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Abstract

Building predictive sensors is of paramount importance in science. Can we make a ran-

domly wired sensor “good enough” at predicting its input simply by making it larger? We

show that infinitely large, randomly wired sensors are nonspecific for their input, and there-

fore nonpredictive of future input, unless they are close to deterministic. Nearly determin-

istic, randomly wired sensors can capture * 10% of the predictive information of their inputs

for “typical” environments.

Introduction

Prediction is thought to be fundamental to organism functioning, e.g. see Ref. [1] and refer-

ences therein. By better predicting the world around them, organisms can better choose

actions that will maximize their reaped reward. On the other hand, prediction of the future of

a time series from its past drives much of science, e.g. the realization that one could predict

future particle positions from some parameters (such as particle masses and charges) and cur-

rent particle positions and velocities.

So how should one build predictive time series models? One common trick is to feed the

data we wish to predict into a recurrent network, the state of which can contain enough mem-

ory of the past in order to be predictive of the future. Sometimes, these networks are trained so

that the parameters defining the network’s dynamics yield optimal predictions of the input

time series, e.g. as in Ref. [2] and references therein. However, much utility has been gained

from using randomly connected networks (or reservoirs) [3–6], where one merely trains the

readout of the network. Such networks can have nearly maximal predictive power if the net-

works are large enough [7]. Such a finding might also imply that perhaps, evolution need not

work so hard to build predictive networks (or sensors) in organisms; rather, randomly wiring

large biological sensors could lead to sufficiently good predictive performance.

Here, we identify a key sensor property without which the sensor has little predictive

power: determinism. Determinism means that the present sensor state and the present input

state uniquely determine the future sensor state. To be clear, the sensors studied in Refs. [3, 4,

6] are deterministic as long as there is no added noise, and so the effect of nondeterminism on
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predictive capabilities of recurrent networks/reservoirs is somewhat unstudied. Interestingly,

we find that the detrimental effects of nondeterminism are compounded rather than mitigated

by large sensor size when the sensor has recurrent connections.

We find numerical and analytical evidence that nondeterminism greatly limits the ability of

a (recurrent) randomly wired sensor to be predictive of its inputs, due to the weak law of large

numbers. For some nondeterministic, randomly wired sensors, there is a finite optimal sensor

size at which predictive power is maximized. This optimal sensor size seems to balance the

larger predictive capacity of larger sensors against a trend towards nonspecificity for input

demanded by the weak law of large numbers.

When the sensors connections are nearly deterministic, then larger sensors are on average

more predictive. Large, deterministic, randomly wired sensors can capture * 10% of the total

predictive information possible. This is comparable to the * 20% of predictive information

captured by sensors whose weights have been (locally) optimized via the BFGS algorithm.

Setup

First, we discuss the model of the environment, which is given by the output of a unifilar Hid-

den Markov model. Then, we discuss the model of the sensor, specifying notation for the

dynamics of a conditionally Markovian discrete-valued sensor. Finally, we describe metrics for

sensor performance: memory; and predictive information captured.

Throughout what follows, we characterize time series and the relations between them via

entropy and mutual information. The entropy of a random variable X with realizations x and

probability distribution Pr(X = x) is given by

H½X� ¼ �
X

x

PrðX ¼ xÞ logPrðX ¼ xÞ; ð1Þ

while the mutual or shared information between a random variable X and a random variable

Y with realizations x and y, respectively, and joint probability distribution Pr(X = x, Y = y) is

given by

I½X;Y� ¼
X

x;y

PrðX ¼ x;Y ¼ yÞ log
PrðX ¼ x;Y ¼ yÞ

PrðX ¼ xÞPrðY ¼ yÞ
: ð2Þ

One can think of entropy as a measure of the uncertainty of a random variable. Maximally

uncertain random variables have a uniform distribution over values, and this maximizes

entropy; minimally uncertain random variables are singly supported, and this minimizes

entropy. One can think of mutual information as a measure of the nonlinear dependency of

two random variables. From the identity I[X;Y] = H[X] −H[X|Y], mutual information is the

reduction in uncertainty about a random variable X that comes from knowing a potentially

related random variable Y. Operational meanings of entropy and mutual information come

from Shannon’s source coding and noisy channel coding theorems [8, 9].

Model of environment

To test the predictive capabilities of sensors, we wish to construct a non-Markovian environ-

ment that is at least somewhat predictable. The non-Markovianity of the environment will

force a predictive sensor to remember longer and longer pasts, while the predictability of the

input will guarantee that remembering the “right” things about environmental pasts leads to

measurable predictive gains. Ideally, it would also be difficult to infer the right predictive fea-

tures, so that the environments provide a challenge for sensors that desire to be predictive of

Infinitely large, randomly wired sensors cannot predict their input unless deterministic

PLOS ONE | https://doi.org/10.1371/journal.pone.0202333 August 29, 2018 2 / 16

https://doi.org/10.1371/journal.pone.0202333


their input. Environments generated by random minimal unifilar Hidden Markov models (or

�Ms [10]) as specified below turn out to satisfy all these requirements.

We consider randomly generated binary-alphabet environments, that is, environments

generated by a randomly-drawn unifilar Hidden Markov model. Here, St is the random vari-

able for the hidden state at time t, while Xt is the random variable for the observed symbol at

time t. An edge-emitting discrete-time Hidden Markov model is specified by a set of internal

“hidden” states σ 2 S, a set of possible observables x 2 X , and a labeled transition dynamic

PrðStþ1 ¼ s0;Xt ¼ xjSt ¼ sÞ. For the purposes of this paper, X ¼ f0; 1g. When S is count-

able, we can represent the labeled transition dynamic by a set of labeled transition matrices

T(x) with elements

TðxÞs0 ;s :¼ PrðStþ1 ¼ s0;Xt ¼ xjSt ¼ sÞ: ð3Þ

A unifilar Hidden Markov model is one such that PrðStþ1jXt ¼ x;St ¼ sÞ is singly supported,

i.e. one for which the current state and symbol emitted uniquely specify the next state. This is a

version of determinism in that the next state is uniquely determined, but the next symbol is

not uniquely determined.

To randomly generate environments, we randomly generate labeled transition matrices T(x)

as follows. In each hidden state σ, we choose
P

s0
Tð0Þs0 ;s (the probability of emitting a 0) uni-

formly at random from the unit interval; this specifies, for binary-alphabet processes,
P

s0
Tð1Þs0;s

(the probability of emitting a 1). We then randomly choose the state to which one transitions

after seeing a 0 and the state to which one transitions after seeing a 1. The fact that there is

only one state to which one transitions after seeing a 0 or a 1 implies unifilarity of the resulting

Hidden Markov model. The states of a minimal unifilar Hidden Markov model are called

causal states [10].

We wish to understand how much memory is required to predict the output of these Hidden

Markov models as well as possible and their predictability. Let X t stand for the past environ-

mental inputs, . . ., Xt−2, Xt−1, Xt. The memory required is characterized by statistical complexity

Cm ¼ H½St� [10], while the predictability is characterized by the total correlation rate

rm ¼ I½X t;Xtþ1� [11] also known as a particular value of the predictive information [12, 13].

As the underlying model grows larger, ρμ seems to tend in probability to * 0.2 nats. These

unifilar Hidden Markov models generate infinite-order Markov processes– that is, a process for

which the next symbol depends to some extent on all previous symbols. However, a process that

is technically infinite-order Markov can still be approximately Markovian [14]. A sensor which

perfectly stores the present observed symbol and nothing else (a Markov model) would capture

a predictive information of I[Xt;Xt+1]. A typical value of I[Xt;Xt+1] for these environments is

0.002 nats when the environment is of size |S| = 30, and so a typical value of I[Xt;Xt+1]/ρμ for

these environments is 0.01. In other words, these environments tend to be strongly non-Mar-

kovian. And finally, the statistical complexity Cμ of these environments tends to be between

2 − 3 nats, indicating that these environments provide a predictive challenge for sensors.

Model of sensor

Fix a realization of the environment, x1, x2, . . .. Let Rt be the random variable denoting the sen-

sor’s state at time t. We consider conditionally Markovian sensors with a finite number of

states and with state space s whose probability evolves according to

PrðRtþ1 ¼ r0Þ ¼
X

r

PrðRtþ1 ¼ r0jXt ¼ xt;Rt ¼ rÞPrðRt ¼ rÞ; ð4Þ
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which we represent in matrix-vector notation as

pðrtþ1Þ ¼ MðxtÞpðrtÞ: ð5Þ

Given its relation to the conditional probability distribution, M(xt) is a transition matrix whose

columns must sum to 1. See Fig 1, in which the arrows between sensor states indicate transi-

tion probabilities and in which the arrow from input to sensor states indicates a dependence of

transition probabilities on input.

Fig 1. The model of the sensor. The input here is binary– either 0 or 1– and the sensor states comprise the set {A, B, C, D, E, F, G}. Different environmental inputs

trigger different transition probabilities between the states of the sensor. These transition probabilities can be large (fat arrows) or small (thin arrows). The sensor

shown here is nearly deterministic given an input of 0, in that each sensor state only transitions to either one or two other sensor states.

https://doi.org/10.1371/journal.pone.0202333.g001
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The present sensor state depends on both the previous environmental symbol and the pre-

vious sensor state, and the recursion leads to the present sensor state depending on arbitrarily

long environmental pasts. By construction, the sensor only understands the future of the envi-

ronment through the past of the environment. In other words, the Markov relation Rt !

X t ! Xtþ1 holds [9], meaning that PrðXtþ1 ¼ x;Rt ¼ rjX t ¼ x Þ ¼ PrðXtþ1 ¼ xjX t

¼ x ÞPrðRt ¼ rjX t ¼ x Þ.

Sensor metrics: Memory and predictive information

We define memory Imem as

Imem :¼ I½Rt; St�; ð6Þ

which is an achievable minimal coding cost of pasts– that is, the minimal amount of space

needed to write down information about said pasts– to retain information about the future

[15]. In terms of the steady-state probability distribution over input causal states and sensor

states pss(r, σ), we have

Imem ¼
X

r;s

pssðr; sÞ log
pssðr; sÞ

pssðrÞpssðsÞ
; ð7Þ

where pss(r) = ∑σ pss(r, σ) and pss(σ) = ∑r pss(r, σ). The memory Imem is 0 only when pss(r, σ) =

pss(r)pss(σ)– that is, when the sensor is nonspecific for the predictive features of its input. Note,

from a standard information theory identity I[X;Y]�H[X], that

Imem � Cm; ð8Þ

and so one’s memory is upper-bounded by the statistical complexity, which is calculable from

pss(σ).

We define instantaneous predictive information (which we call predictive information for

brevity) Ipred as

Ipred :¼ I½Rt;Xtþ1�: ð9Þ

This predictive information corresponds (under some assumptions) to the increase in

expected log growth rate of an asexually reproducing population attainable with a given mem-

ory, and is always an upper bound on the increase in expected log growth rate attainable with a

given memory [16]. In terms of the steady-state distribution pss(r, x) over sensor states and

future inputs, we have

Ipred ¼
X

r;x

pssðr; xÞ log
pssðr; xÞ

pssðrÞpssðxÞ
: ð10Þ

Earlier, causality gave us Rt ! X t ! Xtþ1; and as the hidden states of a unifilar Hidden Mar-

kov model are minimal sufficient statistics of prediction [10], we also have X t ! St ! Xtþ1.

Together, this gives Rt ! St ! Xtþ1, and the Data Processing Inequality [9] therefore reveals

Ipred � Imem: ð11Þ

That is, the predictive information captured is always less than one’s memory. Another appli-

cation of the Data Processing Inequality reveals

Ipred � rm; ð12Þ
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and so the total correlation rate is an achievable upper bound on the predictive information.

To achieve this upper bound, one needs the sensor states to uniquely determine all causal

states σ.

We also define, for reasons that become apparent later on,

I0mem :¼ DKL pssðr; sÞjj
1

N
pssðsÞ

� �

: ð13Þ

This is a measure of the deviation between the steady state distribution over sensor states and

input causal states, pss(r, σ), from the distribution over sensor states and input causal states

were the sensor to be nonspecific for its input and were each sensor state to be equally likely. If

the sensor is nonspecific for its input but if the distribution over sensor states is nonuniform,

then I 0mem will be nonzero. As discussed in Section B in S1 File,

Imem � I 0mem: ð14Þ

As a result, if we can argue that I 0mem tends to 0, we will also have argued that Imem and thus Ipred
tend to 0.

Methods

We wish to calculate the aforementioned sensor metrics. One could simulate sequences of σt,
rt, and xt+1 by using T(x), M(x) to randomly choose future sensor and environmental states, and

then count the number of occurrences of a particular combination of σt, rt, xt+1. In the case of a

large sensor state space, one would ideally use an entropy estimator such as the NSB entropy

estimator [17] to calculate the predictive information, so as to avoid prohibitively long

simulations.

However, we pursue a different approach that leads to an easier calculation of sensor met-

rics and to plausibility arguments that underscore the generality of our results. To calculate

Imem, we wish to find p(rt, σt). To calculate instantaneous predictive information Ipred, we wish

to find p(rt, xt+1). We can get the latter probability distribution, p(rt, xt+1), from the former

probability distribution, p(rt, σt), by exploiting the Markov chain Rt ! St ! Xtþ1:

pðrt; xtþ1Þ ¼
X

st

pðrt; st; xtþ1Þ ð15Þ

¼
X

st

pðrt; stÞpðxtþ1jstÞ: ð16Þ

To find p(rt, σt), we can set up a Chapman-Kolmogorov equation:

pðrtþ1; stþ1Þ ¼
X

rt ;st ;xt

pðrtþ1; stþ1jrt; st; xtÞ

�pðrt; st; xtÞ
ð17Þ

¼
X

rt ;st ;xt

pðrtþ1jxt; rtÞpðstþ1jxt; stÞpðxtjstÞ

�pðrt; stÞ

ð18Þ
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¼
X

rt ;st ;xt

MðxtÞ
rtþ1 ;rt

TðxtÞ
stþ1 ;st

1>TðxtÞ:;st

1>Tðxt Þ
:;st

� �

�pðrt; stÞ

ð19Þ

¼
X

rt ;st

X

xt

MðxtÞ
rtþ1 ;rt

TðxtÞ
stþ1 ;st

 !

pðrt; stÞ: ð20Þ

Eq 20 defines a vector with |R||S| elements and a corresponding transition matrix. The normal-

ized eigenvector of eigenvalue 1 corresponds to the desired pss(r, σ), and then one can calculate

the instantaneous predictive information directly from p(rt, xt+1) via

Ipred ¼
X

rt ;xtþ1

pðrt; xtþ1Þ log
pðrt; xtþ1Þ

pðrtÞpðxtþ1Þ
: ð21Þ

This serves as an alternative to calculating pss(r, σ), and thus Imem and Ipred, through simulation.

Results

There are two parameters that one can play with when designing our randomly wired sensors:

sensor size, given by the number of sensor states N; and the method by which connections

between sensor states are randomly generated.

Using a sensor of size N corresponds to clustering pasts into N clusters: an input past x 

leads to sensor state r with probability pðrj x Þ. When the sensor is not deterministic, these

clusters are soft clusters– that is, pasts are assigned probabilistically to clusters. When sensor

connections are closer to deterministic, these clusters “harden”. From Section A in S1 File, we

then expect the memory and predictive information captured by sensors to increase (but satu-

rate) with increasing sensor size and increasing determinism.

In other words, specification of a randomly wired sensor corresponds to a random soft clus-

tering of pasts into predictive features, though the mapping from the sensor specification to the

clustering of pasts is nontrivial. Despite the presence of such a mapping, specification of a sensor

has one important advantage over specification of a probabilistic clustering of pasts: it is a finite

description of a potentially complicated clustering. More concretely, it is more economical to

specify the optimal predictor (the �M [10]) by input-dependent state transitions, M(x), instead

of the conditional probability distribution of hidden states given input histories, pðrj x Þ.
First, we consider fully nondeterministic, randomly wired sensors for which the columns of

M(x) are independent and identically distributed (i.i.d) draws from a Dirichlet distribution

with concentration parameter~a ¼ a~1. We start with a strange numerical fact. As such sensors

grow in size, when α is sufficiently large, both memory and predictive information tend to

decrease. See Fig 2. In fact, as N grows, p(r|σ) appears to tend to 1

N – that is, the sensor appears

to become nonspecific for its input. In other words, the capacity of a sensor to remember its

input increases as the sensor increases in size, but this capacity is not at all used by fully con-

nected, randomly wired sensors.

We give a plausibility argument for this nonspecificity, which comes down to a statement

about the eigenvector of eigenvalue 1 of the transition matrix between sets of causal states and

sensor states, (σ,r), with elements
P

xt
MðxtÞ

rtþ1 ;rt
TðxtÞ

stþ1 ;st
as described in Methods. This argument is

generalized and expanded upon in Section B in S1 File. There is a unique eigenvector of eigen-

value 1 for these transition matrices by the Perron-Frobenius theorem. We will argue that this
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eigenvector is given in the large N limit by pðs; rÞ ¼ 1

N pssðsÞ where pss(σ) = eig1(∑x T(x))σ. If

pðs; rÞ ¼ 1

N pssðsÞ, then

1

N
pssðstþ1Þ ¼

X

st ;xt

1

N

X

rt

MðxtÞ
rtþ1 ;rt

 !

TðxtÞ
stþ1 ;st

pssðstÞ:

To understand whether or not this is plausible, we focus on simplifying the right-hand side of

this equation. Recall that a Dirichlet distribution in which the concentration parameter vector

takes the form~a ¼ a~1 can be generated by drawing realizations of identical and independently

distributed (i.i.d.) Gamma random variables and normalizing them by their sum. Hence, we

Fig 2. Large, fully nondeterministic, randomly wired sensors are nonspecific for their inputs. As described in the main text, the concentration parameter α
controls the distribution from which transition probabilities in the sensor are drawn. We show hImemi (blue) and hIpredi (red) for three values of α– 1, 3, and 10– as a

function of αN. Both information quantities decrease at varying rates with N and α: roughly 0.1/αN for hImemi, and roughly 0.01/(αN)2 for hIpredi. Corresponding

lines in black dashes are drawn to guide the eye. The environment has total correlation rate ρμ = 0.198 nats and statistical complexity Cμ = 2.205 nats, so the total

memory and predictive information captured by the sensor is maximally three orders of magnitude smaller than the total possible memory and predictive

information captured.

https://doi.org/10.1371/journal.pone.0202333.g002
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can write MðxtÞ
rtþ1 ;rt

¼
Yðxt Þrtþ1 ;rtP

r0
Yðxt Þ
r0 ;rt

where Y ðxtÞr0;rt
have been drawn i.i.d. from a distribution with proba-

bility density function 1

GðaÞ
ya� 1e� y. Then, the sum

P
rt
MðxtÞ

rtþ1 ;rt
¼
P

rt

Yðxt Þrtþ1 ;rtP
r0
Yðxt Þ
r0 ;rt

is the ratio of two

roughly independent Gamma distributions, both with shape parameter Nα and scale 1. The

ratio of two such Gamma distributions is highly peaked at 1 for large Nα. Thus
P

rt
MðxtÞ

rtþ1 ;rt

tends to 1, which then implies that

X

st ;xt

1

N

X

rt

MðxtÞ
rtþ1 ;rt

 !

TðxtÞ
stþ1 ;st

pssðstÞ !
1

N
pssðstþ1Þ

as desired, using
P

st
TðxtÞ

stþ1 ;st
pssðstÞ ¼ pssðstþ1Þ. In other words, when Nα� 1, pðrjsÞ ¼ 1

N

appears to be a reasonable guess for the steady state distribution pss(r|σ). This, in turn, suggests

that Imem tends to 0 with probability 1, which would give Ipred! 0 from 0� Ipred� Imem. An

additional argument given in Section B in S1 File suggests that I 0mem is O 1

Na

� �
, though we

emphasize that this is a plausibility argument rather than a sketch of a proof.

In other words, infinitely large fully-connected randomly-wired sensors are nonspecific for

their inputs, no matter the input. This is true even when concentration parameter~a defining

the sensor stochasticity is input-dependent and state-dependent, as an extension of the plausi-

bility argument given above holds as detailed in Section B in S1 File. For numerical evidence,

see Fig 3.

More generally, we find that the memory and predictive information captured by random

sensors is governed by two trends. Both trends can be described in terms of their effect on the

clusters pðrj x Þ that describe how specifically one can determine an input past x from a sen-

sor state r and vice versa. According to the first trend, information captured tends to increase

with the number of clusters, as detailed by a null model in Section A in S1 File. According to

the second trend, the exponential explosion in possible paths between sensor states given any

particular input past x yields increasing nonspecificity. For small enough α, as shown in

Fig 4, the behavior of memory and predictive information captured by randomly wired sensors

appears to be a balance of these two trends. However, the latter trend for fully nondeterminis-

tic sensors always wins, and so infinitely large, fully nondeterministic, randomly wired sensors

are completely nonspecific for their inputs even though the sensor dynamics are input-

dependent.

How might a large system with unavoidable randomness in its connections avoid the seem-

ingly inevitable march towards nonspecificity for its inputs? After all, large sensors have a large

capacity to predict, in principle, harnessed in Refs. [3, 4]. Is there no way in which randomness

in wiring can be constrained so that this capacity can be harvested?

A clue is provided by consideration of the minimal optimal predictive sensor of the inputs

[10]– the �M, of size N ¼ jRj ¼ jSj. This optimal sensor is constructed so that each r corre-

sponds to a different causal state σ, with transitions MðxÞ
r;r0 ¼ PrðStþ1 ¼ r0jXt ¼ x;St ¼ rÞ.

(When PrðXt ¼ xjSt ¼ rÞ is zero, a particular input word is forbidden, and any MðxÞ
r;r0 can be

chosen.) Note that for this optimally predictive sensor, given a particular input x, a particular

sensor state r can only transition to one other sensor state r0. Minimal optimal predictive sen-

sors, therefore, have a great deal of structure: they are deterministic. Many transitions between

sensor states are forbidden.

Indeed, sensors optimized so as to maximize predictive information using the L-BFGS algo-

rithm are also nearly deterministic. These (locally) optimal sensors tend to make Markov

Infinitely large, randomly wired sensors cannot predict their input unless deterministic
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models of the input, capturing 0.04 nats or 20% of the total predictive information capturable

with jRj ¼ 10 states.

Perhaps unsurprisingly, then, large randomly wired sensors turn out to be specific for their

inputs when the sensor is very close to deterministic. Then,
P

rt
MðxtÞ

rtþ1 ;rt
will not be highly con-

centrated about 1, and the plausibility arguments given above for nonspecificity will fail. To

illustrate this, we consider the case of a sensor in which MðxÞ
r;r0 is, for each initial sensor state r0,

nonzero only for k randomly drawn sensor states r; and in which the probability distribution

over the k nonzero MðxÞ
r;r0 is Dirichlet with concentration parameter α. We see from Fig 5 that

the greater the determinism (i.e. the smaller the k), the higher the average predictive

Fig 3. Large, nondeterministic, randomly wired sensors are nonspecific for their inputs even when the stochasticity is input- and state-dependent. As

described in the main text, the concentration parameter~a describes the random wiring of the sensors. Here, α(x, r) is drawn uniformly at random in the interval [0,

10] for each x. Both average memory and average predictive information decrease with sensor size N. The environment again has |S| = 30 but with ρμ = 0.19 nats

and Cμ = 3.1 nats. The 50% confidence intervals in memory and predictive information decrease with increasing sensor size N, implying that the larger sensors are

increasingly likely to be nonspecific for their input.

https://doi.org/10.1371/journal.pone.0202333.g003
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information; and that, no matter the k, the predictive information captured actually increases

with the size of the sensor. Large, nearly deterministic, randomly wired sensors have variable

values of predictive information, unlike the large, fully nondeterministic, randomly wired sen-

sors as discussed in Section C in S1 File. The average predictive information captured appears

to saturate with increasing sensor size, and as such, the quality of the sensor grows with N but

is fundamentally limited by k. The same trends hold for average memory hImemi, shown in

Fig 6.

Note, however, that if k grows with N such that limN!1 k is infinite, then the plausibility

arguments given before will apply and the infinitely large, randomly wired sensor will be non-

specific for its input. Hence, the sparsity of sensor connections– the number of connections

divided by the number of possible connections– must tend to 0 as the sensor size increases if

an infinitely large randomly-wired sensor is to be at all specific for its input.

Fig 4. Predictive information can increase or decrease with sensor size. We show average predictive information hIpredi as a function of N for α = 0.1, where hIpredi
is estimated from 100 random draws of the sensor. The environment has |S| = 30, and the non-monotonicity of hIpredi with N for this value of α seems to hold

regardless of environment. Error bars indicate 50% confidence intervals.

https://doi.org/10.1371/journal.pone.0202333.g004
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Conclusion

Evolution and scientists have a difficult task: that of creating predictive sensors of time series

input that may contain long-range correlations. One can approach this problem by designing

learning rules that adjust sensor connection weights so as to optimize sensor predictive capa-

bilities. Nondeterministic sensors can result. Alternatively, one can approach this problem by

randomly wiring a sensor and optimizing the sensor readout. We have shown that success of

the latter approach requires determinism or something close to it, in that given a present sen-

sor state and present input, one should be able to transition to only a few sensor states in the

next time step.

One way to conceptualize the sensor’s predictive computation is to view each sensor state

as a cluster of pasts– that is, given a particular input past x , there is a probability pðrj x Þ of

Fig 5. Nearly deterministic, randomly wired sensors capture more predictive information than nondeterministic randomly wired sensors. Nearly deterministic

sensors are randomly generated as described in the main text with α = 3, k as given in the legend, and N as given by the x-axis. 100 sensors are generated at each

possible sensor size N ¼ jRj, and their predictive informations Ipred are averaged to give hIpredi. 50% confidence intervals in hIpredi are given by the error bars. The

environment has |S| = 30, ρμ = 0.23 nats, and Cμ = 2.3 nats, and so these randomly-wired sensors are still only capturing * 10% of the total predictive information

possible.

https://doi.org/10.1371/journal.pone.0202333.g005
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ending up in sensor state r determined in some nonlinear fashion by the dynamics of the input

and the dynamics of the sensor. When a sensor is nondeterministic, these clusters are soft clus-

ters, meaning that a number of sensor states r are possible given a particular input past x .

More sensor states correspond to more clusters, which as shown in Section A in S1 File, tends

to increase memory and predictive information captured. However, an increase in the number

of sensor states provides one with exponentially more pathways from one sensor state to the

next for a particular input past, which on average have equivalent total weights for each input

past. These two competing trends can lead to a nonmonotonic dependence of memory and

predictive information on sensor size. At large enough sensor sizes, the latter trend always

dominates. Hence, infinitely large, fully nondeterministic, randomly wired sensors are increas-

ingly nonspecific for their input. To break the trend towards nonspecificity, one needs to

restrict the number of possible paths between sensor states with determinism.

Fig 6. Nearly deterministic, randomly wired sensors have more memory than nondeterministic randomly wired sensors. Nearly deterministic sensors are

randomly generated as described in the main text with α = 3, k as given in the legend, and N as given by the x-axis. 100 sensors are generated at each possible

sensor size N ¼ jRj, and their predictive informations Imem are averaged to give hImemi. 50% confidence intervals in hImemi are given by the error bars. The

environment has |S| = 30, ρμ = 0.23 nats, and Cμ = 2.3 nats, and so these randomly-wired sensors are only capturing * 25% of the total memory possible.

https://doi.org/10.1371/journal.pone.0202333.g006
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One may well ask what we have learned about optimal sensors from the model presented

here. After all, it is well-known in signal estimation problems that sensor stochasticity is detri-

mental. The interesting twist in our story is that when discussing recurrent sensors, the detri-

mental effects of sensor stochasticity are compounded rather than mitigated by increasing

sensor size. Feedforward sensors correspond to the null model studied in Section A in S1 File,

while recurrent sensors correspond to the eigenvector analysis of the main text.

In essence, we have asked what kinds of random sensor ensembles yield greater predictive

power. This is certainly not the first time that such a question has been asked, e.g. Refs. [7, 18,

19]. Previously studied reservoirs were all deterministic– or rather, the variable that evolved in

a conditionally Markovian manner (e.g., membrane voltages as opposed to neural activities) in

the reservoir computing applications evolved deterministically. As such, our report on the

extremely detrimental effects of nondeterminism on recurrent sensors is new, if perhaps

unsurprising. When sensors are deterministic, one can study the effect of the spectral radius of

the weight matrix used to evolve the sensor state, the sparsity of aforementioned weight matrix,

the function applied to the weight matrix multiplied by the sensor state, and sensor size (as

studied here), among other things.

True determinism in physical systems is impossible [20, 21]. Sometimes, noise can be bene-

ficial to the functioning of biological systems [16, 20, 22, 23], but our work here suggests that

this noise must be tightly controlled when one wants to remember or predict input. For

instance, in a chemical reaction network, too many different possible reactions for a given

environmental forcing (nondeterminism) will lead to a nonspecific response, e.g. sparsity in

random reaction networks was key to the results of Ref. [24]. Our results suggest that given a

particular inherent sensor stochasticity, there is an optimal finite sensor size at which function-

ality (prediction) is maximized. The size of sensors in biological systems, then, might not

always be governed by resource constraints [25–27] but instead governed by degradation of

functionality due to unavoidable noise.
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S1 File. Section A: Random soft clusters in the information bottleneck method. Section B:

Plausibility argument for nonspecificity of large randomly-wired sensors. Section C: Fluctua-

tions in memory and prediction.
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S1 Fig. A null model for the effect of sensor size on predictive power predicts that larger

sensors capture more information. The average information obtained about the relevant var-

iable Y. The various lines correspond to various values of α, as indicated in the legends, and

the x-axis corresponds to variation in the number of clusters N. We chose M = 30.
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S2 Fig. Variability in predictive information decreases with sensor size for fully nondeter-

ministic sensors. On the x-axis is jRj, or N, and on the y-axis is the interquartile range (IQR)

of Ipred. The environment has ρμ = 0.147 nats and Cμ = 2.36 nats, but these results seemed to

hold qualitatively regardless of particular environment.
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