampling 1000 random 
samples. Its performance on the test set were 0.696 (0.617–0.768). 

3.3. Assessment of important variables 

To explain the ML model, we selected two best-preforming models to explain these characteristics. The importance of each feature 
of the SHAP method is shown in Figs. 4 and 5, where the top 20 important variables are listed. The left halves of Figs. 4 and 5 represent 
the mean value of the important variables categorized according to their importance and whether they have protective or harmful 

Fig. 2. Normalized multi-feature violin plot.  
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effects. Each point in the right halves of Figs. 4 and 5 represents the actual attributes of the patients as follows: (1) the color gradient 
from blue to red represents an increase in the variable value from low to high, (2) the virtualized variable 1 represents the variable has 
this attribute, and (3) the virtualized variable 0 represents the variable does not have this attribute. The magnitude and direction of the 
feature’s effect on the prediction were quantified using SHAP values. We found that factors including gender, age, tumor stage, 

Table 2 
The prediction of the model after ten-fold cross-validation.   

Accuracy (95% CI) Precision (95% CI) Recall rate (95% CI) F1 score(95% CI) AUC (95% CI) 

LR 0.679 (0.609–0.749) 0.670 (0.588–0.751) 0.675 (0.609–0.741) 0.669 (0.603–0.734) 0.726 (0.666–0.786) 
DT 0.696 (0.638–0.755) 0.663 (0.601–0.726) 0.756 (0.673–0.840) 0.702 (0.643–0.762) 0.720 (0.659–0.782) 
RF 0.786 (0.738–0.834) 0.803 (0.735–0.872) 0.738 (0.678–0.797) 0.766 (0.714–0.818) 0.856 (0.815–0.898) 
GBDT 0.750 (0.705–0.795) 0.749 (0.691–0.808) 0.731 (0.651–0.811) 0.734 (0.682–0.785) 0.833 (0.796–0.869) 
XGBoost 0.777 (0.749–0.805) 0.778 (0.735–0.821) 0.756 (0.686–0.827) 0.761 (0.725–0.797) 0.825 (0.785–0.864)  

Fig. 3. Receiver operating characteristic curve of the random forest model.  

Fig. 4. The importance of the SHapley Additive exPlanation method based on the random forest model.  
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intraoperative blood loss, and platelet count were most important in the RF model. Furthermore, factors such as male gender, older 
age, earlier tumor stage, more blood loss during operation, and higher platelet count aggravated the occurrence of postoperative 
cardiopulmonary complications. The most important factors in the SHAP chart based on XGBoost were gender, platelet count, age, 
intraoperative blood loss, and BMI. According to the SHAP chart of the two models, gender, age, and intraoperative blood loss were the 
top affecting predictors of postoperative cardiopulmonary complications. 

3.4. Interaction between variables 

In retrospective studies, many researchers pay more attention to the recall rate [26], which refers to the proportion of true positive 
samples that are correctly predicted as positive. This rate can indicate the recognition ability of a classifier for positive classes. Among 

Fig. 5. The importance of the SHapley Additive exPlanation method based on the XGBoost model.  

Fig. 6. Variable interactions based on the XGBoost model.  
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our five models, XGBoost, with a recall rate of 0.756, was the best model. XGBoost is one of the boosting algorithms. Its advantage lies 
in training; new learners rely on previous models and combine them according to a certain deterministic strategy to reduce deviations. 
We have drawn the interaction diagram of the top 6variables based on the XGBoost model (Fig. 6). The horizontal and vertical axes 
contain the top 6 variables in the SHAP chart. The greater the interaction between two variables, including age, PLT, and neutrophil 
counts, the greater the width displayed in the chart. However, the interaction between intraoperative blood loss and other variables 
was less, and most of the SHAP values were concentrated in the negative area, indicating that intraoperative blood loss might be an 
independent risk factor. 

4. Discussion 

In this study, we develop an ML-based model for predicting cardiopulmonary complications, with the goal of enabling early 
prevention and treatment. The model was designed to be interpretable, allowing for easier integration into clinical practice. The 
incidence of cardiopulmonary complications was 20.89%. The most common cardiopulmonary complications were pleural effusion/ 
pneumothorax, followed by arrhythmia. Previous studies showed pulmonary infection as the most common complication [13,14]. 
However, our patients consumed prophylactic antibiotics before or during surgeries and actively dealt with possible infections; thus, 
the number of patients with pulmonary infections was less in the present study. 

Among the five ML-based classification models, each comprehensive prediction index of the DT, RF, GBDT, and XGBoost models 
was higher than that of the LR model. Regarding accuracy, RF showed an accuracy value of 0.786, followed by 0.777 of XGBoost, 0.750 
of GBDT, 0.696 of DT and 0.679 of LR. These results indicated that ML was practically valuable in clinical practice and could improve 
the performance of risk assessment tools. In the training process of RF, multiple DTs were generated, i.e., the classification results of 
several weak classifiers were selected by voting to form a strong classifier. The forest composed of multiple DTs had higher prediction 
accuracy than a single DT, and it also eliminated the problem of over-fitting of a single DT [27], thus showing good predictability for 
patients with cardiopulmonary complications. XGBoost created a tree based on the classification rules of category variables. The model 
could well handle the combination of multi-class and continuous variables and effectively improve the recall rate, and the compre-
hensive performance was not weak. Thus, consistent with other studies, ML has great advantages in prediction [28,29]. 

LR is a form of generalized linear regression model that can provide clear explanations for the analysis results [30]; however, its 
prediction accuracy was low in our study. We speculated that linear and non-linear relationships are present between the baseline 
characteristics of patients and postoperative cardiopulmonary complications. However, other models were not affected by the 
non-linear relationship and showed better comprehensive performance. 

We calculated the kappa value of the RF model in the test set, which was 0.696. Compared with other metrics, Kappa values are a 
reliable indicator for evaluating the performance of classification models because they are not affected by imbalanced data and offer a 
more precise evaluation. According to common standards, when the kappa value is > 0.6, the classifier is considered to have good 
performance. Therefore, we concluded that the RF model performed well in the test set, exhibiting high accuracy. This result also 
indicates that our model training has certain advantages and can be used for predictive tasks in practical scenarios. 

Previous ML models could not reveal the mechanism of their internal systems, even though they performed well. It can be difficult 
to determine which patient features are most relevant for accurate prediction when using ML algorithms, given their black box nature 
and lack of interpretability. We overcame this limitation using the SHAP method and provided the importance maps of RF and XGBoost 
models, which clearly and intuitively showed the importance of variables. The SHAP diagram helped doctors understand which factors 
contributed to having a higher or lower risk of cardiopulmonary complications. In clinical practice, the SHAP importance charac-
teristic map based on the RF and XGBoost models is more convenient to use for the following reasons. First, it can be used in pre-
operative communication. More predictive factors can be combined with patients’ personalized information for surgical 
communication and can intuitively explain which characteristics put such patients at risk. Second, doctors can use this model to es-
timate risks and provide information to patients for decision-making. Doctors can help patients via personalized prevention or 
intensive treatment strategies. For example, the time of postoperative electrocardiogram monitoring for a high-risk population can be 
prolonged and the monitoring of a low-riskpopulation can be reduced. 

We further determined the predictors of postoperative cardiopulmonary complications caused by patients’ baseline and surgical 
characteristics. We found that gender, age, and intraoperative blood loss were important factors in the ranking of cardiopulmonary 
complications. Other factors included BMI, smoking, hypertension, diabetes, time duration, tumor location, blood indicators, and lung 
function, which were listed as the top 20 important variables. These results are consistent with previous study results [31,32]. Due to 
data defects, we only distinguished whether patients smoke or not without further calculating the smoking index, which led to smoking 
becoming a protective factor in our study. Notably, we found that many blood factors, including albumin, PLT count, HB levels, blood 
sugar levels, and liver functions, played a role in predicting postoperative cardiopulmonary complications. The combined effects of 
these factors require further exploration. A previous study has shown a relationship between multiple blood routine tests and lung 
cancer diagnosis [33,34]. Blood examination may be associated with some complex events. Thus, more conventional blood indicators 
can be combined to predict postoperative cardiopulmonary complications in the future. 

4.1. Limitations 

This study is subject to certain limitations that warrant acknowledgement. First, the study was performed at a single-center, and the 
sample size is not large. Although cross-validation was used to avoid over-fitting the model, the ML model could not reach the optimal 
state. Second, this is a retrospective study, and the survey content lacks relevant information, such as cardiopulmonary complications 
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related to variables including smoking index and smoking cessation duration [35], which may help improve prediction efficiency. 
Lastly, we selected only five single ML algorithms to predict cardiopulmonary complications after lobectomy for patients with NSCLC. 
Future studies should use more and newer or integrated ML algorithms to achieve accurate prediction efficiency. 

5. Conclusion 

To conclude, we have established an ML model that accurately predicts the likelihood of cardiopulmonary complication occurrence 
after thoracoscopic lobectomy in patients with NSCLC. The findings indicated that gender, age, and intraoperative blood loss were 
important predictors of cardiopulmonary complications after NSCLC. Furthermore, RF showed the best prediction performance among 
all models. Relevant risk factors were determined by combining the SHAP ML interpretability method, which can be used as a tool to 
assist clinicians in formulating targeted interventions and making better medical decisions. However, our findings should be externally 
validated and ML ensemble models should be considered in the future. Nonetheless, our results provide valuable insights into pre-
dicting cardiopulmonary complications after thoracoscopic lobectomy in patients with NSCLC. 
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