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Abstract
COVID-19 has become a pandemic for the entire world, and it has significantly affected the world economy. The importance
of early detection and treatment of the infection cannot be overstated. The traditional diagnosis techniques take more time in
detecting the infection. Although, numerous deep learning-based automated solutions have recently been developed in this
regard, nevertheless, the limitation of computational and battery power in resource-constrained devices makes it difficult
to deploy trained models for real-time inference. In this paper, to detect the presence of COVID-19 in CT-scan images,
an important weights-only transfer learning method has been proposed for devices with limited runt-time resources. In
the proposed method, the pre-trained models are made point-of-care devices friendly by pruning less important weight
parameters of the model. The experiments were performed on two popular VGG16 and ResNet34 models and the empirical
results showed that pruned ResNet34 model achieved 95.47% accuracy, 0.9216 sensitivity, 0.9567 F-score, and 0.9942
specificity with 41.96% fewer FLOPs and 20.64% fewer weight parameters on the SARS-CoV-2 CT-scan dataset. The
results of our experiments showed that the proposed method significantly reduces the run-time resource requirements of the
computationally intensive models and makes them ready to be utilized on the point-of-care devices.

Keywords Convolutional neural network · Deep learning · Pruning · COVID-19 · Automated diagnosis

1 Introduction

In recent times, millions of people have been infected
worldwide with the COVID-19 pandemic. According to the
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WHO, more than 231M people have been infected with
the COVID-19 to date leading to 4.74M deaths worldwide
[1]. In the USA alone, 42.5M people were infected, and
681K people lost their lives. Moreover, the world’s second-
largest populated country, India, lost 447K lives, and 33.6M
people get infected [1]. COVID-19 infection causes mild to
severe respiratory disease. It is more dangerous for older
persons and those with other disease such as cardiovascular,
diabetes, chronic respiratory illness, and cancer. The most
prevalent COVID-19 symptoms are dry cough, fever, and
fatigue. However, the serious symptoms include loss of
smell and taste, trouble in breathing, chest discomfort,
aches, and pain [2].

A wide variety of tests are available to determine the
presence of COVID-19. Some of the popular test includes
reverse transcription-polymerase chain reaction (RT-PCR)
[3] also known as molecular test, antigen test [4] for rapid
testing, antibody test [5] also known as serology test, and
using radiological images; CT-scan and chest X-ray [6, 7].
The antigen test is faster and inexpensive when compared
to the RT-PCR. It has high false-positive rates and is thus
less reliable. The rapid antibody test looks for antibodies
in the patient’s blood sample. The RT-PCR test is the most
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prevalent test that is utilized for the detection of COVID-
19. If the antibody test along with RT-PCR is positive, it
confirms that the person is COVID-19 positive. However,
one of the main disadvantages of RT-PCR is that it is time-
consuming. The COVID-19 virus spreads quickly; by the
time it gets detected, it can spread to others. The COVID-19
virus can also be detected using chest computed tomography
(CT) scan images. A bilateral change can be observed in
these CT-scan images [7, 8]. Moreover, the examination of
the CT-scan images is challenging, time-consuming, and
requires skilled radiologists. The radiologist’s opinion also
suffers from inter-observer variability [9].

In recent years, computerized medical diagnosis have
gained a lot of attention. In the medical field, artificial
intelligence (AI) methods such as deep learning have been
applied in a variety of diagnosis [10, 11]. In addition, a
convolutional neural network (CNN) is a deep learning
variant capable of learning discriminating properties from
images. CNN has already proven its superior performance
on different classification [12], [13, 14], segmentation [15,
16] and detection [17] applications in the past compared
to the traditional methods. Further, an affordable and acute
medical facility in remote areas is limited due to the
lack of specialized laboratories. Point-of-care devices have
the ability to play an important role in generating quick
diagnosis results in this regard. For practical applications,
deploying the trained deep learning model onto the point-
of-care devices is must for a widespread use. However,
the deep learning models suffer from over-parameterization;
they contain millions of learnable weight parameters and
during inference, perform a lot of floating-point operations
(FLOPs) [18]. When these models are utilized for transfer
learning, their generalization performance on medical
datasets becomes poor. Hence, this limits their deployability
on the point-of-care devices as the deep learning models
need an adequate amount of resources to execute the trained
model, i.e. computational, battery power, and memory [19,
20]. Another issue with deep learning models is that they
were trained on the massive ImageNet dataset containing
1.2 million images from 1000 classes. However, the datasets
in the medical field contain less number of classes.
Therefore, a lot of weight parameters become redundant
and less important in the network and it also results in low
generalization. As a result, it is important to reduce run-time
resource requirements before deploying trained models onto
point-of-care devices. In this regard, filter pruning [21–23]
has become a popular technique for reducing the amount of
computational and battery power required during inference
and improving the overall inference performance.

Owing to the ability of the deep learning models to
perform superior in various automated medical diagnosis,
the advantages of bringing intelligence to point-of-care

devices and their limited resource ability motivated us
to develop an inference efficient method for COVID-
19 classification. Particularly, in this paper, we proposed
an important weights-only transfer learning approach to
automatically classify the CT-scan images as COVID-19
infected or not in the context of point-of-care devices. We
propose to prune less essential filters from the convolutional
layers to lower the insignificant weight parameters of the
pre-trained models. Thus, while training the models on the
CT-scan dataset only important weight parameters are used
and CT-scan images are then classified using the pruned
models. The proposed method is significantly different from
[18, 21, 22], and [23]. The work presented in [18] is
similar to ours, the authors worked on pruning the smaller
weight filters from the convolutional layers. However, in
contrast to [18] wherein the authors worked with invasive
ductal carcinoma (IDC) dataset for classifying breast cancer
images. In our research, we evaluate the performance of the
proposed approach on the SARS-Cov-2 CT-scan dataset.
Further, in [18] the authors worked with 50×50×3 images,
whereas the SARS-Cov-2 CT-scan dataset has relatively
higher dimension images. In [21], the authors utilized batch
normalization parameters to find the unimportant filters.
However, according to [21], to identify the weak filters,
the model needs to be trained from the scratch and thereby
limits its applicability for the standard pre-trained networks.
In another words, the pruning of pre-trained networks
require retraining on the ImageNet dataset. Unlike [21],
there is no such restriction with the proposed method.
Moreover, the proposed approach differs from [22], where
the authors represent pruning as an optimization problem
and prune the filters depending on the next layer’s statistics
instead of the current layer. We believe that pruning the
filters based on the current layers’ filter statistics is more
significant. The authors of [23] proposed asymptotic soft
filter pruning in which the filters are set to zero before first
training epoch and during the retraining, the authors devise
an strategy to update the previously pruned filters. The same
procedure is repeated for the rest of the training epochs. This
also requires model to be trained from scratch to identify
the pruning candidates. Moreover, setting filter weights to
zero does not completely remove the filters and makes the
network sparse. In contrast, our method is aimed at finding
the pruning candidate filters and completely removing the
filters and their respective feature maps. Following are the
main contributions of the paper:

• A novel important weights-only transfer learning approach
for the classification of COVID-19 CT-scan images.

• We proposed transferring only the significant weights
to decrease the models’ run-time resource requirements
by pruning the least important weights.
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• To identify the less important filters of the model, we
evaluate the importance of each filter based on their
absolute sum.

• Performed multiple experiments with both the models;
unpruned pre-trained models and the pruned. The
experiments were performed on the SARS-CoV-2 CT-
scan dataset [24], and the experimental results indicate
the superiority of the work presented here.

This paper has been organized as follows. Section 2
presents the related work wherein the various deep learning
methods proposed for the classification of COVID-
19 are summarized. Section 3 provides the detail of
the proposed important weights only transfer learning
approach. The experiments performed to validate the
method’s effectiveness, dataset & models used, their results,
and analysis is elucidated in Section 4. Finally, the
discussion on the proposed methods and conclusion is
included in Sections 5 and 6, respectively.

2 Related work

This section contains the details of the existing research
methods wherein the authors show the need to ship the
deep learning models on resource-limited devices. Further,
the section also provides an overview of the important
transfer learning and filter pruning methods as the proposed
work is based on these, followed by a review of the
existing research methods proposed for COVID-19 CT-
scan image classification. The popularity of the deep
learning methods has opened tremendous opportunities for
researchers to extend their uses for on-device practical
applications on resource-limited devices. In recent years,
there is a growing demand to move the inference step from
high computing machines to resource-limited devices [25].
In this context, deploying trained deep learning models on
resource-limited devices is becoming more prevalent for
a variety of applications [26, 27]. Multiple studies have
shown the need and importance of deploying deep learning
models on point-of-care devices as well [28, 29]. However,
due to a large number of multiply and accumulate (MAC)
operations and memory access operations, a typical deep
learning application can quickly exhaust resource-limited
device [30]. In [31], the authors show that deep learning
architectures contain enormous parameters, requiring large
storage space and computational resources.

Transfer learning plays an important role to improve
the performance of the deep learning models wherein the
knowledge learned by the model trained on the source
domain is applied to a target domain. The research has
shown that transfer learning significantly enhances model

performance. In [13] and [18] it was found that the model
trained using transfer learning performed superior compared
to the model trained from scratch. Apart from transfer learn-
ing, in recent years, to improve the inference performance
of the deep learning models, filter pruning has emerged as
an important technique [32]. The researchers have shown
that pruning not only speeds up the inference performance
but also reduces overfitting problems and helps the model in
learning clear and expressive features. In a research [33], the
author proposed a flexible-rate pruning method to compress
and accelerate the trained models in which to identify the
filters to be pruned, the authors employ a greedy-based strat-
egy and execute an iterative loss-aware pruning procedure.
In another research [34], the authors argue that the filters are
affected by other filters, therefore, only the magnitude is not
enough to decide the importance of the filters. The authors
proposed a meta-attribute-based pruning method in which
the geometric distance of filters is considered as a pruning
criterion. The method of [35], pruned the filters by calcu-
lating the learned representation median in the frequency
domain in contrast to the existing method that prunes less
important filters in the spatial domain. In short, there are
various filter pruning methods to accelerate and compress
the deep learning models, however, there are limited studies
evaluating and analyzing pruning methods in the context of
point-of-care devices.

Moreover, the deep learning model has shown out-
standing results in classifying CT-scan images over tradi-
tional machine learning methods. In a research [36], the
authors proposed a multi-modality medical image diagnosis
approach using deep neural networks. The non-subsampled
contourlet transform (NSCT) domain method was used to
construct multi-modality images. In another research [37],
the authors proposed automatic segmentation and classifi-
cation method for COVID-19 CT-scan images. The authors
used a total of 1069 images for training and 150 images
were used for validation and testing. The U-Net model was
compared for segmentation and the AlexNet, DenseNet,
ResNet50, InceptionV3, VGG16, VGG19, and EfficientNet
were compared with the proposed architecture for classifi-
cation. The segmentation architecture performed better than
U-Net and obtained 88% accuracy, while the classification
architecture achieved 94.67% accuracy. In a research [38],
the authors proposed a transfer learning-based classifica-
tion approach for the detection of COVID-19 from CT-scan
images. The experiments were performed on a total of 2492
images. A pre-trained DenseNet201 architecture was used
as a base model. The authors also compared the results
with other CNN architectures; VGG16, InceptionResNet,
and ResNet152V2. The DenseNet model outperformed
other CNN models and obtained 96.25% accuracy on the
test dataset. In one of the research [39], a multi-objective
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differential evolution-based approach was proposed to clas-
sify COVID-19 CT-scans. Compared to the other methods,
the proposed approach achieved 1.97% better accuracy.

The authors of the research [40] proposed an automated
classification approach using an ensemble of densely
connected convolutional networks. An ensemble model was
trained using ResNet152V2, DenseNet201, and VGG16
models. The authors found that compared to the other
methods, the proposed method obtained 1.27% improved
accuracy. In another study [41], machine learning, deep
learning, and texture analysis based approaches were
compared for early diagnosis. Along with texture analysis
methods, support vector machines (SVM) and K-nearest
neighbors (KNN) were implemented. Moreover, a 23-
layer custom CNN was also trained other than pre-
trained AlexNet and MobileNetV2. In a study [42],
the authors proposed a stacked ensemble of pre-trained
CNN architectures. The authors implemented four different
architectures and performed extensive experimentation
with the stacked ensemble. The proposed model achieved
90.75% accuracy. Similarly, in another study [43], the
authors proposed a stacked ensemble-based method and
claimed higher recall. The proposed method achieved 94%
accuracy and 0.98 recall.

In one of the research [44], a combination of transfer
learning with the U-Net segmentation architecture was
proposed to classify the SARS-Cov-2 CT-scan dataset.
The pre-trained DenseNet-169 on U-Net segmented data
achieved 89.92% classification accuracy. In a research [45],
the authors proposed a novel redesigned framework from
existing COVID-Net along with contrastive learning for
enhanced training. The proposed method achieved 90.83%
accuracy. In another research [46], a transfer learning-based
DenseNet-121 architecture was proposed and achieved 92%
accuracy. The authors of [47] also proposed a transfer
learning-based method to classify the COVID-19 CT-scan
images. The authors also implemented grad-CAM based
color visualization to interpret the predictions. The method
achieved 95.61% accuracy. From the study of the existing
methods, it was found that none of the existing methods
were designed to address the constraints of the resource-
limited devices. On the other hand, our proposed approach
aims at reducing the inference-time requirements of the
models to enable faster and acute diagnosis in resource-
limited devices.

3Methodology

This section elucidates the details of the proposed impor-
tant weights-only transfer learning approach. The overall
method can be divided into different parts; pruning, fine-
tuning, and training. In a nutshell, first, we propose to

prune the filters that are least important from the con-
volutional layers. The pruned models were then retrained
using the ImageNet dataset in the second part of the study.
Finally, the resulting fine-tuned models were then used for
training and testing on the SARS-CoV-2 CT-scan dataset.
Figure 1 shows the overall pruning, fine-tuning, and train-
ing pipeline. Further, the main contributions of the proposed
work includes: 1) A novel important weights-only transfer
learning approach for the classification of COVID-19 CT-
scan images. 2) To reduce the models’ run-time resource
requirements, we proposed transferring only the significant
weights by pruning the least important weights. 3) In order
to identify the less less important filters of the model, we
evaluate the importance of each filter based on their absolute
sum. 4) The effectiveness of the proposed work is vali-
dated through multiple experiments with both the models;
unpruned pre-trained models and the pruned. The experi-
ments are performed on the SARS-CoV-2 CT-scan dataset
[24]. The following subsections contain the details of the
proposed methodology.

3.1 Step I: prune the least important filters

Convolutional filters are the backbone of any CNN architec-
ture. However, in earlier research, it is found that not all
filters are essential, and the removal of a few filters can be
done without a significant accuracy loss [48]. In this con-
text, filter pruning has become popular in recent years. It
does not necessitate any model architectural changes. The
resulting model can be deployed without requiring any addi-
tional hardware or software for acceleration. Particularly in
our research work, a layer-by-layer filter pruning was per-
formed. One of the important tasks in filter pruning is to
assess the filters’ importance. The filter’s magnitude, impact
on loss/error, and batch normalization parameter can all be
used to evaluate the filter’s relevance. Different approaches
can find distinct pruning filters. In order to determine the
optimal criterion, we conducted several experiments. To
find the number of pruning candidate filters using the batch
normalization parameter, the model needs to be trained from
the scratch. There are already pre-trained models on the
ImageNet dataset, hence, training from scratch makes it
computationally expensive. In a different experiment, the
filters were pruned based on their impact on the loss/error
to determine whether the removal of the filters increases or
decreases the loss/error. We found that pruning the filters
based on their impact of the loss/error is a time-consuming
process. It requires the model to be trained after the removal
of each filter. The magnitude of the weight parameters
impact filters activations. The filter with a smaller mag-
nitude generates weaker activation. Hence, we considered
small magnitude (absolute sum) filters less important than
the filters with larger magnitude.
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Fig. 1 Proposed important
weights-only transfer learning
approach

ImageNet trained Model

Identify and prune lesser importance
weight parameters (filters)

Fine-tune the pruned model

Train pruned and fine-tuned model

Deploy storage and computationally
efficient model on point-of-care

devices

Initialize fine-tuning parameters

Train and test on the SARS-CoV-2
dataset

Get convolutional layer weights

Find absolute sum for each layer,
arrange the filters in descending order

of absolute sum

Initialize fine-tuning parameters

Train and test on the ImageNet
dataset

Prune low ranking filters according to
user-defined threshold

COVID Positive/Negative

Inference

Each convolutional layer k in the model produces the
output as A(u×v×c), where u, v, and c correspond to the
height, width, and the channels, respectively. The generated
output A(u×v×c), works as an input for the k + 1 convolu-
tional layer. Each convolutional filter generates one feature
map when all the feature maps are combined they pro-
duce the feature maps of size A(u×v×c). In the proposed
approach, filters that fail to meet the evaluation criterion
were pruned since the objective was to remove the less sig-
nificant filters from the trained model. Further, we employed
a binary masking approach to designate whether or not any
filter in the layer would be pruned. All the filters of the layer
were first sorted in decreasing order by their absolute sum.

The aim of the research was to create an optimal model
for point-of-care devices with the minimal number of
convolutional filters while least compromising the model
performance. Let No represent the original model, Np

represent the pruned model and No has K convolutional
layers, the kth layer is given by k[l], and l ∈ (1, 2, . . . , K).
The number of filters for layer k[l] is ns and the generated
activation map is given by Qmap. The activation Qmap

works as input for the subsequent layer. Further, Gk[l] =
[g1, g2, . . . , gns ] represent the set of filter for layer k[l].

The original model weights of layer k[l] is W
k[l]
o =

[w1, w2, . . . , wns ] and pruned model weights of the k[l]
layer is W

k[l]
p = [p1, p2, . . . , pnr ], ns �= nr . For dataset

D = (xi, yi)
N
i=1 and a pruning threshold pt , the filter

pruning problem is formulated as:

min
G

L(G;D) (1)

= min
G

1

N

N∑

i=1

L(G; (xi, yi)) (2)

In (2), L(.) is the standard cross entropy loss. If the �1-
norm or the absolute sum of filter gi is given by γ and
γ ∈ R, the norm of filters gi is ‖γ ‖ and defined as.

‖γ ‖ =
c∑

i=1

a∑

j=1

b∑

e=1

‖Wi,j,e‖ (3)

For every γ , ‖γ ‖ ≥ 0 for all γ ∈ R, and ‖γ ‖=0 iff γ=0.
Let U = [u1, u2, ............, uns ] represent the relative filter
index for layer k[l] and U ∈ (0, 1). The set of filters of the
layer are ranked in descending order according to their absolute
sum. Then, the pruning threshold pt finds the number of
filters to be pruned (X) for each layer, If ‖γgi

‖ is than
‖X[v]‖, where v=0, the relative filter index U is to zero
otherwise to one as

Uns =
{
0 if ‖γgi‖ < ‖X[v]‖
1, otherwise

(4)

The filters index with value zero are less important and will
be pruned, while those with value one will be preserved. In
the proposed work, the filters whose corresponding index in
U were zero, pruned from the model and a new architecture
is created, and the weighs are copied from model No to Np

for the remaining filters. Further, the identified candidate
pruning filters were then pruned in a single pass from the
layer. For each of the convolutional layers, this process was
repeated. When a filter from the layer k was pruned, the
activation map associated with that filter was also pruned,
resulting in reducing the #channels for the k + 1 layer.

3.2 Step II: re-train prunedmodels

The pruning of convolutional filters from the model leads to
performance degradation. Therefore, it is required to re-train
the pruned architecture on the original dataset before apply-
ing transfer learning. In this regard, before training the result-
ing pruned architectures on the CT-scan dataset, the result-
ing architectures are re-trained on the ImageNet dataset with
standard data splits. The pre-trained models were used from
the PyTorch deep learning framework. After pruning, during
fine-tuning the pruned models, standard hyper-parameters
were used for training and testing purposes.

3.3 Step III: training on the COVID dataset

After pruning and fine-tuning the pre-trained models, the
SARS-CoV-2 dataset was utilized for training and testing
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the pruned models. The process of training pre-trained
models on another dataset is referred to as transfer learning.
Since we transferred only important weights of the pre-
trained models, we called this an important weight-only
transfer learning. The models were trained with data splits
discussed in Section 4.1. On the SARS-CoV-2 dataset, we
conducted various experiments with the unpruned models
and the ImageNet re-trained pruned models. The base and
re-trained models were trained and tested in the following
ways.

• Training the entire model (both original and the pruned
& fine-tuned) on the SARS-CoV-2 dataset.

• Training the last layer of the model (both pruned & fine-
tuned and the original) on the SARS-CoV-2 dataset.

• Training the entire dense layers on the SARS-CoV-
2 dataset (both VGG16 original and the pruned &
fine-tuned).

4 Experimental setup and results

This section includes the detail of the dataset, CNN
models, experimental setup, and evaluation metrics used to
perform the experiments and measure the performance of
the original & the pruned models.

4.1 Dataset

Deep learning algorithms require a large amount of labelled
data to learn the distinguishing characteristics from images.
In our study, we used a publicly available SARS-CoV-
2 CT-scan dataset [24] to validate the effectiveness of
the selective transfer learning method. The SARS-CoV-2
dataset comprises 2482 images. Out of the 2482 images,
1252 belong to the COVID-19 infected, and 1230 images
belong to the COVID-19 non-infected class. The dataset
was prepared by collecting images of actual patients in the
hospital in Sao Paulo, Brazil. Figure 2 shows some random
COVID-19 positive as well as COVID-19 negative images.
The dimension of the images in the dataset is 224×224. The
dataset is available for download from the link 1. As shown
in Table 1, the dataset was divided into three parts as 68%
training, 17% validation, and 15% testing.

4.2 CNNmodels used

The experiments were performed on two CNN classification
models, VGG16 and ResNet34. VGG16 [49] is a popular
CNN architecture that achieved 92.7% top-5 test accuracy in

1https://www.kaggle.com/plameneduardo/sarscov2-ctscan-dataset

ILSVRC 2014 challenge on the ImageNet dataset. VGG16
consists of convolutional, dense, and pooling layers, 3 ×
3 filters for convolutional and 2 × 2 for max pooling,
respectively. The model accepts 224 × 224 input images
followed by two convolution layers with 64 filters and
a max pooling to reduce the output height and width to
112 × 112 × 64. Further, two convolutional layers with
128 filters are used, followed by a max pooling layer that
reduces the activation size to 56 × 56 × 128. Similarly,
three convolutional layers with 256 filters are followed by
a pooling layer that reduces the output activation to 28 ×
28×256. Finally, there are two stacks of three convolutional
layers with 512 filters, separated by pooling layers. Next,
dense layers with 4096 nodes accept the output of the
last pooling layer which is 7 × 7 × 512. The dense layer
is followed by one more dense layer with 4096 nodes.
Finally, the model has the softmax layer with 1000 nodes.
ResNet34 [50] is another well-known architecture that
performed better than VGG16 in ILSVRC challenge in the
year 2015 and also archived first place in the competition.
The ResNet34 design is made up of four residual blocks and
is based on skip connections. The first block comprises six
convolutional layers, each of which has 64, 3 × 3 filters.
Eight convolutional layers and 128, 3 × 3 filters make up
the second block. 256, 3 × 3 filters are used in the third
block, consisting of 12 convolutional layers. The final block
consists of six convolutional layers with 512 filters. Finally,
it is followed by an average pooling and a softmax layer
with 1000 nodes.

4.3 Evaluationmetrics

The standard evaluation metrics were used to validate the
performance of the CNN models. The evaluation metrics
used in the experiments were confusion matrix, accuracy,
precision, F1-score, recall/sensitivity, and specificity. The
different evaluation metrics are defined as: (In the below
equations, FN = false negatives, TN = true negatives, TP =
true positives, FP = false positives).

Confusion matrix: The confusion matrix is one of the
important evaluation metrics to measure the performance of
binary classification problems. It measures the performance
by comparing the actual values and the predicted values.
When the actual sample is positive/negative and the model
classifieds it as a positive/negative, it is known as true
positive (TP) and true negative (TN), respectively. When
the actual sample is negative (a person does have COVID),
and the model predicted it as positive, it is known as a false
positive (FP). Finally, if the actual sample is positive (a
person has COVID) and the model predicted it as negative,
it is known as false negative (FN).

https://www.kaggle.com/plameneduardo/sarscov2-ctscan-dataset
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Fig. 2 COVID-19 positive
(bottom row) and negative (top
row) images from the dataset

COVID negative

COVID positive

Accuracy: Accuracy is defined as the total number of the
correct classification made by the model to the total number
of samples in the dataset. It is the most widely used
evaluation metric to evaluate the classification performance
and it is given by

accuracy = T P + T N

T P + T N + FP + FN
(5)

Precision: Precision is the ratio of the correct positives
samples identified by the model out of the total number of
positive predictions made by the model. The precision value
ranges from zero to one; if the model does not have any false
positives (FP = 0), it will always have a precision of one.

precision = T P

T P + FP
(6)

Sensitivity or recall: Sensitivity or recall is defined as the
measure of what proportion of actual positives are identified
correctly. If the model has no false negatives (FN = 0),
then the recall will be one, which states that all the actual
positives samples were classified correctly.

sensitivity/recall = T P

T P + FN
(7)

Specificity: It is the ratio of the total true negatives
identified by the model to the sum of true negatives and false
positives. It is given by

Specif icity = T N

T N + FP
(8)

Table 1 Normal and infected images from the SARS-CoV-2 CT-scan
dataset

Class Training Validation Testing Total Images

Normal 836 208 186 1,230

Infected 851 212 189 1,252

Total 1,687 420 375 2,482

F1-score: The harmonic mean of precision and recall is used
to calculate the F1-score. The value of the F1-score also
varies between zero and one, where the values close to one
are considered best. F1-score is defined as

F1 − score = 2 × recall × precision

recall + precision
(9)

ROC curve: The receiver operating characteristic (ROC) curve
is another important metric to measure the performance
of binary classification problems. ROC curve is plotted
between the true positive rate (y-axis) and false-positive rate
(x-axis) for varying thresholds between zero and one.

4.4 Training VGG16 and ResNet34
on the SARS-CoV-2 dataset

The PyTorch deep learning framework was utilized to
implement the experiments. NVIDIA DGX-1 V100 super-
computer was used as computing power. The initial exper-
iments were performed on the VGG16 pruned and original
model. The following were the hyper-parameters that were
utilized for training, validating, and testing. The models
were trained for 200 epochs using a 0.001 learning rate. The
training was carried out with a 0.9 momentum stochastic
gradient descent (SGD) optimizer. All of the images were
normalized before being fed into the model. The images
were presented to the model in a mini-batch size of 32. In
addition, the images were resized to 256 × 256 and were
center cropped at 224 × 224. Further, the experiments were
also performed with and without data augmentation on orig-
inal and pruned models. Random horizontal flip, random
vertical flip, and 20-degree random rotation were mainly
applied to the training images. Two experiments were car-
ried out on the ResNet 34 model, one to train only the last
softmax layer and the other to train the entire model. The
VGG16 model, on the other hand, was subjected to three
sorts of experiments: training entire layers, dense layer, and
the last layer. As given in Table 1, the dataset was split into
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Table 2 Different performance measures for the ResNet34 and VGG16 on the test data (original pre-trained models)

Model trained Augmentation Accuracy Precision Recall F1-score Specificity ROC-AUC

ResNet34 No 95.73 0.9471 0.9676 0.9572 0.9474 0.9931

ResNet34 Yes 97.87 0.9947 0.9641 0.9792 0.9944 0.9967

VGG16, dense No 90.13 0.9206 0.8878 0.9039 0.9162 0.9667

VGG16, dense Yes 89.87 0.9471 0.8647 0.9040 0.9405 0.9797

VGG16, all No 90.40 0.9153 0.8964 0.9058 0.9121 0.9660

VGG, all Yes 96.53 0.9630 0.9681 0.9655 0.9626 0.9957

training, validation, and test in the ration of 68%, 17%,
and 15%, respectively. The result of training the original
and pruned models on the SARS-CoV-2 CT-scan dataset
are summarized in Tables 2, and 3, respectively. A detailed
discussion of the result is given in the next section.

4.5 Results

The results of all the experiments utilizing the SARS-CoV-
2 dataset are discussed in this section. The section also
contains the detail of the comparative study, complexity
analysis, and statistical test. In this study, first, the
experiments were performed with the pertained deep
learning models VGG16 and ResNet34. Table 2 details the
various evaluation metrics calculated after using test data
on trained models. Table 2 shows that when the complete
model was trained with data augmentation, the VGG16
model achieved higher accuracy. In this case, the model
achieved 0.9630 precision, 0.9681 sensitivity, 0.9655 F1-
score, 96.53% accuracy, 0.9626 specificity, and 0.9957
AUC. The ResNet34 model achieved higher accuracy when
the entire model was trained with data augmentation. In
this case, the model achieved 0.9947 precision, 0.9641
sensitivity, 0.9792 F1-score, 97.87% accuracy, 0.9944
specificity, and 0.9967 AUC.

Table 3 shows the detail of different evaluation metrics
calculated after applying test data on the pruned models.
The pruned version of the VGG16 achieved 93.07%
accuracy, 0.9223 sensitivity, 0.9319 F1-score, and 0.9396
specificity, and 0.9744 AUC. On the pruned version of
the ResNet34 model 95.47% accuracy, 0.9216 sensitivity,

0.9567 F1-score, 0.9942 specificity, and 0.9974 AUC
was achieved. In addition, for the ResNet34 and VGG16
models, Figs. 3 and 4 illustrate the confusion matrix, ROC
curve, and precision-recall curve, respectively. On the basis
of #parameters, #FLOPs, and accuracy, in Table 4 we
compared the original & pruned VGG16 and ResNet34
models. It is evident from Table 4 that the pruned VGG16
has 41.66% less weight parameters, and the #FLOPs also
reduced by 77.47%. On the other hand, ResNet34 pruned
model has 20.64% less weight parameters, and the #FLOPs
were also reduced by 41.96%.

4.6 Complexity analysis

The complexity of the proposed work was analyzed based
on the time taken to classify the single image and the
whole test set. For this, the pruned and original models
were deployed on GPU & CPU. In addition, the complexity
of the VGG16 model was assessed based on the number
of parameters, and the FLOPs decreased layer-by-layer.
Table 5 shows the inference time of the VGG16 and
ResNet34 pruned and original models on CPU & GPU.
It should be noted here from Table 5 that the pruned
models have significant improvement in the inference time
compared to the original models. Further, the test set was
applied 50 times to record the inference time and the average
was taken. The CPU and GPU inference time of the models
for a single image and an entire set is shown in Figs. 5
and 6, respectively. It is also evident from Figs. 5 and 6
that the CPU and GPU time is less for the pruned models.
Table 6 compares the complexity of the pruned and original

Table 3 Different performance measures for the ResNet34 and VGG16 on the test data (pruned models)

Model trained Augmentation Accuracy Precision Recall F1-score Specificity ROC-AUC

ResNet34 No 94.93 0.9312 0.9670 0.9488 0.9326 0.9888

ResNet34 Yes 95.47 0.9947 0.9216 0.9567 0.9942 0.9974

VGG16, dense No 89.33 0.8730 0.9116 0.8919 0.8763 0.9669

VGG16, dense Yes 89.33 0.8889 0.8984 0.8936 0.8883 0.9698

VG16, all No 93.07 0.9418 0.9223 0.9319 0.9396 0.9744

VG16, all Yes 92.80 0.9630 0.9010 0.9309 0.9595 0.9878
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Fig. 3 The confusion matrix,
precision-recall curve, and ROC
curve for the VGG16 original
(left) and pruned (right) model

VGG16 models in terms of weight parameters and FLOPs.
The 13 layers of the VGG 16 model are divided into five
blocks, where each block further follows the pooling layer.
While counting the FLOPs, addition and multiplication
were considered as a single operation. The pruned model
contains fewer FLOPs and weight parameters, resulting in a
considerable improvement in model inference performance,
as shown in Table 6.

4.7 Paired statistical test

The inference-time was used as a dependent variable in a
paired statistical t-test to validate the performance of the
VGG16 and ResNet34 original and pruned models. The
mean inference-time difference between the original and

pruned models before and after pruning was compared
using a paired sample t-test. For this, the hypotheses were
established (null and alternate). The null hypothesis was that
the mean inferencetime of the original and pruned models
was the same (H0 : μo = μp). The mean inference-time
of the two models was not the same under the alternate
hypothesis H1 : μo �= μp. The inference-time of the
original and pruned models was determined by evaluating
them on the test set with various test set splits. The test set
was split into one, two, three, four, five, and ten equal parts.
On each test split, the original and pruned models were
evaluated, and the model inference time was recorded. α

was set to 0.05 as the significance level. The VGG16 model
had a p-value of less than 0.001 and a t-value of 4.504. There
is sufficient evidence to reject the null hypothesis because
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Fig. 4 The confusion matrix,
precision-recall curve, and ROC
curve for the ResNet34 original
(left) and pruned (right) model

the p-value is smaller than alpha. The ResNet34 model has
a t-value of 2.735 and a p-value less than 0.001. With alpha

= 0.05, the ResNet34 model has a lower p-value, indicating
that there is enough evidence to reject the null hypotheses.

4.8 Comparison with other methods.

The proposed method was compared with existing state-
of-the-art methods [24, 38, 42–47, 51] and the results

Table 4 Pruned and original model comparison, Augmentation = Aug, Million = M, Billion = B

Original Pruned

Model Aug. Para (M) FLOP (B) Acc. Para (M) FLOP (B) Acc. %Para ↓ %FLOP ↓ Acc(±)

ResNet34 No 21.28 3.67 95.73 16.89 2.13 94.93 20.64 41.96 -0.80

ResNet34 Yes 21.28 3.67 97.87 16.89 2.13 95.47 20.64 41.96 -2.40

VGG16, dense No 134.26 15.49 90.13 78.33 3.49 89.33 41.66 77.47 -0.80

VGG16, dense Yes 134.26 15.49 89.87 78.33 3.49 89.33 41.66 77.47 -0.53

VG16, all No 134.26 15.49 90.40 78.33 3.49 93.07 41.66 77.47 2.67

VG16, all Yes 134.26 15.49 96.53 78.33 3.49 92.80 41.66 77.47 -3.73
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Table 5 Inference time (seconds), #parameters, FLOPs, and filters of the models

Original model Pruned model

Metric VGG16 ResNet34 VGG16 ResNet34

Parameters (M) 134.26 21.28 78.33 16.89

Parameter reduction (%) 0 0 41.66 20.64

FLOPs (B) 15.49 3.67 3.49 2.13

FLOPs reduction (%) 0 0 77.47 41.96

Convolutional filters 4224 8512 2073 7362

Convolutional filter reduction (%) 0 0 50.92 13.51

GPU inference-time, single image (s) 0.005219 0.004637 0.004154 0.004250

GPU inference-time, test set (s) 1.957030 1.738801 1.557787 1.593882

CPU inference-time, single image (s) 0.158153 0.058811 0.056285 0.040023

CPU inference-time, test set (s) 59.307411 22.054049 21.106688 15.008648

are presented in Table 7. The authors of the research
[42] proposed a stacked ensemble of heterogeneously pre-
trained CNN models. The ensemble model was created
by the combination of VGG19, ResNet101, Densenet169,
and WideResNet50-2. No data augmentation was applied
on the SARS-CoV-2 CT-scan dataset. As a result, the
model failed to achieve good classification accuracy. The
authors achieved 91.5% accuracy, 0.915 sensitivity, and
0.915 F-score. In addition, [43] also proposed a stacked
ensemble method. The authors claimed that the stacked
ensemble method achieved higher recall and accuracy.
The authors achieved 94% accuracy, 0.98 sensitivity, and
0.94 F-score. The methods proposed by [42] and [43]
did not make any optimization and were less suitable
for the point-of-care devices. The authors of the research
[44] concluded that the combination of transfer learning
with segmentation methods such as U-Net improves the
classification performance. Transfer learning with U-Net
architecture outperformed other state-of-the-art transfer
learning-based CNN methods. Without segmentation, the
authors achieved 89.31% accuracy, 0.8240 sensitivity,
0.8860 F-score, and 0.9634 specificity. On the other
hand, the authors achieved 89.92% accuracy, 0.8680
sensitivity, 0.8967 F-score, and 0.9309 specificity with the

Fig. 5 Inference time (CPU and GPU) for single image

segmentation scheme. However, both the schemes failed to
achieve competitive performance.

Moreover, [38] also proposed a transfer learning-based
approach for SARS-CoV-2 CT-scan classification. Particu-
larly, the authors worked with the VGG16 and DenseNet201
models. The accuracy, sensitivity, F-score, and specificity
for the VGG16 model were 95.45%, 0.9523, 0.9549, and
0.9567, respectively. The accuracy, sensitivity, F-score,
and specificity achieved by the DenseNet201 model were
96.25%, 0.9629, 0.9629, and 0.9621, respectively. The
results of the research [38] were improved compared to the
other methods. However, the storage, energy, and compu-
tational requirement of the pre-trained models were high.
Hasan et al [46] worked with the DenseNet121 convo-
lutional architecture and obtained 0.95 sensitivity, 0.89
F-score, and 92% accuracy. The authors of the research
[45] proposed a redesigned COVID-Net for improved per-
formance along with the objective of contrastive learning
for cross-site learning. The authors achieved 90.83% accu-
racy, 0.8589 sensitivity, and 0.9087 F1-score. Angelov and
Almeida Soares [24] worked with the GoogleNet, ResNet,
and AdaBoost methods. AdaBoost achieved higher accu-
racy compared to GoogleNet and ResNet. However, the

Fig. 6 Inference time (CPU and GPU) on the entire test set for all the
models
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Table 6 VGG16 model complexity analysis

Convolutional block and layers Before pruning After pruning Reduction

Block Filter, Layer Parameters FLOPs Parameters FLOPs %Para red %FLOP red

Conv block 1 64, 2 38720 1952448512 8374 424589312 78.37 78.25

Conv block 2 128, 2 221440 2782560256 40822 514002944 81.57 81.53

Conv block 3 256, 3 1475328 4629839872 348173 1093413440 76.40 76.38

Conv block 4 512, 3 5899776 4626628608 1306313 1024720144 77.86 77.85

Conv block 5 512, 3 7079424 1388269568 1837569 360513188 74.04 74.03

FC1 4,096 (neuron) 102764544 102764544 58007552 58007552 43.55 43.55

FC2 4,096 (neuron) 16781312 16781312 16781312 16781312 0.00 0.00

FC3 2 (neuron) 8194 8194 8194 8194 0.00 0.00

Total 134.26M 15.49B 78.33M 3.49B 41.66 77.47

GoogleNet model showed higher sensitivity. The authors of
the research [47] achieved 95.61% accuracy with the VGG16
pre-trained model. The authors also implemented grad-
CAM-based color visualization to interpret the predictions.
It should be noted from Table 7 that none of the exist-
ing methods takes into consideration the constraints of the
point-of-care devices. The last two-column of Table 7 shows
that the existing methods make no reduction in FLOPs and
learnable weight parameter. Further, it can be seen from
Table 7 that the proposed method significantly reduces the
inference-time needs of the models and also achieved compe-
titive performance. Furthermore, our pruned ResNet-34
model achieved 95.47% classification accuracy, 0.9216 sen-
sitivity, 0.9567 F-score, and 0.9942 specificity. On the
other hand, the VGG16 pruned model achieved 93.07%
accuracy, 0.9223 sensitivity, 0.9319 F1-score, and 0.9396

specificity. The pruned VGG16 and ResNet34 models
reveal that the pre-trained models are over-parameterized
and that removing low-importance parameters enhances the
model’s performance for point-of-care devices.

5 Discussion

Early detection and treatment of infectious diseases play
an important role in medical diagnosis. Many researchers
have recently recommended radiological imaging-based
approaches, given the present constraints of reverse
transcription-polymerase chain reaction (RT-PCR)-based
testing for diagnosing COVID19. Furthermore, with the
development of AI-based technology, significant progress
in automated medical diagnosis has been made. However,

Table 7 Comparison of the proposed important weights only approach with other methods on the SARS-CoV-2 dataset

Method Accuracy Sensitivity F1-score Specificity FLOP(%) ↓ Para.(%) ↓

[42] Varied threshold 91.5 0.915 0.915 -

[44] Without segmentation 89.31 0.8240 0.8860 0.9634

[44] With segmentation 89.92 0.8680 0.8967 0.9309

[38] VGG16 95.45 0.9523 0.9549 0.9567

[38] DenseNet 96.25 0.9629 0.9629 0.9621

[24] GoogleNet 91.73 0.9350 0.9182 -

[24] ResNet 94.96 0.9715 0.9503 -

[24] AdaBoost 95.16 0.9671 0.9514 -

[45] Contrastive Learning 90.83 0.8589 0.9087 -

[46] DenseNet-121 92 0.95 0.89 -

[43] Stacked Ensemble 94 0.98 0.94 -

[47] DNN 95.61 - - -

Ours, VGG16 pruned 93.07 0.9223 0.9319 0.9396 77.47 41.66

Ours, ResNet34 pruned 95.47 0.9216 0.9567 0.9942 41.96 20.64

The bold text shows our research result
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during our research, it was found that high-performance
techniques such as deep learning methods need high
computational resources. For widespread benefits, the
trained deep learning model must be deployed in point-
of-care devices. However, the point-of-care devices have
limited resources to execute the large, trained models.
Motivated by the deep learning models’ ability to generate
the diagnosis results accurately, timely, and the limitations
of the point-of-care devices, a selective transfer learning
approach was suggested in this study to classify CT-scan
images as COVID-19 positive or negative.

The result of the study indicates that the selective transfer
learning approach effectively makes the deep learning models
inference efficient for point-of-care devices in the medi-
cal domain for early diagnosis. It will help speed up the
diagnosis process and significantly reduce the dependability
on the skilled technicians, laboratories, and make the auto-
mated diagnosis more affordable in underprivileged areas.
The comparative analysis found that the proposed method
performed superior to existing methods in classifying chest
CT-scan images. Moreover, none of the existing methods
minimizes the trained models’ run-time resource require-
ments for point-of-care devices. The VGG16 pruned model
achieved 93.07% accuracy, while the Resnet-34 pruned
model achieved 95.47% accuracy. Another noteworthy find-
ing from this study is that the VGG16 model has 41.66
percent fewer parameters and 77.47 percent less floating-
point operations than the standard model. Similarly, the
ResNet-34 model has 20.64% fewer parameters and 41.96%
fewer FLOPs than the standard model.

Furthermore, this research finds that pre-trained CNN
architectures are over-parameterized, and that filter pruning
improves inference performance. The proposed method
has advantages over other existing filter pruning methods.
Unlike, other methods in which to identify the pruning
candidate filters, the author remove the filters one by one
and evaluate model loss after each pruned filter. Removing
the filters one by one is a time consuming and computational
intensive task. In contrast, in the proposed method, one shot
pruning is applied to find all the candidate pruning filters.
Moreover, the method is also different from those in which
the convolutional filters are sparsified by setting some
of the weights to zero. Such methods require specialized
hardware and software to process the resulting sparse model
[48]. On the contrary, the proposed method completely
removes the unimportant filters and their corresponding
feature maps. Unlike [21], the proposed method doesn’t
required training the model from scratch to find the less
important filters. In contrast, the proposed method can be
applied to prune any pretrained model. Further, the current
work focuses only on COVID-19 disease; however, the
proposed important weights-only learning approach can
be used for other applications in point-of-care devices.

Some of the applications include detecting skin lesions,
Pneumonia, and Tuberculosis, to name a few. In addition to
various advantages of using CT-scan-based automatic image
diagnosis for COVID-19 detection, such models can help
radiologists effectively detect the virus. Also, these models
not only show predictions or classifications over the CT-
scan but can also be used to monitor the outcome of the
treatment [52, 53].

6 Conclusion

In this paper, we proposed an important weights-only
transfer learning method to classify the CT-scan images
as COVID-19 infected or not. The proposed method has
superior performance, and the trained models have reduced
inference-time resource requirements. Another important
conclusion of the study was that deploying the pruned
models on point-of-care devices is advantageous. The
computational requirement of the VGG16 and ResNet34
models was reduced by 77.47% and 41.66% in terms of
the number of floating-point operations to be performed
during inference. The pruned and original architectures
were tested on GPU and CPU to see the practical speed-up
and a significant speed-up is measured in the performance
of the pruned architectures. Future studies can be aimed
at developing inference-efficient models for other kinds
of diseases for point-of-care devices. Moreover, the new
structured filter pruning techniques can be developed to
better find the filters that produce weaker activation.
Further, the proposed pruning approach can be combined
with other acceleration techniques to improve inference
performance on point-of-care devices.
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