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ABSTRACT: Synthetic polymers are highly customizable with
tailored structures and functionality, yet this versatility generates
challenges in the design of advanced materials due to the size and
complexity of the design space. Thus, exploration and optimization
of polymer properties using combinatorial libraries has become
increasingly common, which requires careful selection of synthetic
strategies, characterization techniques, and rapid processing work-
flows to obtain fundamental principles from these large data sets.
Herein, we provide guidelines for strategic design of macromolecule
libraries and workflows to efficiently navigate these high-dimensional
design spaces. We describe synthetic methods for multiple library
sizes and structures as well as characterization methods to rapidly
generate data sets, including tools that can be adapted from
biological workflows. We further highlight relevant insights from statistics and machine learning to aid in data featurization,
representation, and analysis. This Perspective acts as a “user guide” for researchers interested in leveraging high-throughput
screening toward the design of multifunctional polymers and predictive modeling of structure−property relationships in soft
materials.
KEYWORDS: high-throughput screening, polymer libraries, soft materials design, machine learning, bioinspired

1. INTRODUCTION
From water purification to medical devices, functional
polymers provide solutions to global challenges owing to
their diverse structures and chemistries that can engender
environmental resilience and targeted functionality.1 Synthetic
macromolecules introduce unique chemical compositions,
dispersities, and architectures beyond those of native
biopolymers, thereby affording new avenues toward improved
functions. However, identifying structure−property and
resulting structure−function relationships in these materials
remains challenging. Diverse efforts toward modern multifunc-
tional materials, from antifungal activity2 to drug delivery
injectables,3 have underscored the intricacies and complexities
of macromolecular properties. Nonintuitive and emergent
characteristics in these materials challenge rational design,
limiting the use of existing design principles and stepwise
iteration. Therefore, the development of high-throughput
synthetic workflows can unravel these complex relationships
and advance materials research.
While high-throughput screening has been prevalent in

biological sciences for decades4 (e.g., for drug candidates5 and
protein-based coatings6), its application to synthetic macro-
molecules is comparatively recent. Some biological strategies

can be leveraged to expedite the development of synthetic
polymers with desirable properties, including library design
principles, characterization methods, and analysis platforms.
However, challenges unique to the polymer community can
prevent small-scale setups from readily translating to a high-
throughput workflow. The past two decades have seen key
advancements that address these bottlenecks. These develop-
ments span oxygen-tolerant polymerization,7,8 automated data
processing,9 robotics,10 and entry points to machine learning
softwares.11 The broadening accessibility of these tools has
resulted in an influx of high-throughput research efforts as
directly interrogating complex design questions comes within
reach.
In this Perspective, we outline strategies to design high-

throughput workflows for solution-phase macromolecules,
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focusing on recent advances in library synthesis, character-
ization, and the use of statistics and machine learning
techniques for data analysis and interpretation. Due to the
diversity and depth of these fields, we seek to provide insight
into how these components interface and augment one
another. Further insight into high-throughput polymeriza-
tions12 and screening of bulk polymeric materials,13 as well as
machine learning for data-driven polymer design14−17 can be
found in previous articles. Our recommendations focus on
optimizing library design with respect to size (i.e., number of
library members), ease of synthesis (i.e., time and purification
steps required), and characterization efficiency (i.e., time per
sample, simultaneous or automated measurement), as these
selections are critical to maximizing experimental efficiency.
Furthermore, we provide a summary of rapid and iterative
characterization strategies capable of reporting on desired
macromolecular properties. We conclude with an outlook on
high-throughput materials development, including the need for
shared databases toward designing and understanding
structure−property relationships for next-generation materials
to address ongoing societal challenges.

2. WORKFLOW DESIGN TO UNVEIL
STRUCTURE−PROPERTY RELATIONSHIPS IN A
HIGH-DIMENSIONAL DESIGN SPACE

A comprehensive understanding of macromolecular structure−
property relationships offers two major advantages: first,
insight into how microscopic descriptors and chemical
moieties result in a macroscopic property and second, the
ability to predict this property for materials in de novo design.18

We herein focus on using rapid workflows to develop soft
materials including dilute polymer systems, sequence-defined
oligomers, and biomimetic materials, combining expertise from
both synthetic and machine learning fields. We discuss
approaches to the design and synthesis of libraries composed
of 102−105 members, rapid characterization methods, and
implementation of this information to guide further efforts.
High-throughput approaches are well-suited for systems with

many tunable variables that show complex interactions with
one another. The modularity inherent to many polymer

systems due to structural features such as composition,
sequence, architecture, and molecular weight results in a
high dimensional feature space that is challenging to
interrogate directly. A universal workflow for these studies
can be deconstructed into a handful of steps (Figure 1). First, a
scientific objective for the study must be established, often
categorized as either optimization or exploration of a
structure−property relationship (described further in Section
2.1). Next, features of interest must be selected; these can
include variables such as material structure and extrinsic factors
such as the reaction conditions and sample preparation
methods (Section 2.2). Chosen features must then be
appropriately bounded and discretized to estimate the size of
the design space (Sections 2.2.1 and 2.2.2). With this estimate
in hand, a method for library synthesis that can generate a
representative fraction of the total space can be selected
(Section 2.3). At this point, if it is unfeasible to sample the
design space given the library size, the size of the design space
can be constrained to generate a smaller study through
adjusting the number of variables or further discretization.
Once a design space is chosen, the library can be synthesized
(Section 3), and a suite of characterization tools are available
for screening (Section 4). Outputs of the characterization stage
can be used to inform the design of future libraries, the
generation of databases, and the synthesis of novel materials
(Section 2.4).
2.1. Identifying the Desired Design Spaces: What Is Our
Question?

Screening can be effective for systems with some established
design principles, but complex relationships between features
and target outcomes have yet to be uncovered. However, for
novel systems where the role of features such as new
monomers (e.g., catalytic,19 structural20) or architectures
(e.g., star,21 cross-linked,22 branched23 polymers) are poorly
defined, beginning with a small-scale library instead of a much
larger screen is a valuable first step. These libraries can be
rationally designed or guided by Design of Experiments to
efficiently explore a feature space.24,25 A systematic study
presents an opportunity to troubleshoot the synthesis,
characterization, and analysis protocols on a small-scale. Such

Figure 1. High-throughput screening workflow design. First, a scientific objective must be established to optimize a material or explore a structure−
property relationship. Then, variables or features of interest must be chosen and discretized appropriately to result in a design space that can be
feasibly sampled. A library can then be generated, screened, and the resulting characterization can be used in designing a new library and further
material discovery. The relevant sections of this perspective are highlighted below the flowchart.
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prototyping will generate practical information about the
system such as optimal synthesis, purification, and sample
preparation methods in addition to limits of solubility. Further,
preliminary functional and structural characteristics can be
generated to inform rational material design or further
screening. If a high-throughput approach is needed, a target
objective of the screen must be chosen: (1) optimization,
where a target property must be enhanced by tuning material
structure or processing, or (2) exploration of a structure−
property relationship, where a model can predict a property
using descriptors of the system. While both these aims are
related, optimization and exploration pose different challenges
and benefit from different experimental and statistical tools.
The goal of optimization is to develop a high-performance

material with desired property. These can encompass a specific
function, such as the binding of target molecules (e.g., metals26

or sugars27) or catalytic activity,28 or structural properties such
as compactness29 or helicity.30 Many structural features (e.g.,
polymer composition or architecture) and/or extrinsic
descriptors (e.g., reaction conditions) can contribute to the
target property and must be tuned to generate a material with
optimal performance. Visualizing the structure−property
relationship as a surface in a high-dimensional space would
result in many “peaks” and “valleys” that correspond to high-
or low-performance materials, respectively (Figure 2). The
optimization approach searches for peaks within this surface,
and positions of valleys are considered obstacles to avoid or
overcome through strategic library design. Challenges arise as
complex surfaces may often contain multiple peaks, and
identification of the tallest peak (i.e., highest performing
material) requires that the library describes a large amount of
this surface.
In contrast, the objective of exploration is to map a

structure−property relationship over the entire feature space,
such that the properties of a material can be predicted for any
arbitrary position in the space. Therefore, exploration demands
knowledge of both the peaks and valleys within a given feature
space, as well as the combinations of different features that
result in changing peak or valley heights (Figure 2).
Quantitative structure−activity relationship (QSAR) or
structure−property relationship (QSPR) models are generated
through such an exploratory search that predicts the property
of a material using feature descriptors, such as material
composition or architecture. Valleys are no longer incon-
veniences as they were in optimization; they are important
sources of information in the development of an exhaustive
model.

Exploration and optimization present distinct hurdles. The
challenge of optimization lies in reaching the global maximum
(i.e., the highest-performance material) due to the presence of
local maxima that are difficult to navigate away from or
“activity cliffs” where similar materials have very different
performances.31 To decrease the experimental burden, a
material that reaches a local maximum can instead be selected
as a champion material based on relative improvement over
another material or exceeding a desired threshold. For
example, optimization workflows in drug discovery frequently
involve setting threshold values for target objectives such as
potency and cytotoxicity.32 Statistical tools such as adaptive
sampling are useful in navigating to materials that fulfill
multiple objectives (also known as multiobjective optimiza-
tion) while reducing experimental burden.
The challenge of exploration is the requirement for large

data sets. Experimentally relevant questions tend to span
extremely high-dimensional spaces that are difficult to sample
effectively through library generation�often referred to as the
“curse of dimensionality.”33,34 Insufficient data may not fit a
regression model or result in poor predictiveness. Experimental
tools in library generation (further discussed in Section 3) can
assist in the rapid synthesis of a larger, more representative
sample size to reach all corners of the feature space.
2.2. Feature Selection and Estimation of Design Space
Size: What Are Variables of Interest and How Large Is the
Design Space?

Identification of relevant descriptors for samples within a
library is critical for extracting information from the greater
surface (Figure 3a). Common intrinsic descriptors of a
material include composition (e.g., hydrophobic,35 func-
tional,36 charged,37 and stimuli-responsive38), architecture
(e.g., cross-linked,22 branched,23 and star39), sequence
patterning,40 and molecular weight. However, descriptors
that are extrinsic to the material itself, such as sample
preparation protocols41−44 or substrate choice for a polymer
catalyst,45,46 can also be important variables to probe with a
library.
2.2.1. Variable Discretization. Once individual features

are selected, each feature can be subdivided into a set of
intervals that span the desired range. Consider an example
study with a library of random copolymers with the objective
of determining polymer compositions that are capable of
binding a target, such as in protein stabilization.47,48

Monomers with different chemistries as well as different
polymer architectures and molecular weights are all syntheti-
cally accessible. The incorporation of a selected monomer in a
polymer is a continuous variable�a random copolymer can be
synthesized with any arbitrary percentage of a monomer, so
this variable must be both restricted and discretized. Bounds
on this variable would be the minimum and maximum
percentage of monomer allowed in the overall composition,
which can be determined by factors like the polymer solubility
in a solvent of choice (Figure 3b, left). Discretization of this
variable is the selection of interval percentages that the
monomer changes by, for example increasing within a selected
range in steps of 10 versus 30 mol % incorporation (Figure 3b,
right).
Variable discretization can depend on both limits of

detection and practical constraints. For example, differences
between a polymer with 20 mol % of a given monomer versus
25 mol % may be negligible in an assay output, or monomer

Figure 2. Objective of a high-throughput screen over a complex
design surface (gray) falls into either optimization (left) or
exploration (right) categories, where the former involves identification
of a high-performing “champion material” (blue star), and the latter
involves mapping a structure−property relationship over the entirety
of the surface (blue dots).
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incorporation quantification can be limited by resolution via
NMR integration. Given inherent variability within exper-
imental systems, the choice of discretization should yield
materials with reproducible results by sample and measure-
ment replicates. In both cases, discretization to smaller
increments may not reveal additional insight. Further,
discretization into finer segments increases the number of
members within the design space, thereby increasing the
library size required to sample it. Discretization to 1 mol %
may be suitable in limited-scope libraries (e.g., subsequent
iterations of a screening workflow), or if a 1 mol % change has
a disproportionately large effect on a property. If choosing a
small discretization is appropriate and necessary, the minimum
and maximum bounds on the variable can be chosen
strategically to minimize the total number of possible values
this variable can take on. If the sensitivity of the target outcome
to a given variable is not well-known, an initial sparse library
can be generated that spans a large range of values, and
subsequent libraries can focus further on any range of interest
(Figure 3b). Thus, taking care to appropriately restrict and
discretize each variable with chemical intuition in mind will
improve the efficacy of a screen.
Variables may not always be continuous�they can take on

discrete values as well. As a second example, a sequence-
defined oligomer library is screened for a feature, such as

antifungal properties.49 In the first example, monomer
incorporation was a continuous feature in disperse copolymers
that was subdivided into discrete percentages. In a system
where oligomers are composed of 10 discrete residues,
generating an oligomer with only 5 mol % of one monomer
is not synthetically possible, as the smallest discretization
available is 10 mol %. However, the principles of bounding and
discretizing variables still apply. To reduce the size of a library
of 10-mer oligomers, the library can be synthesized with
monomer incorporation discretized to 20 mol % increments
instead (i.e., groups of two residues can vary).
2.2.2. Estimating Design Space Size. Once features are

selected, combinatorics can be used to calculate the size of a
design space, aiding in the estimation of sample representative-
ness: a comparison of the library size relative to that of the full
design space. Increasing the complexity of a design space also
increases the necessary sampling and experimental burden.
Consider a statistical copolymer library, where combinations of
ten functional monomers are investigated. Each polymer
sample is designed to be comprised of two different functional
monomers of the ten and a consistent filler monomer for the
remaining composition (Figure 3c). If the mole percent
incorporation of two of the monomers is fixed, the total
number of polymers is described by the combination function
10 choose 2, or 45. If the two functional monomers can take
on different percentages of the total polymer, we can discretize
those percentages into an arbitrary number. For this example,
say that there are five possible percentages for each monomer;
the total number of polymers now is 45 × 5 × 5 = 1125. In a
second case study with sequence-defined macromolecules
synthesized by a modular synthetic strategy, the total design
space is represented by yx, where x is the number of variable
positions and y is the possible residues at each position. If 10-
residue oligomers are being synthesized with two possible
residues at each position, the size of the design space would be
210 or 1024 members. If 10-mer oligomers are being
synthesized with seven variable positions, where five positions
could be one of four residues, and the other two could be one
of three residues, the total design space would be (45)(32) or
9216 members (Figure 3c). A 100-member library would be
more effective at sampling the first design space (approx-
imately 10% sampling) than the second design space
(approximately 1% sampling). By keeping library design
principles in mind from objective selection through data
interpretation, data collection becomes more efficient and
effective.
2.3. Principles of Sampling: Is It Feasible to Sample the
Desired Space?

The sample representativeness, or how well a chemical library
represents the larger high-dimensional space,50 determines
how well the library will achieve the intended goal of
identifying global trends or reaching an optimum. The sample
size and representativeness are directly related to the ability to
validate a hypothesis or fit a model. In general, benchmarks on
sampling sizes, such as the minimal percentage of a design
space that must be sampled to fulfill an optimization or
exploration objective, are typically not known at the start of
library design and vary from system to system. For example, in
the case of fitting data to a machine learning model, a heuristic
sampling guideline (>5%) was suggested, but we emphasize
that this value is intended only as a starting point and not a

Figure 3. Featurization strategies and estimating library size. (a)
Common variables for macromolecule libraries include composition,
molecular weight, architecture, sequence patterning, and extrinsic
factors. (b) Variables must be bounded (left) and discretized (right)
based on physical limitations. (c) Estimation of the size of the design
space for sequence-defined materials (left) or polydisperse materials
(right).

ACS Polymers Au pubs.acs.org/polymerau Perspective

https://doi.org/10.1021/acspolymersau.3c00025
ACS Polym. Au 2023, 3, 406−427

409

https://pubs.acs.org/doi/10.1021/acspolymersau.3c00025?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acspolymersau.3c00025?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acspolymersau.3c00025?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acspolymersau.3c00025?fig=fig3&ref=pdf
pubs.acs.org/polymerau?ref=pdf
https://doi.org/10.1021/acspolymersau.3c00025?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


definitive threshold.51 Often, the representativeness of the
library can only be assessed in post hoc analysis.50,52

Insufficient library sizes can result in a design space being
sampled ineffectively, making it challenging to draw con-
clusions (Figure 4a, left). In the design of a target binding
polymer, if the design space is very large, low sampling may
miss potential high-performers or be too small to elucidate
important relationships. Further, if the target behavior is low
frequency (i.e., only a small fraction of polymers in a design
space are adequate binders), an exhaustively large library will
need to be synthesized to discover them. This example is the
imbalanced data problem, where certain features or classes
(i.e., poor binders) are overrepresented and information from
minority classes (i.e., good binders) is important but hard to
access (Figure 4a, center). A final challenge in high-throughput
workflows is that libraries may contain candidate molecules
that are unusable. For example, a structure−property model
may predict that highly hydrophobic polymers will show the
highest propensity for protein-like self-assembly. However,
these candidates may be insoluble in aqueous conditions and
therefore unusable for the desired application (Figure 4a,
right). When many features, both structural and extrinsic, are
relevant, predicting which materials are unusable is challenging
intuitively.
The most straightforward approach to each of the above

three challenges�imbalanced data, insufficient library size,
and unusable outputs�is increasing sampling. A larger library
will encompass more of the design space and mitigate some of
these issues. Traditional sampling approaches are “space-
filling” in that they span the entire design space and include
simple random, grid, Latin hypercube,53 and sobol sampling.54

However, these approaches may demand a library size that may
be experimentally unfeasible to synthesize and characterize. In
these cases, adaptive sampling, also called active sampling or
response-adaptive designs, (Section 2.4) presents an alternative
strategy. Adaptive sampling does not require searching the
entire design space directly but instead samples with a

“feedback loop” between experimental results and subsequent
sampling. Important feature interactions are “learned” and
candidate materials with high predicted performance are
suggested. Virtual screening (Section 2.4) is an alternative
method, where a large library is characterized through
computationally inexpensive simulations to uncover target
materials at low experimental burden. Additional strategies to
treat imbalanced data sets include further statistical methods.55

2.4. Modeling and Leveraging Screening Outputs: How
Can This Library Be Characterized?

Following library synthesis and characterization (further
discussed in Sections 3 and 4), the subsequent data set can
be fit to a model (Figure 4b, left). If a known physical model
exists, these principles can be used to fit data directly, as in
with scattering56 or diffusion.57 For a data-first approach,
various statistical models can instead be easily implemented
through premade software packages, such as Scikit-learn in
Python.11 Two primary types of models exist: regression and
classification. Regression models are used when outputs can
take on any value. However, we may determine a material is
“good” or “poor” if the value falls above or below a selected
threshold. Then, a classification model is more appropriate as
output values fall into a set of predefined classes. Apart from
these two model types, model learning can also be either
supervised or unsupervised. Supervised learning involves first
fitting a model on a set of training data with known outputs or
classifications and then predicting on data it has not seen, out-
of-sample data. In contrast, unsupervised learning instead finds
groupings directly in a data set where classifications or outputs
are unknown.
In the first step of model development, many different

models are fit to the same data set to determine the best
performance.16,58 Model performance is traditionally quanti-
fied through prediction error such as root-mean-square error
(RMSE), where 0 is theoretical perfect performance in a noise-
free data set. Additional metrics such as “discovery” scores are
being developed to evaluate a model’s capability to propose
new high-performing materials.59 Further details on supervised
and unsupervised learning models, model training, validation,
evaluation, and interpretation can be found in a user-guide to
machine learning for materials design by Gormley and co-
workers.16 Other helpful resources include the software
QSARINS, which focuses on multiple linear regression
modeling and includes tools for data preprocessing, validation,
outlier detection, and visualization60 and polyBERT, an end-
to-end machine learning pipeline for polymer informatics and
optimization.61

Different model types necessitate different data set sizes.
Neural nets are powerful nonlinear models consisting of
“neurons” organized and interconnected in complex, versatile
architectures.62 Therefore, these models are “data hungry” and
a large data set (thousands to millions of data points) is usually
demanded.63 Other models, such as random forest approaches,
where decision trees are trained on different subsets of
data,16,64 can readily accommodate smaller data sets on the
order of hundreds of members more relevant to some library
synthesis approaches. Even smaller data sets (<100 members)
may only be fit using linear models. Further understanding of
how small data sets can be fit to machine learning models is the
focus of recent work.65

In some cases, directly interrogating a large and complex
design space directly is impractical. Instead, several smaller

Figure 4. Potential sampling challenges and harnessing data outputs.
(a) Potential sampling challenges arise with insufficient library size
(left), overrepresentation of certain data classes in imbalanced data
sets (center), and practical constraints on samples such as insolubility
in water (right). (b) Outputs of screening workflows include
development of structure−property regression models (left), iterative
library design using adaptive sampling (center), and database
generation of screening outputs, feature information, and protocol
metadata (right).
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libraries can be synthesized sequentially, with insights from
each informing the next through active sampling (Figure 4c,
center).66,67 Practical considerations, such as solubility limits
or interactions between different features, are typically not
known at the outset. Active sampling can more rapidly
accommodate these restrictions and avoid the synthesis of a
large library where a significant fraction may be unusable.
Machine learning and Bayesian approaches are popular active
learning schemes that have been successfully applied to diverse
chemical challenges including the synthesis of metallic
alloys68,69 and nanoparticles,70 drug discovery,71,72 catalyst
development,73 and the evaluation of properties of bulk
polymers ranging from electronic bandgap to thermal
transitions.74 Examples of high-throughput synthesis coupled
to iterative sampling include the design of protein-stabilizing
random copolymers using automated polymer synthesis,47,75

the identification of 19F MRI contrast agents using continuous-
flow chemistry,51 and the development of polymeric injectables
for drug delivery.3

Virtual screening also rapidly narrows a design space
through computationally inexpensive simulations.76−78 Genetic
algorithms, a type of optimization algorithm inspired by
mutations and natural selection, have harnessed virtual
screening to identify novel materials such as photovoltaics79

and dielectrics80 by optimizing property criteria such as glass
transition temperature or electronic bandgap.81 Polymer
chemistry has also begun to benefit from these iterative
approaches with examples including polymer sequence design
toward achieving compactness,82,83 optimization of polymeric
catalysts,84 and multiobjective discovery and optimizations.85

High-throughput screening results can also contribute to
database generation (Figure 4c, right). Some existing polymer
informatics databases86,87 are PolyInfo,88 Polymer Genome,89

CRIPT,90 Polymer Handbook,91 and CHEMnetBASE-Poly-
mers.92 These databases contain characterizations of properties
and relevant structural descriptors, such as monomer identity,
molecular weight, and material classification. In addition to
these empirical descriptors, databases can benefit from
additional metadata, such as reaction conditions, material
preparation methods, and calibration information, as small
differences between measurements can be attributed to these
metadata. As high-throughput measurements become increas-
ingly accessible, the parallel growth of open-access databases
will facilitate database benchmarking,93 assessing how different
databases perform on a similar model, and model benchmark-
ing,94 assessing how different models perform on the same data
set. The FAIR guiding principles (findable, accessible,
interoperable, and reusable) ensure that shared data are well-
annotated, meet community guidelines, and are easily
obtainable and verifiable, to readily support informatics.95

3. LIBRARY SYNTHESIS METHODS
For small sample sets (∼101), each member of a library can be
synthesized individually. Preliminary small libraries (5−25
samples) are useful to synthesize manually to troubleshoot
synthetic challenges, such as different monomer reactivities,
and characterization workflows. These libraries can also be
constructed through a Design of Experiments workflow, where
multiple parameters are varied simultaneously to rapidly
uncover feature importance and interactions.25 The efficiency
of these approaches has been demonstrated in catalyst
design,96,97 where material optimization was possible with
small sample sets and few iterations. Systematic studies of a

selection of polymers can also be for a desired property with
rapid screening, exemplified in structural characterization by
Terashima and co-workers.98−101 However, large libraries
spanning a broad chemical space require different methods
for efficient and high-fidelity syntheses. Three main strategies
exist: (1) sequencable libraries for one-pot screening (e.g., one-
bead one-compound and barcoding), (2) modification of a
single synthesis (e.g., post-polymerization modification and
fractionation), and (3) simultaneous, independent syntheses
(e.g., parallel reactors and automation). For each of these
strategies, we outline the time required, the typical size of the
resulting library, and synthetic materials best suited.
3.1. Library Synthesis Methods That Enable One-Pot
Screening

Libraries can be designed to enable a one-pot characterization
method, such as dye-based visualization or isolation via pull-
down assays, followed by sample identification. For one-bead
one-compound (OBOC) screening, immobilized sequence-
defined oligomers libraries (103−105) can be rapidly analyzed
(Figure 5).102 While primarily used for biopolymers such as
peptides, this combinatorial library synthesis technique extends
to various sequence-defined polymers and peptidomimetics,
including peptoids, oligocarbamates, oligoureas, vinylogous
sulfonyl peptides, peptidosulfonamides, azatides, and keti-
des.103 Libraries are synthesized on a solid support, typically a
cross-linked polymer resin (i.e., micron-sized beads), using the
combinatorial split-and-pool synthesis method (Figure 6a).104

Synthesis typically requires one to three hours per residue (e.g.,
approximately 40 h for a 20-mer library). However, OBOC
systems become challenging to physically handle and
manipulate with greater than ∼106 library members. A library
can be rapidly analyzed through a colorimetric or fluorometric
output correlated to the property or function of interest.105,106

Figure 5. Methods for efficient library generation. (a) Library types
organized by the size of space (x-axis) and amount of material (y-axis)
that can be screened. (b) High-throughput synthesis methods
categorized by how the libraries can be screened, how the material
is produced, and what macromolecular properties are varied.
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Hits are identified following screening by isolating oligomers
from individual beads and sequencing, typically using tandem
mass spectrometry dissociation.107−109

Barcoded libraries also offer one-pot library screening for
materials that are challenging to sequence directly. In barcoded
libraries, each member has a sequencable tag covalently linked
to the library member. Traditionally, DNA is used as a tag, but
recent use of peptides expands the chemistries for potential
library synthesis (Figure 6b).110,111 Encoded libraries are
analyzed simultaneously and selected commonly using affinity
selection (e.g., binding to a target). In drug discovery, DNA
encoded libraries can be greater than 1010 in size (Figure 5).112

While DNA has been used to assemble polymers,113,114 its use
in encoding macromolecule libraries has been limited.115 High-
conversion synthetic steps are recommended for OBOC and
barcoded libraries to eliminate the need for purification of
library members.
3.2. Library Synthesis from a Single Polymerization
Post-polymerization modifications (PPMs) and fractionation
allow for a single polymerization batch to yield a library while
maintaining properties such as dispersity and chain-end
fidelity. Subsequent screening must be done in parallel (e.g.,
in a well plate). Molecular weight, dispersity, and monomer
patterning can be maintained by substitution or functionaliza-
tion of modifiable handles on a single parent polymer to
generate a library 101−2 in size.116−119 Independent syntheses
may result in unwanted chemical diversity driven by reactivity
ratios and small differences in monomer ratios. Additionally,
PPMs can be efficiently realized at small scales in well plates,
making library synthesis tractable without the need for
automation or parallel processing. Champion materials can
also be both generated and screened in one-pot using dynamic
covalent chemistry, where functional handles exchange onto a
polymer scaffold in the presence of a template material.120,121

Fractionation strategies are also able to separate disperse
polymer batches to generate a library. Chromatographic
techniques including thin layer chromatography (TLC), size-
exclusion chromatography (SEC), reversed-phase liquid

chromatography (LC), normal-phase chromatography, and
ion exchange chromatography have been used in fractionation
strategies (Figure 6c).122−124 Although fractionation is faster
than manual synthesis, only ∼101 can be generated with this
scheme (Figure 5).
3.3. Parallel Material Synthesis

Polymer library members can also be synthesized independ-
ently using liquid-handling robots125 or parallel reactors.126,127

Recently, photoinduced electron/energy transfer reversible
addition−fragmentation chain transfer polymerization (PET-
RAFT) has enabled polymerizations in well plates using
oxygen-tolerant conditions, which has enhanced the efficiency
of existing parallel synthesis systems.12,128 Purification of
polymers can be done in 96-well filter plates129 in addition to
commercially available miniaturized dialysis products. Well
plate-compatible library synthesis and characterization has also
been demonstrated, including testing for antimicrobial activity
(Figure 6d).130 Library members (∼102) can be further
functionalized post-polymerization prior to screening, with
examples including coupling peptides to engender function-
ality130 and polyethylene glycol to imbue brush-like
structures.131

A series of polymerizations can also be run using liquid-
handling robots and continuous flow reactors, available at
select academic and national laboratories, such as BioPACIFIC
MIP123,132 and Argonne National Laboratory’s Polybot, a self-
driving laboratory for polymer development.133 Flow synthesis
has been used for anionic, cationic, radical, and ring-opening
polymerizations,134,135 in addition to sequence-defined
oligomers.136 Additionally, flow systems can synthesize diverse
chemical structures such as gradient copolymers by tuning the
monomer feed ratio through the reaction.137 While flow setups
are commercially available, and the challenges of building a
flow setup for custom polymerizations can often outweigh the
advantages.134 While access to necessary instrumentation such
as liquid-handlers or flow synthesis reactors is currently
limited, the efficiency, fidelity, and ease of integration into
machine learning workflows will likely continue to increase the
popularity of these methods.47,51

3.4. Representing Polymers Using Molecular Descriptors

Section 2.2 describes intuitive methods to bound and discretize
features that will parametrize a chemical design space. While a
researcher has intuition about chemical information describing
a library, such as monomer structure and polymer architecture,
these nuances are not always included as inputs but may be
critical to a predictive model. We must therefore consider
methods for alternate chemical or molecular representation.
While polymer scientists have developed widely understood

and accepted notations for representing chemical structures of
polymers, it is challenging to mathematically describe these
schematics for use in a statistical model. Unique descriptions
that preserve the geometric symmetries are required to capture
the full chemical complexity of a structure. Small molecule
organic chemistry and drug discovery have developed methods
to describe chemical structures for feature inputs that may be
leveraged to describe polymer properties.138 Molecular
descriptors pertinent to polymeric materials include string
notation, graph representation, and learned descriptors. String
representations, such as Simplified Molecular Input Line Entry
System (SMILES)139 and International Chemical Identifier
(InChI),140 describe atoms and their connectivity within an
organic molecule (Figure 7a). As these representations are not

Figure 6. Methods for efficient library synthesis. Schematic of (a)
split-and-pool synthesis of one-bead one-compound libraries, (b)
large library synthesis with barcodes, (c) modification or separation of
a single polymerization batch into a library, and (d) options for
automated library generation.
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unique (i.e., many strings can be written for a single structure),
canonicalization is critical to ensure the same representation
per structure. However, string notation is ill-suited to capture
polydispersity, sequence distribution, and complex topological
features specific to synthetic polymers. BigSMILES has been
developed to describe polydisperse, statistical materials, such as
synthetic polymers by accommodating both different mono-
mer patterning and nonlinear architectures.141 As it builds on
widely available SMILES notation, BigSMILES presents an
easily accessible alternative notation that captures structural
nuances specific to the polymer community.
In addition to string notation, molecular graphs, where

atoms and bonds can be represented as nodes and edges in
graphs, have been successful (Figure 7b).142−144 Extended-
connectivity fingerprints (ECFPs), also known as “Morgan
fingerprints”,145 are generated through a circular approach,
where the “extended connectivity” of atoms is described with
increasingly large radii centered around non-hydrogen
atoms.146 PolyGrammar is a polymer specific graph-type
approach that is designed to support architecture and
monomer chemistries.147 Other types of molecular representa-
tion include chemical table representations, such as MDL

molfiles.148 While these techniques may be less intuitive than
their string counterparts, they can represent complex polymer
topologies with a high level of specificity.
Feature engineering can generate learned descriptors, which

are nonintuitive but high-performing molecular representations
subsequently fit to a machine learning model (Figure 7c).
Representation learning algorithms automatically determine
the most significant features of large data sets.149 Neural nets, a
common representation learning tool, recast features into a
representation in “machine language” enabling a single graph
structure to represent descriptors of interest in diverse contexts
such as small organic molecules,150 chemical reactions,151 and
crystal structures.152 Representation learning has broad
applicability, for example natural language processing algo-
rithms have succeeded in representing complex problems in
organic reactions,153 sustainable chemistry,154 genomics,155

protein properties,156 and drug discovery.157 Improving
featurization and representation for stochastic materials is
critical to adapting language learning models in polymer
chemistry, such that models can make accurate predictions
about emergent properties. Further discussion on interpreting
new representations developed by deep learning is discussed in
Section 4.4.
Polymer chemists have begun to harness the potential of

representation learning using chemical descriptors to fit
predictive neural networks.158−160 New graph-based represen-
tations are also being developed for polymer materials. These
graphs capture the composition and architecture of poly-
disperse polymers, and have improved prediction of polymer
properties compared to molecular descriptors alone.161,162 For
example, they have been successful in predicting catalysis
conditions for ring-opening polymerizations across multiple
different data sets.84 TransPolymer, developed from the
Transformer-based language processing algorithm, has been
successfully trained on diverse polymer data sets for different
bulk properties.163 Additionally, graph representation has been
successful in theoretical studies, such as predicting the radius
of gyration (Rg) of coarse-grained model polymers with
defined sequence and composition.83

Sequence-defined monodisperse materials can leverage
techniques used for biopolymers, which benefit from relatively
limited composition, well-defined sequence, and training data
sets such as the Protein Data Bank. Amino acid structures can
be described traditionally by SMILES or other string
representations164 or through representation learning ap-
proaches, as with the successful neural net AlphaFold.165,166

Molecular descriptors for peptides span diverse properties such
as sequence, conformation, charge, and hydrophobicity.167−169

However, descriptors are less well developed for noncanonical
amino acids and peptidomimetics (e.g., peptoids and β-
peptides), and structure prediction for these materials
therefore is still simulation- and experiment-driven.170 The
applicability of molecular descriptor approaches, like SMILES,
in peptidomimetic systems holds promise for identifying
structure−property relationships using statistical tools.
Beyond sequence descriptors, molecular dynamics (MD)

and electronic structure calculations have been important
inputs to representation algorithms. These calculations provide
insight into microscopic dynamics and energetics otherwise
opaque in experiments or chemical structure descriptors.
Peptide structure−property regression frequently uses descrip-
tor types (e.g., electrostatics and hydrophobicity) for amino
acids.171 Electronic structure descriptors from density func-

Figure 7. Overview of molecular descriptors. (a) String representation
for polymer materials can use existing SMILES-type notation (left).
BigSMILES notation also supports architecture representation unique
to polydisperse materials (right, adapted from ref 141. Copyright
2019 American Chemical Society). (b) Graph representation uses
nodes and edges to represent atoms and bonds in a molecule (left).
Hypergraph (e.g., PolyGrammar) and ECFP are graph-driven
representation techniques that preserve information on the con-
nectivity of atoms in a polymer (right). (c) Representation learning is
a powerful tool that can take a diverse set of inputs, including MD
simulation trajectory data, electronic structure calculations from DFT,
spectroscopic inputs, and other types of molecular descriptors (left).
These inputs can be converted to a feature vector using deep learning
(autoencoder-decoder neural net), and the feature vectors can be
used to fit a predictive model (right).
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tional theory calculations have also been successful in models
of small molecule catalysis172 and optimizing band gaps for
conducting polymers.173 Trajectory data from MD calculations
have been used to analyze phase transitions174 in materials
including thermoresponsive polymers.175,176 Additionally, MD
simulation data has even reconstructed underlying pathways of
protein folding producing interpretable models consisting only
of a handful of states.177,178 MD simulations therefore play
important roles as features and descriptors in library design.
New open-source packages including PaDEL,179 Mor-

dred,180 RDKit,145 and ChemDes181 have been developed to
rapidly calculate different molecular descriptors and finger-
prints, benefiting diverse fields. We envision that these software
packages will facilitate the use of more complex descriptors in
future work with polymer libraries. Model performance has
been shown to depend significantly on the type of molecular
descriptor,182 influencing predictions of polymer glass
transition temperature94 and structure−activity modeling for
peptides.183 With broader accessibility of more complex
molecular descriptors through these software, higher accuracy
predictive models are anticipated in the future.

4. HIGH-THROUGHPUT CHARACTERIZATION AND
ANALYSIS OF POLYMER LIBRARIES

Efficient and effective characterization of libraries is critical to
differentiate and to optimize material performance. Factors
such as the library size, amount of required material, and the
specific property being tested all can affect the speed and
precision of material characterization (Figure 8).10,184 Tradi-
tional polymer characterization techniques are material- and
time-intensive, acting as a bottleneck in workflows that must
support large numbers of samples. High-throughput screening
techniques can process upward of 106 samples with the
development of rapid, precise measurement approaches, 384−
6144 well plates, droplet microfluidics, and automated sample
handling. Colorimetric and fluorometric screening are
commonly used due to their convenience and simplicity, but
a wider array of techniques including chromatography and
scattering approaches exist. We explore how high-throughput
techniques from biochemical fields5,184−187 can be adapted for
rapid and comprehensive analysis of synthetic macromolecules.

4.1. Planning a Characterization Workflow

Well plate assays and instrumentation offer significant
advantages for rapid screening due to miniaturization and
parallel processing of samples. This allows analysis of small-
scale material quantities, analogous to the capabilities of
OBOC and barcoded libraries. Rapid and parallel sample
processing are particularly valuable for imbalanced data sets,
where the number of promising candidates is outnumbered by
those with low or mediocre performance. Each characterization
method has unique material limitations and time constraints
that must be considered when designing a workflow (Figure
8). For these workflows, the objective is to quickly sift through
the library to identify relatively high-performing candidates to
be studied with more exhaustive or information-rich character-
ization. Well plates facilitate analysis with various analytical
techniques such as spectrophotometry, fluorimetry, and light
scattering, enabling the collection of multiple measurements
within a single experiment. Moreover, consolidating sample
preparation to a single standard container streamlines
workflows, even without automated systems. This reduces
the potential for error in arduous and repetitive tasks
performed numerous times, such as switching containers or
mixing reagents. Well plates are most commonly employed
with aqueous systems or high-boiling solvents (e.g., DMSO)
due to their compatibility with the plastics they are commonly
made of (e.g., polystyrene, polypropylene, and cyclic olefin
polymers);188 however, glass-coated well plates are available
for systems that require more specific chemical or temperature
needs.
For sequence-defined polymers and other polymers that can

be synthesized on a solid support, immobilized screening
methods may be considered. These methods can offer
improved material stability and tolerance against temperature
and organic solvents, as well as a physical means of material
separation, recovery, and reuse. The solid support can be cross-
linked resins (i.e., beads) or surfaces (i.e., microarrays189−191).
Immobilized assays are particularly effective in affinity
screening, allowing testing against multiple targets and
visualization of affinity using dyes or labels.103,105,106,192

However, false positives may occur due to autofluorescence
or nonspecific interactions between targets or ligands and the
solid support. Effective strategies to mitigate these biases
include lowering the loading densities, screening replicate
libraries, and cross-validating hit materials with solution-phase
screening.102,107,193−196 Consequently, immobilized screening
assays have proven useful in drug discovery and therapeutic
development, with emerging potential for incorporation into
automated workflows.195−197

4.2. Rapid Characterization Techniques from Both
Synthetic Polymer Chemistry and Biological Polymers

A variety of polymer characterization techniques have been
successful in high-throughput workflows. In the following
sections, we discuss methods to incorporate traditional
polymer characterization tools (e.g., chromatography and
scattering) as well as to adapt techniques developed in
adjacent fields that find applicability in polymer chemistry
(e.g., colorimetric assays).
4.2.1. Incorporating Common Polymer Character-

ization Tools into High-Throughput Workflows. Some
traditional characterization tools for polymeric materials that
report on polymer properties, such as chromatography,
scattering, and thermal analysis, have been incorporated into

Figure 8. Characterization methods organized by data acquisition and
processing times (x-axis) and material required (y-axis). Italicized are
the properties that are evaluated by each technique.
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high-throughput workflows through autosamplers and well-
plate formats. While these approaches have increased the speed
and efficiency of data acquisition, it should be noted that user
input is often required for common analysis techniques and
can limit throughput. Chromatographic techniques such as size
exclusion chromatography (SEC) and liquid chromatography
(LC) can provide diverse information, including polymer
conformation20,98,198 and function.198 Common size descrip-
tors (Mn, Mw, Rg, and Đ) can be acquired through SEC, and
coupling these techniques with light scattering detectors (SEC-
MALS) or mass spectrometry (LC-MS) can expand the
information obtained per sample run.131,199,200

Scattering methods also provide information-rich data and
can be high throughput. Dynamic light scattering (DLS) can
be performed in 384-well plate formats201 to yield the size
distribution of particles or polymers in solution or measure
viscosity.202,203 Additionally, techniques such as wide-angle X-
ray scattering (WAXS) and small-angle X-ray or neutron
scattering (SAXS, SANS) are used to characterize shape and
structure on the length scale of a few angstroms up to
hundreds of nanometers.204−207 This instrumentation is more
commonly found at national laboratories (e.g., Oak Ridge,
Brookhaven, Lawrence Berkeley, and Argonne National
Laboratories),131,206 but availability may fluctuate for user
submissions. Additionally, the quality of light scattering data is

generally sensitive to sample preparation, and practical
guidelines to strengthen SAXS data acquisition and processing
are available.208 Further, SAXS data collection can be coupled
with rapid flow synthesis.209

Thermal analysis can also be performed by small scale, rapid
analysis. Microdifferential scanning calorimetry (micro-DSC)
yields the melting point, revealing conformational changes in
proteins and soft matter, such as the denaturing of collagen.210

While DSC is limited in throughput, differential scanning
fluorimetry (DSF) can rapidly detect thermal transitions by
tracking changes in solvatochromic fluorescent dyes with
affinity for hydrophobic regions of a protein that become
exposed upon unfolding.211 DSF can also probe binding
interactions between proteins and small molecules or polymer
networks5,212,213 with low sample burden (10 pmol) by
measuring temperature-dependent fluorescence changes with
simultaneous real time-PCR instrumentation.214 However,
DSF depends strongly on protein-reporter interactions and
not every reporter will capture relevant thermal shifts.215

4.2.2. Adapting Biological Characterization Techni-
ques for Synthetic Polymers. Polymer chemistry has also
found success in adapting tools from biological workflows
(Figure 9a). These tools are typically capable of characterizing
conformation and binding profiles for biopolymers, including
proteins, which are laborious to synthesize and can be unstable

Figure 9. Biological techniques adaptable to synthetic macromolecule characterization. (a) Overview of the structural and functional
characterization techniques described herein. (b) Surface plasmon resonance (SPR): the target flows through a channel over a ligand immobilized
on a metal sensor surface. Changes in the refractive index upon binding provide real-time information regarding kinetics and affinities between
binding partners. (c) Affinity selection mass spectrometry (AS-MS): unbound target molecules or ions are isolated physically or through dialysis
techniques from a macromolecular binding partner, then quantified to determine the bound fraction across a range of target concentrations. (d)
Isothermal titration calorimetry (ITC): one binding partner, typically the target, is titrated gradually into a dilute solution of the other, while the
resulting heat change is measured against a reference cell. Peak integration of each binding event and subsequent curve fitting yields ΔH, binding
stoichiometry (N), and association constant (Ka). (e) Ion mobility spectrometry-mass spectrometry (IMS-MS): ions are separated based on size,
charge state, and collisional cross section, resolving differences in polymer architecture or conformation. (f) Förster resonance energy transfer
(FRET): the transfer of energy from excitation of a donor group to an acceptor moiety in close proximity enables the measurement of through-
space interactions, and this can probe properties such as conformation or end-to-end distance (Adapted from ref 234. Copyright 2023 American
Chemical Society).
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in ambient conditions. These techniques therefore produce
information-rich outputs using small amounts of materials, and
they can typically be performed in well plates.
The binding profile of a material can be quantified through

multiple techniques. Surface plasmon resonance (SPR)
determines binding stoichiometry and kinetics with high
sensitivity by measuring changes in the refractive index of a
thin film sensor surface with an immobilized ligand or
analyte.216 Continuous flow of the complementary partner
through a single channel can screen upward of 102 samples per
day and has been used to study polymer−polymer interactions
(Figure 9b).5,217 Affinity selection mass spectrometry (AS-MS)
characterizes protein−ligand interactions by quantifying either
the bound or unbound ligands with mass spectrometry, often
coupled with reversed phase or size exclusion chromatography
(Figure 9c).218,219 This method has also been used to study
adsorption of metals105,220 and per- and polyfluorinated alkyl
substances (PFAS)221 to polymer resins, as well as binding of
polymers to other larger biomolecules.222 Additionally, this
method is amenable to both immobilized or solution-phase
applications by using physical filtration or dialysis to isolate the
bound material, respectively. In small systematic studies
(∼101), isothermal titration calorimetry (ITC) has be used
to probe binding thermodynamics for proteins,223,224 pep-
tides,225,226 and soft materials227 by measuring solution heat
changes as a target and ligand are slowly combined (Figure
9d). Although ITC is limited by longer experiment times,
autosampling capabilities improve viability for characterization
of hit materials identified in larger screens.35,227 Finally,
metallochromic dyes have been further used to visually screen
the binding efficacy of materials, such as with immobilized
peptoid ligands for hexavalent chromium and cadmium
ions.105,228

Apart from binding a target material, several techniques exist
to quantify the intrinsic conformation or size of a polymer,
including ion mobility spectrometry (IMS), fluorescence
techniques, and colorimetric dyes. IMS can be coupled with
mass spectrometry to differentiate molecules by size based on
drift time (Figure 9e). IMS has been used to study protein
disorder,229,230 sequence-defined polymers,231 and polymer
architecture.232 Förster resonance energy transfer (FRET)
instead quantifies through-space proximity between donor and
acceptor fluorescent moieties to report on conformational
changes in polymer brush networks233 and in single chain
polymers (Figure 9f).234 Fluorescence anisotropy, also called
fluorescence polarization (FP), measures the tumbling rate of a
fluorophore through solution, which is correlated with
apparent size.5 This technique also requires a fluorescent
probe, and has been used to determine the fluidity or rigidity
of lipid and polymer membranes235 and yield time-resolved
conformation and dynamics analysis of polymers in sol-
ution.236−238

Dyes not coupled to the polymer can span solvatochromic,
colorimetric, or fluorogenic types, and are capable of
characterizing diverse properties including conformational
changes,98,214 aggregation,239,240 cell viability,241,242 metal ion
uptake,105,243−245 and catalytic activity.45,46 Characterization
using dyes is both accessible and straightforward, involving
minimal sample preparation and rapid throughput in well
plates. For example, Nile red is a fluorescent dye used to
visualize hydrophobic surfaces of proteins,246 polymers,247 and
lipid droplets.248 Other probes, such as pyrene and Reichardt’s
dye, exhibit solvatochromic properties, with absorption or

emission spectra dependent on the polarity of the solvent or
local environment.249 These probes are useful for surveying
both single-chain conformation98,250 and multichain assem-
blies.251−253 Fluorescent dyes, including pentameric formylth-
iophene acetic acid and Thioflavin T, can monitor fibrilization
and β-sheet assemblies,254 and nucleic acid assemblies can be
similarly visualized.255,256 Dye assays also benefit from careful
optimization and validation of assay conditions, including
quantification of nonspecific interactions, background signal,
and photobleaching, in addition to characterization with
existing materials as internal calibrants.
4.3. Balancing Throughput and Data-Rich Characterization

A key consideration in study design is whether a high-
throughput screen or a high-content measurement is most
appropriate. For smaller systematic studies (∼101), implemen-
tation of multiple experimental techniques is feasible to capture
structural and dynamic behavior. When using multiple
characterization methods, a practical guideline is to select
techniques for which the total estimated analysis time does not
significantly exceed the time it takes to prepare the library or
its subsequent expansion(s). Ultimately, the choice of
characterization techniques should balance throughput and
obtaining meaningful structure−property information with
consideration of sampling and time constraints.
To examine the interplay between characterization through-

put and information quality, we can compare how different
techniques vary in utility based on library size. For example, an
ITC can provide a detailed profile of binding interactions
between a ligand and target (i.e., ΔG, ΔS, ΔH, Kd, and
stoichiometry), but the lengthy sample run times, replicates,
and controls required for analysis generally limit its application
to small sample sets on the order of 101. In a large library of
target-binding polymers, where it may not be practical to
characterize every library member, alternative techniques such
as UV−vis or fluorescence may be used to compare binding via
displacement of a competing dye or fluorophore.257−259 This is
an example of proxy characterization by monitoring binding
indirectly, via displacement of the dye, that enables higher-
throughput screening. These alternatives allow for rapid
comparisons of relative affinity across the sample set, ultimately
aiding in the identification of standout materials for further
characterization.
When extrinsic factors significantly influence the properties

of macromolecules, multiple replicates or conditions may be
required. Samples in a library may be assessed with a set
baseline condition, but it may also be insightful to monitor
behavior across different concentrations, pHs, or ionic
strengths. For instance, in recent studies on the design of
polymeric catalysts, the structure and activity profiles (i.e.,
turnover rates and final yields) are sensitive to external reaction
conditions such as solvent, temperature, and substrate
identity.45,46,260

Instrument parameters can be strategically tuned to improve
the throughput of many characterization methods. In
spectroscopic techniques, parameters such as the spectral
width, resolution, and number of scans can be optimized to
reduce acquisition times without compromising the ability to
identify key features or make preliminary assessments. Similar
enhancements can be achieved by changing factors such as the
heat rate or temperature range in thermal analysis techniques
(e.g., DSC and DSF), or the flow rates and column parameters
in chromatographic separation techniques (e.g., HPLC, SEC,
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and LC-MS).199,261,262 For techniques that are not amenable
to well-plate formats, semiautomated workflows can be
achieved by manually preparing samples for autosam-
plers.126,137 Additionally, complementary or tandem ap-
proaches can also be explored. For example, diffuse reflectance
infrared Fourier transform (DRIFT) spectroscopy is an
alternative to NMR to rapidly determine polymer composition
through automated analysis of dry samples,127 and size-
exclusion chromatography has been coupled with an
orthogonal DLS for fast, high-information screening of
aggregation behavior.199

4.4. Data Visualization, Modeling, and Interpretation

High-throughput screens frequently produce multidimensional
data outputs, including multiple feature descriptors and
associated measurements. While some approaches such as
representation learning are capable of handling large amounts
of data in the original feature space, even if it high-dimensional,
direct visualization or interpretation of the data set typically
poses a challenge (Figure 10a).
Dimensionality reduction is the compression of a large set of

features while maximizing the amount of information
preserved from the original set (Figure 10b). Because
information loss is inherent to dimension reduction, which
can be beneficial or detrimental, determining the success of the
approach a priori is not possible. Principal component analysis
(PCA) is a widely used unsupervised technique that generates

new features that are linear combinations of the original
features, ranked in order of the variance captured.263 Typically,
the top one to three principal components are selected to use
in further analysis or visualization. PCA can also represent
experimental outputs such as mass spectra,264,265 FT-IR
spectra,266 fluorescence data,120,267 or molecular dynamics
trajectories.268 PCA has found applications in the development
of gene delivery agents,269 membranes in separations,270 and
protein stabilizers.47 Other types of dimensionality reduction
tools include t-distributed stochastic neighbor embedding (t-
SNE), designed to visualize high-dimensional data using a
mapping onto two- or three-dimensions,271 and uniform
manifold approximation and projection (UMAP), a topology
driven technique.272 For example, the TransPolymer model
uses t-SNE to visualize millions of unlabeled training data
points and data from specific property databases.163 Many
other types of dimension reduction techniques are detailed
thoroughly by Banerjee and co-workers.273

Clustering is another unsupervised technique that can
identify groupings within unlabeled data sets referred to as
classes or clusters, and these algorithms are useful when
groupings are not intuitive or measurable (Figure 10c). While
dimensionality reduction decreases the size of the feature
space, clustering algorithms calculate distances between data
points to place them into clusters. However, distance metrics
tend to be less effective in a high-dimensional space, so
dimensionality reduction prior to clustering can be useful. This
assumes that the reduced dimensions adequately represent the
original data set, and in the case of very large data sets, distance
metrics developed to be robust to high dimensions can be used
for clustering directly.274 One common clustering method is k-
means, which divides data points into nonoverlapping clusters
by minimizing the distance between each point to its assigned
cluster center.275,276 This technique does not describe how
pairs of data points are related. Alternatively, hierarchical
clustering iteratively calculates distances between data to create
clusters between the most similar points, giving not only
cluster assignments but a branched representation of similarity
between data points via dendrogram plots.275,276 A challenge in
cluster analysis is that the true number of clusters contained
within a data set is often unknown, so different scores are used
to assess cluster validity.277 For example, a molecular
photocatalyst library has been visualized through a UMAP
representation and then clustered using k-means to reveal
distinct classes of chemically similar catalysts further compared
for activity.278 These techniques are not limited to very large
data sets: molecular descriptors for 39 thermoplastic stabilizers
were also successfully reduced with PCA and classified with k-
means clustering.279

Both clustering and dimensionality reduction serve purposes
beyond visualization; they are applicable in conjunction with
machine learning models such as neural nets. Fitting a model
to a lower-dimensional space reduces the computational cost
of model training and may improve the model performance,
but the technique and model selection depend on the data set.
For example, a combination of the discussed techniques was
applied in a data-driven study of polymeric drug delivery
injectables3 and to predict accurate annotation of protein
sequences.280

Methods to interpret and glean chemical insight from
optimized models are available. Model interpretability can be
quantified using the “predictive, descriptive, and relevant”
framework discussed by Yu and co-workers, covering model

Figure 10. Data visualization and regression workflow. (a) A high-
dimensional data set presents challenges for both analysis and
visualization. (b) Dimension reduction techniques such as principal
component analysis (PCA) can represent the data on new reduced
axes. (c) Low-dimensional data can then be clustered into different
classes using strategies such as k-means clustering or hierarchical
clustering. (d) Models can be fit and interpreted in a variety of ways,
including regression analysis and calculating SHAP values, to
determine the importance of various features.
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development stages such as model selection, training, testing,
and analysis.281 Current strategies primarily focus on post hoc
interpretability.282 For instance, linear regression models are
easily interpretable, as regression coefficients are correlated to
the impact of different features on the output. This was
demonstrated in a study of Pd-driven catalysis.283 Decision
trees in random forest or gradient boosting algorithms can
reveal which features play inhibitory or cooperative roles in
target outcomes, such as deconvoluting ligand-target inter-
actions for peptides capable of inactivating biological
targets.284

For more complex models like neural nets, different analysis
methods are necessary. Shapley additive explanations (SHAP)
values, which quantify the importance of different features, can
be used to rank the relative importance of features within
predictions.285 These features include different polymer
structure descriptors in diverse problems, including protein
stabilization,47 gas separation membranes,286 and elec-
tronics.287,288 Salience or attention maps can also extract
specific information on how neural nets interact differently
with various features from particular inputs.282 Such
interpretation of neural nets requires caution. Sometimes
these outputs corroborate chemical or physical intuition, like
reaction classification based on functional groups,289 but they
may also lead to unexplainable decisions, referred to as
shortcut learning.290 For example, the KDEEP algorithm, used to
predict binding affinity of protein−ligand complexes, some-
times missed important interactions (e.g., key functional
moieties) or assigned importance to erroneous interactions,
which was analyzed using PlayMolecule Glimpse.291 As the
versatility of deep learning grows, we must continue to
carefully interrogate its representation learning and be mindful
of its interpretability.

5. CONCLUSIONS AND OUTLOOK
As the prevalence and accessibility of high-throughput
methods continues to expand in polymer chemistry, strategies
to efficiently design and perform these experiments and extract
information will be critical. Herein, we have offered different
considerations for the design, synthesis, and characterization of
polymer libraries to enhance structure−property understand-
ing and accelerate material design. A holistic approach to high-
throughput screening that incorporates both experimental and
statistical tools, many of which can be adapted from strategies
implemented with biomacromolecules, will expedite the de
novo design of synthetic materials. While automated liquid
handlers have improved parallel syntheses, there are many
ways to systematically screen a macromolecular space. From
strategic initial sampling to synthetic techniques, we have
provided guidance for accessible methods to study a large
chemical space.
Improving the quality of data sets generated by high-

throughput techniques is critical to successful predictive
modeling and statistics. The rapid development of high-
performing predictive tools in structural biology, such as
AlphaFold, is facilitated by the extensive and standardized
Protein Data Bank data set. While initial successes in predictive
models for polymer science have been achieved, data sets are
specific to each study and scattered across research groups.
Consolidating this data into a larger, open-access database will
facilitate the emergence of more powerful predictive software.
Key to this advance is improving standardization of measure-
ment. The FAIR guiding principle�findable, accessible,

interoperable, reusable�are excellent considerations for data
management. Considering the sensitivity of polymer character-
ization to experimental conditions, incorporating metadata
such as sample preparation and protocols into data sets will be
useful in data comparisons. Further, calibration data points,
such as material standards, are also useful benchmarks and
points of comparison. These open science approaches, where
high-quality data is freely shared, will accelerate and improve
the success of material development.292,293

The increasing abundance of machine learning algorithms
indicates a growing interest in using statistical tools in chemical
workflows. The design, assessment, and reporting of these
tools is essential to facilitate further improvement and
accessibility. Open-access tools should be comprehensible to
researchers from a variety of backgrounds and experience levels
with statistical tools and coding languages. Regular updates and
annotations on open-access platforms like GitHub, along with
detailed instructions on download, installation, and usage will
enhance their accessibility and reach to allow more researchers
to analyze greater amounts of data. Providing an accompanying
set of sample data in the desired format is recommended to
reduce the learning curve and provide a template for new data
inputs.
In summary, the rapid growth of high-throughput character-

ization in polymer science has enabled new data-driven
approaches. We have highlighted advances in the development,
synthesis, and screening of polymer libraries and delineated
practical strategies for harnessing statistical tools in data
representation and interpretation. We are optimiztic about the
future of high-throughput platforms in de novo design of
materials, pushing the boundaries of foundational science and
addressing global challenges.
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(117) Le Neindre, M.; Nicolaÿ, R. One-pot Deprotection and
Functionalization of Polythiol Copolymers via Six Different Thiol-X
Reactions. Polymer international 2014, 63 (5), 887−893.
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