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Abstract

Background: There is a large sex difference in the prevalence of attention deficit disorder; yet, relatively little is known
about sex differences in the development of prefrontal attention circuitry. In male rats, nicotinic acetylcholine receptors
excite corticothalamic neurons in layer VI, which are thought to play an important role in attention by gating the sensitivity
of thalamic neurons to incoming stimuli. These nicotinic currents in male rats are significantly larger during the first
postnatal month when prefrontal circuitry is maturing. The present study was undertaken to investigate whether there are
sex differences in the nicotinic currents in prefrontal layer VI neurons during development.

Methodology/Principal Findings: Using whole cell recording in prefrontal brain slice, we examined the inward currents
elicited by nicotinic stimulation in male and female rats and two strains of mice. We found a prominent sex difference in the
currents during the first postnatal month when males had significantly greater nicotinic currents in layer VI neurons
compared to females. These differences were apparent with three agonists: acetylcholine, carbachol, and nicotine.
Furthermore, the developmental sex difference in nicotinic currents occurred despite male and female rodents displaying a
similar pattern and proportion of layer VI neurons possessing a key nicotinic receptor subunit.

Conclusions/Significance: This is the first illustration at a cellular level that prefrontal attention circuitry is differently
affected by nicotinic receptor stimulation in males and females during development. This transient sex difference may help
to define the cellular and circuit mechanisms that underlie vulnerability to attention deficit disorder.
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Introduction

Attention deficit disorders are at least twice as prevalent in

males than females [1–3], yet the neurobiology behind this sex

difference is not well understood. The normal development of the

prefrontal cortex is critical for executive functions including

attentional control [4–6]. Children with attention disorders appear

to have higher activation of the prefrontal cortex at baseline and

less change in its activation and synchronization with other cortical

regions during the performance of attention tasks [7]. Within the

prefrontal cortex, the corticothalamic neurons of layer VI are

thought to play a key role in this cortical synchronization and also

play a role in the thalamic gating necessary for attention [8].

However, very little is known about sex differences in the

development of layer VI.

Recent work has shown that layer VI corticothalamic neurons

in male rats are prominently excited by nicotinic acetylcholine

receptors during early postnatal development [9]. This time period

is developmentally equivalent to the last trimester of human

gestation [10,11]. Importantly, during this time, the prefrontal

cortex is highly vulnerable to toxins and developmental insults [5],

which predispose individuals to subsequent attention disorders.

For example, prenatal exposure to the drug nicotine increases the

risk of attention deficits [12,13], particularly in males [14].

Interestingly, polymorphisms in the a4 nicotinic receptor subunit

found in layer VI corticothalamic neurons have been associated

with differences in performance on attention tasks [15–17].

However, most of these studies have not compared attentional

performance by sex.

It is not known whether there are sex differences in the

modulation of layer VI neurons by nicotinic acetylcholine

receptors during development since previous work only examined

male rats [9]. Here, we address this question with whole cell

recording in acute brain slices of rodent prefrontal cortex across

early postnatal development in both sexes. This technique allows

us to assess the function of nicotinic receptors on layer VI

pyramidal neurons and the effects of nicotine on these cells,

without the confound that would arise in vivo due to different rates

of systemic metabolism for nicotine in male and female rodents

[18,19].

Materials and Methods

Animals
These protocols conformed to international guidelines on the

ethical use of rodents and were approved by the University of
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Toronto Animal Care and Use Committee. The founding mice

were from Jackson Laboratory (Bar Harbor ME) and the rats from

Charles River (Senneville PQ). Average litter sizes were 5–7 (mice)

and 8–10 (rats). The pups were housed with their mothers until

postnatal (P) day 21–22 and then housed in groups of 2–4 per

cage. The facility has an ambient temperature of 22uC with a 12-

hr light/dark cycle (lights on at 7 a.m.), and the cages have

the following dimensions: (mouse) 7 L61266 K’’ and (rat)

10 K61968’’.

Brain Slice Preparation
After anaesthesia with choral hydrate (400 mg/kg), we prepared

400 mm thick coronal slices of the medial prefrontal cortex from

male and female FVB mice (P7-P34), C57Bl/6 mice (P7-P28), and

Sprague-Dawley rats (P14–28). The brain was cooled as rapidly as

possible with 4uC oxygenated sucrose artificial cerebrospinal fluid

(ACSF) with 254 mM sucrose substituted for NaCl. Prefrontal

slices were cut from anterior to posterior using the appearance of

white matter and the corpus callosum as anterior and posterior

guides to target recording to the Cg1, Cg2 and PrL regions [20].

The slices were cut on a Dosaka Linear Slicer (SciMedia, Costa

Mesa CA) and were transferred to room temperature oxygenated

ACSF (128 mM NaCl, 10 mM D-glucose, 24 mM NaHCO3,

2 mM CaCl2, 2 mM MgSO4, 3 mM KCl, 1.25 mM NaH2PO4;

pH 7.4) in a prechamber (Warner Instruments, Hamden CT) and

allowed to recover for at least 1 hr prior to the beginning of an

experiment. For whole cell recording, slices were placed in a

modified superfusion chamber (Warner Instruments, Hamden

CT) mounted on the stage of an Olympus BX50WI microscope

(Olympus Canada, Markham ON). Regular ACSF at room

temperature was bubbled with 95% oxygen and 5% carbon

dioxide and flowed over the slice at 3–4 ml/minute.

Electrophysiology
Whole cell patch electrodes (2–3 MV) contained 120 mM

potassium gluconate, 5 mM KCl, 2 mM MgCl, 4 mM K2-ATP,

0.4 mM Na2-GTP, 10 mM Na2-phosphocreatine, and 10 mM

HEPES buffer (adjusted to pH 7.33 with KOH). Medial prefrontal

cortex layer VI neurons were patched under visual control using

infrared differential interference contrast microscopy. In voltage-

clamp, neurons were held at 275 mV, near the equilibrium

potential for chloride under our conditions, and currents were

recorded using continuous single electrode voltage clamp mode

with an EPC10 (HEKA Electronics, Mahone Bay NS), acquired

and low-pass filtered at 3 kHz with Patchmaster 2.20 (HEKA

Electronics, Mahone Bay NS).

Pharmacology
For most experiments, nicotinic currents were probed by adding

1 mM acetylcholine to the bath perfusion for a 15 s or 30 s

interval, followed by a five-minute washout period. This

concentration elicited a near-maximal response in both males

and females that could be repeated reliably following a 5-minute

washout period. Recordings were performed in the presence of

atropine (200 nM) to block muscarinic receptors and methyllyca-

conitine (MLA; 10 nM) to block a7 nicotinic receptors. The peak

current was measured in Clampfit (Molecular Devices) by

subtracting the mean inward current at the peak (averaged over

1 s) of the acetylcholine response from the mean holding current

during baseline (averaged over 30 s). The following compounds

were added to the bath in specific experiments: 3 mM dihydro-b-

erythroidine hydrobromide (DHbE), 1 mM carbachol, and

300 nM nicotine hydrogen tartrate. All compounds were obtained

from Sigma (Sigma Aldrich Canada, Oakville ON) or Tocris

(Cedarlane Laboratories, Burlington ON) and stored in stock

solutions at 220uC before being diluted and applied to the slice in

oxygenated ACSF.

Immunohistochemistry
A knock-in mouse line in which the nicotinic acetylcholine

receptor a4 subunit has been labeled with the YFP motif has been

generated on a C57Bl/6 background and described previously

[21]. Immunohistochemistry for YFP was performed to identify

the distribution pattern of neurons containing Æ4 subunits in layer

VI of male and female medial prefrontal cortex. Mouse brains

were collected and 400 mm thick coronal sections of the prefrontal

cortex were made as described above for electrophysiology. For

each mouse, immunohistochemistry for YFP was performed on a

brain slice that was directly anterior to the corpus callosum,

corresponding with approximately Bregma +1.34 mm to

+1.74 mm [20]. Slices were incubated in oxygenated ACSF for

one hr and were then fixed in a solution containing 4% (wt/vol)

paraformaldehyde in 100 mM phosphate buffer (pH 7.5) over-

night at 4uC.

Free-floating sections were washed with Tris-buffered saline

(TBS, 100 mM Tris and 150 mM NaCl, pH 7.5) and then

incubated in 10% (wt/vol) bovine serum albumin (BSA), 0.25%

(vol/vol) Triton X-100 and 4 drops/mL of a streptavidin solution

(Vector Laboratories, Burlington ON) in TBS for 1 hr at room

temperature. Sections were washed with TBS and incubated with

a rabbit anti-GFP primary antibody which also recognizes YFP

(Invitrogen, Burlington ON; 1:200 dilution) with 3% (wt/vol) BSA,

0.25% (vol/vol) Triton X-100 and 4 drops/mL of a biotin solution

(Vector Laboratories) in TBS for 72 hr at 4uC. Sections were

washed in TBS and incubated with a biotinylated goat anti-rabbit

secondary antibody (Invitrogen; 1:500 dilution) with 3% (wt/vol)

BSA and 0.25% (vol/vol) Triton X-100 in TBS for 24 hr at 4uC.

Sections were washed in TBS and then incubated with

streptavidin labeled with Alexa Fluor 594 (Invitrogen, 1:500

dilution) with 3% (wt/vol) BSA and 0.25% (vol/vol) Triton X-100

in TBS for 24 hr at 4uC. Sections were washed with TBS,

incubated in a solution containing 1.5 mg/mL 4’,6-diamidino-2-

phenylindole (DAPI) dilactate (Sigma Aldrich) in TBS for 2 hr at

room temperature, washed again with TBS, mounted onto

microscope slides and cover-slipped using Fluoromount G (South-

ernBiotech, Birmingham AL).

Imaging
Multi-photon imaging of the immunostained sections was

performed using a Ti:sapphire laser (Mai Tai, Spectra Physics,

Mountain View CA) tuned to wavelength 780 nm and an

Olympus Fluoview FV1000 microscope (Olympus, Markham

ON) with an Olympus XLPlan N 25x, 1.05 NA water-immersion

objective. The inherent Z-sectioning in multiphoton imaging

allowed us to examine the immunostaining in the top 20 mm of the

slice where there was excellent penetration of the antibodies and

DAPI. Green and red fluorescence were separated with a dichroic

mirror at 570 nm and filtered with green: BA495–540 nm and

red: BA570-625 nm filters (Olympus), respectively. Multiphoton

images containing green and red channels, measuring

500 mm6500 mm (x,y), taken at equivalent depths from the top

of the slice (approximately 12 mm deep), and having overlapping

edges were captured with Olympus Fluoview FV10-ASW

software. Six images were acquired per mouse covering the

prelimbic and infralimbic areas of the medial prefrontal cortex

from the pial surface to the white matter basal to layer VI. These

images were then were stitched together to create one montage
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image using Image-Pro Plus software (Media Cybernetics,

Bethesda, MD).

The proportion of neurons expressing the a4b2* nicotinic

receptor was measured by counting the total number of YFP-

immunoreactive neurons within a defined counting area of medial

prefrontal layer VI in the red-channel montage and dividing by

the total number of DAPI-positive neurons within that same

counting area in the green-channel montage. Since DAPI can

stain all cells, DAPI-positive neuronal nuclei were identified by the

following criteria: their round shape with a diameter $7 mm and

generally diffuse staining with a few discrete regions of intense

staining that likely represent heterochromatin [22]. We found

these criteria allowed us to differentiate between neuronal nuclei

and those from endothelial cells (long and thin nuclei) and glia

(smaller nuclei with intense DAPI staining). The use of similar

criteria has been verified previously for use to identify neurons

[22]. Further, we confirmed these criteria by staining slices with

both DAPI and the neuronal-specific fluorescent Nissl stain

NeuroTrace (1:100, Invitrogen), as illustrated in the example in

Figure S1.

The counting area was defined on the red-channel montages by

first drawing a 750 mm-long basal line along the base of medial

prefrontal layer VI (between layer VI and white matter) that

generally extended along the base of the prelimbic and infralimbic

areas. Next, a radial line was drawn at each end of the basal line

that was perpendicular to the basal line and extended towards the

pial surface, ending at the medial edge of the band of YFP-

immunoreactive neurons. Last, a medial arc was drawn connect-

ing the medial ends of the two radial lines and defining the curved

medial length of the band of YFP-immunoreactive neurons. No

measure showed a significant sex difference, but in accordance

with stereological conventions, we only report the ratio of YFP-

positive to DAPI-positive neurons.

Statistical Analysis
We used parametric or non-parametric statistical tests when the

data under analysis passed or failed respectively the Shapiro-Wilk

test for normality. The developmental changes in male and female

nicotinic currents were assessed with Kruskal-Wallis nonparamet-

ric ANOVA and post hoc Mann-Whitney nonparametric t tests. In

order to test for gender and drug effects, DHbE, carbachol, and

nicotine data were analyzed with two-way repeated measures

ANOVA. Post hoc tests were performed to determine specific

differences, when overall ANOVA results indicated significant

effects of drug. Differences in acetylcholine response after nicotine

exposure were determined using Wilcoxon signed-rank nonpara-

metric paired t tests. Differences in intrinsic cell properties were

examined with unpaired Student t tests. In all tests, a level of

P,0.05 was required to indicate a significant difference. All data

are expressed as the mean 6 standard error.

Results

Developmental Differences in Nicotinic Currents in Male
and Female FVB Mice

We find that layer VI pyramidal neurons in mouse prefrontal

cortex are excited by nicotinic acetylcholine receptors. To observe

and characterize the sex differences in nicotinic currents, we

performed whole cell recordings at 275 mV in brain slices from

male and female mice. The nicotinic inward currents were

stimulated by bath application of acetylcholine (1 mM, 30 s) in the

presence of atropine (200 nM) to block muscarinic receptors, the

G-protein-coupled subtype of acetylcholine receptors. Atropine is

included in all subsequent experiments. Bath application of

acetylcholine elicited inward currents in layer VI neurons as

demonstrated in Figure 1A in males and females. Preliminary

concentration-response analysis (100 mM–3 mM acetylcholine)

within individual neurons suggested that 1 mM acetylcholine

elicited near-maximal responses in both males and females, which

could be reproduced following a five-minute washout period.

Rapid, local application of acetylcholine can elicit currents of

similar amplitudes to those obtained with bath application in layer

VI pyramidal neurons [9] but, in fact, often elicits smaller currents

since the placement of the applicator may preclude the stimulation

of nicotinic receptors away from the soma. The size and reliability

of the peak response with the bath application of 1 mM

acetylcholine makes it an ideal measure to compare across

different pharmacological conditions to assess the properties of

the layer VI nicotinic currents.

In FVB mice, nicotinic inward currents in layer VI neurons

showed significant developmental regulation as shown by Kruskal-

Wallis ANOVA. Comparing the mean peak current amplitude

across early postnatal weeks demonstrates the developmental

upregulation of nicotinic excitation in male and female layer VI

neurons as illustrated in Figure 1B. In both sexes there appears to

be a developmental peak level of nicotinic currents (weeks three

and four for males, week three for females) which declines

significantly by week five; however, the developmental upregula-

tion of the nicotinic currents appears less prominent in the female

FVB mice. Further examination suggests that the week five

nicotinic currents in layer VI pyramidal neurons are not

significantly different to those in the adult FVB mice (adult males:

4169 pA, n = 20; adult females: 3966 pA, n = 24; unpaired t test,

P = NS).

Sex Differences in the Peak Amplitude of Nicotinic
Currents in FVB Mice during Development

We observed a significant sex difference in the amplitude of the

nicotinic currents elicited in layer VI neurons during the first

postnatal month. As illustrated in Figure 1C, there is a sex

difference in acetylcholine-elicited nicotinic inward currents

during postnatal weeks three and four. Two-way ANOVA showed

a significant effect of sex (F1,241 = 21.44, P,0.0001) and postnatal

week (F3,241 = 5.79, P,0.001) on nicotinic currents and a

significant interaction between sex and postnatal week

(F3,241 = 2.68, P,0.05). Layer VI neurons from males had

significantly higher currents than those from females during

postnatal week three (males: 5665 pA, n = 41; females: 3865 pA,

n = 43; Mann-Whitney test, P,0.01). Similarly, layer VI neurons

from males had significantly higher currents than those from

females during postnatal week four (males: 6666 pA, n = 44;

females: 2567 pA, n = 22; Mann-Whitney test, P,0.01). During

these weeks, there was no significant sex difference in the resting

membrane potential (males: 277.462.6 mV; females:

277.162.4 mV; unpaired t test, P = NS) or input resistance

(males: 246611 MV, females: 272612 MV; P = NS). Spike

amplitude was slightly greater in neurons from females than males

during postnatal weeks three and four (males: 87.565.4 mV,

females: 94.462.5 mV, p,0.05). In order to look at nicotinic

effects on excitability of layer VI pyramidal neurons of males and

females during this developmental period, we applied acetylcho-

line (1 mM, 30 s) to a subset of neurons while recording in current

clamp. Acetylcholine had significantly greater effects on excitabil-

ity (Chi-squared test, P,0.05) in the male slices, where 77% (10 of

13 neurons) depolarized sufficiently to fire action potentials,

compared to the female slices, where only 36% (5 of 14 neurons)

depolarized to this extent.

Nicotinic Sex Difference
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Figure 1. Developmental sex difference in nicotinic currents in layer VI neurons of prefrontal cortex. (A) Examples of voltage clamp
traces from a P19 male and a P27 female showing nicotinic inward currents during bath application of acetylcholine (1 mM, 10 s). Line denotes
acetylcholine application. Both males and females have reproducible, non-desensitizing currents elicited by bath-applied acetylcholine, when given
five-minute washout duration. (B) Bar chart summarizing the mean amplitude of the peak inward current elicited by acetylcholine in FVB male (left
panel) and female (right panel) mice in layer VI across postnatal weeks two to five. In males, there is a significant developmental effect where the
mean nicotinic current during postnatal weeks three and four are significantly higher than the mean inward current during postnatal weeks two and
five (* P,0.05). In females, there is also a significant developmental effect where the mean nicotinic current during postnatal week three is
significantly higher than the mean inward current during postnatal weeks two and five (* P,0.05). (C) Bar graph displays the sex difference in the
average inward current elicited by nicotinic receptor stimulation by acetylcholine (1 mM, 30 s). Males (black bars) have significantly greater currents
than females (open bars) during postnatal weeks three and four (** P,0.01). All recordings are performed in the presence of atropine (200 nM) to
block muscarinic receptors and MLA (10 nM) to block a7 nicotinic receptors.
doi:10.1371/journal.pone.0009261.g001
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Layer VI Nicotinic Currents Mediated by a4b2* Nicotinic
Receptors in Both Males and Females

To test our hypothesis that the nicotinic currents in layer VI

neurons are mediated by a4b2* nicotinic receptors, we investi-

gated the effects of the competitive antagonist di-hydro-b-

erythroidine (DHbE) on the currents elicited by acetylcholine.

We found that DHbE (3 mM, 10 min) almost completely

suppressed the nicotinic currents in all layer VI neurons tested

in both males and females. Two-way repeated measures ANOVA

revealed a highly significant effect of DHbE (F1,9 = 122.21,

P,0.0001) and no significant interaction between sex and the

effects of DHbE on nicotinic currents. Male currents were

significantly suppressed (control: 9269 pA, DHbE: 1965 pA;

n = 6; paired t test; P,0.001; age-range examined: P16–P22).

Female currents were also significantly suppressed (control: 6369

pA; DHbE: 863 pA, n = 5; paired t test; P,0.01; age-range

examined: P16–P23). This pharmacological data suggests that

DHbE-sensitive receptors are the primary contributors to the

nicotinic currents in layer VI pyramidal neurons in both male and

female FVB mice. Residual current in the presence of DHbE was

likely the result of competitive displacement of the antagonist by

the high concentration of the agonist. Briefer application of

acetylcholine (1 mM, 15 s) resulted in a current of similar

amplitude to that elicited by the longer application, and DHbE

completely eliminated the current in both sexes (n = 5; data not

shown).

Sex Differences in Nicotinic Currents Across Mouse
Strains and Species of Rodent

To test if the developmental sex difference in nicotinic currents

occurs across different strains of mice, we performed whole cell

recordings on layer VI neurons from C57Bl/6 mice from weeks 2

to 4. Consistent with data from FVB mice, we found a sex

difference in C57Bl/6 mice. Layer VI neurons from males had

significantly greater inward currents elicited by acetylcholine than

those from females during postnatal week three (males: 6169 pA,

n = 18; females: 3267 pA, n = 17; Mann-Whitney test, P,0.05).

Interestingly, the developmental upregulation of the nicotinic

currents was restricted to week three in the male C57Bl/6 mice;

however, this developmental upregulation appeared to be absent

in the females.

To test if this developmental sex difference occurs across

different rodent species, we examined the nicotinic currents in

layer VI neurons of male and female rats from postnatal weeks 3

and 4. We chose this time period for analysis since it is consistent

with the development peak for nicotinic currents in male rats [9].

Consistent with data from both strains of mice, we found a sex

difference in rats. Layer VI neurons from male rats had

significantly greater inward currents elicited by acetylcholine

than female rats during postnatal week three (males: 80613 pA,

n = 25; females: 41610 pA, n = 16; Mann-Whitney test,

P,0.001). Similarly, males had greater inward acetylcholine-

elicited currents than females during postnatal week four (males:

7669 pA, n = 21; females: 3867 pA, n = 11; Mann-Whitney test,

P,0.01). The male rat data from weeks 3 and 4 is completely

consistent with the means observed during the peak of the

developmental upregulation during this time period in our

previous study [9].

Thus, the developmental sex differences in layer VI nicotinic

currents are observed in FVB and C57Bl/6 mice, and Sprague

Dawley rats, where male rodents have significantly greater inward

currents elicited by acetylcholine than female rodents during an

important period of cortical development.

A Prominent Sex Difference in the Nicotinic Currents
Elicited by Carbachol, an Analogue of Acetylcholine Not
Broken Down by Acetylcholinesterase

Acetylcholinesterase, the enzyme which metabolizes acetyl-

choline, is expressed in the deep layers of cingulate cortex early

in postnatal development [23]. Sex differences in acetylcholin-

esterase activity have been previously reported in the cerebral

cortex of adult rodents [24], suggesting that nicotinic currents

elicited by acetylcholine might be under differential control by

acetylcholinesterase in males and females during early postnatal

development. To test whether different acetylcholinesterase

activity accounts for the sex differences in nicotinic currents, we

probed nicotinic currents using carbachol, a nicotinic receptor

agonist that is not broken down by endogenous acetylcholines-

terase. As expected, the inward currents elicited by carbachol

(1 mM, 30 s) persisted for a longer duration compared to the

inward currents elicited by acetylcholine (1 mM, 30 s) in both

males and females, as seen in the voltage clamp traces in

Figure 2A and 2B. This longer decay suggests that

acetylcholinesterase normally contributes to the rapid removal

of acetylcholine from the slice during the washout period.

However, the peak current elicited by carbachol was very

similar to that elicited by acetylcholine in both males (n = 12)

and females (n = 13), as shown in Figure 2C. Two-way

repeated measures ANOVA demonstrates a significant effect

of sex (F1,23 = 11.59, P, 0.01), but no difference between

acetylcholine and carbachol and no significant interaction

between the effects of carbachol and sex. These results suggest

that different levels of expression or activity of acetylcholines-

terase do not account for our observed sex differences in

nicotinic currents during development.

Nicotine Elicits a Greater Inward Current in Males
Compared to Females, but Similar Subsequent
Desensitization of Acetylcholine Currents

A concentration of nicotine (300 nM), consistent with the

peak blood level seen in smokers [25], elicited a larger inward

current in layer VI neurons from male FVB mice than in those

from females. The voltage clamp traces in Figure 3A illustrate

the persistent inward currents elicited by nicotine (300 nM,

10 min) in male (top) and female (bottom) layer VI neurons.

The bar chart illustrated in Figure 3B shows the mean currents

elicited by nicotine in male and female layer VI neurons. The

inward current elicited by nicotine is greater in layer VI neurons

from males than females in the third and fourth postnatal weeks:

(males: 2363 pA, n = 11; females: 1264 pA, n = 8; unpaired t

test, P,0.05). These results with a relatively low concentration

of nicotine are consistent with the sex difference observed with

the near maximal nicotinic receptor stimulation with acetylcho-

line and carbachol.

We then investigated the extent of nicotine-induced desensiti-

zation of the currents elicited by acetylcholine in male and female

layer VI neurons. At the time that the inward current elicited by

nicotine had returned to baseline (,5 minutes washout; [9]), the

subsequent inward current in response to acetylcholine was

suppressed in both male and female FVB mice. Two-way repeated

measures ANOVA demonstrates a significant effect of sex

(F1,13 = 5.16, P, 0.05), an extremely significant effect of nicotine

desensitization (F1,13 = 37.12, P,0.0001) and no significant

interaction between nicotine desensitization and sex. Figure 3C
illustrates a representative response to acetylcholine before and

after a ten-minute application of nicotine, showing a significant

suppression of the current elicited by acetylcholine. Figure 3D

Nicotinic Sex Difference
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shows the mean inward currents before and after nicotine in males

and females: (males: 82616 pA before, 43611 pA after, n = 10;

Wilcoxon signed rank test, P,0.01, age range examined: P14–

P26; females: 2967 pA before and 1064 pA after, n = 5;

Wilcoxon signed rank test P,0.05, age range examined: P15–

P26). Thus, while a concentration of nicotine that is relevant to

developmental nicotine exposure [25,26] is able to activate larger

inward currents in male layer VI neurons than females, this

exposure substantially desensitizes the nicotinic currents elicited by

acetylcholine in both male and female mice.

Figure 2. Developmental sex difference in nicotinic currents is not explained by different levels of acetylcholinesterase
activity. (A) Voltage clamp traces showing inward currents during bath application of nicotinic acetylcholine receptor agonists (1)
acetylcholine (1 mM, 30 s) and (2) carbachol (1 mM, 30 s), an acetylcholine analogue that is not broken down by endogenous
acetylcholinesterase, in the same layer VI neuron from a P17 male FVB mouse. (B) Voltage clamp traces from the same agonist applications
in a layer VI neuron from a P17 female FVB mouse. In both, males and females, the inward current persists longer after carbachol compared to
acetylcholine, since the acetylcholinesterase in the brain slice metabolizes applied acetylcholine allowing the cell to return to baseline faster.
(C) Bar chart summarizing the mean current amplitude elicited by 30 s application of 1 mM acetylcholine or carbachol (**P,0.01). The sex
difference persists when the inward currents are elicited with 1 mM carbachol, suggesting that acetylcholinesterase levels do not account for
the sex difference in nicotinic currents.
doi:10.1371/journal.pone.0009261.g002

Nicotinic Sex Difference
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Similar Proportion of Layer VI Neurons with the a4
Nicotinic Subunit in Males and Females

During postnatal weeks three and four, 96% (82 of 85 neurons)

of male but only 83% (54 of 65 neurons; Chi-squared test,

P,0.01) of female layer VI neurons showed an inward current

elicited by acetylcholine which was greater than 3x RMS baseline

noise. While there remained a significant sex difference in the

amplitude of the currents after removing the non/minimal

responders (males: 6364 pA, n = 82; females: 4165 pA, n = 54;

unpaired t test, P,0.001), the lower proportion of cells responsive

Figure 3. Developmental sex difference in current elicited by nicotine, but not its desensitization of acetylcholine currents. (A)
Exemplary voltage-clamp traces showing a small, persistent inward current elicited by nicotine (300 nM, 10 min) in a layer VI neuron from a P21 male
(top) and a P19 female (bottom). This concentration of nicotine is consistent with the peak blood level of nicotine seen in smokers [24] and is relevant
to developmental nicotine exposure [25]. (B) Bar graph to the right showing the mean inward current elicited by 300 nM nicotine in typical male and
female layer VI neurons. Nicotine elicited greater inward currents in male neurons than females (P,0.05). (C1) A voltage-clamp trace from a P21 male
shows a robust inward current with acetylcholine (1 mM, 30 s) before application of nicotine. (C2) A voltage-clamp trace from the same neuron taken
five minutes after the end of a ten minute application of nicotine (300 nM) shows that the inward current elicited by acetylcholine (1 mM, 30 s) is
significantly decreased. (D) Bar chart showing the highly significant suppression of the inward current elicited by acetylcholine (1 mM, 30 s) in males
and females after the above nicotine exposure. The latter inward currents elicited by acetylcholine were examined five minutes after nicotine
application when its inward current had returned to baseline (*P,0.05, ** P,0.01).
doi:10.1371/journal.pone.0009261.g003
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to acetylcholine suggested that male and female mice may have a

different proportion of layer VI neurons containing nicotinic

receptors. To address this question, we examined layer VI

neurons in a C57Bl/6 strain of knock-in mice expressing

fluorescent a4* nicotinic receptors (a4YFP; [21]). By homologous

recombination in these mice, YFP was inserted in the gene

encoding for the M3-M4 cytoplasmic domain of the a4 nicotinic

receptor subunit rendering a fluorescently tagged a4 subunit. As

demonstrated in Figure 4A, electrophysiological examination of

prefrontal brain slices from these mice show nicotinic currents in

layer VI neurons with a prominent sex difference at postnatal

week three: (males: 5766 pA, n = 34; females: 2867 pA, n = 15;

Mann Whitney test, P,0.01). This difference is similar to what

we recorded in the wildtype C57Bl/6 mice in the previous

section. Furthermore, 100% (34 of 34 neurons) of male and only

80% (12 of 15 neurons) of female layer VI neurons in these

a4YFP mice showed inward currents in response to acetylcholine

(Chi-squared test, P,0.05). Therefore, this knock-in mouse is a

suitable model for studying possible anatomical substrates of our

observed sex differences.

Figure 4. Developmental nicotinic currents and nicotinic a4YFP-positive neurons in male and female knock-in mice. (A) Bar graph
showing larger inward currents in male a4YFP knock-in mice compared to age-matched female a4YFP knock-in mice during postnatal week three
(**P,0.01). (B) Low-magnification image of P15 male and female prefrontal cortex slices with the YFP signal on the a4YFP subunits amplified using a
3-step immunohistochemistry protocol described in the Methods section. Both sexes show a distinct neuronal band of staining in layer VI of the
medial prefrontal cortex (bright red cells), showing the presence of a4* nicotinic receptors. Scale bar: 200 mm. (C) High-magnification of (1) YFP
immunostained neurons, (2) DAPI stained cells, and (3) merged images within layer VI of male (top images) and female (bottom images) prefrontal
cortex. The criteria for identifying DAPI-positive neurons are described in the Methods section. The proportion of neurons expressing a4YFP was not
significantly different between males and females. Scale bar: 20 mm.
doi:10.1371/journal.pone.0009261.g004
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To study the distribution pattern and proportion of layer VI

cells that express nicotinic receptors, we amplified the YFP signal

with a 3-step immunohistochemistry protocol (detailed in

Materials and Methods) in P15–16 mice. As demonstrated in

Figure 4B, prefrontal cortex slices from male and female mice

show a prominent labeling of YFP-positive cells (shown in red) in

layer VI. To detect differences in the proportion of nicotinic

receptor-expressing cells in layer VI, we compared the number of

cells expressing a4YFP to neuronal nuclei labeled by DAPI (shown

in green, see Methods for criteria to determine neurons labeled by

DAPI and Figure S1 for staining with DAPI and NeuroTrace).

Figure 4C shows high-magnification images of a4YFP in layer VI

neurons in male and female prefrontal cortex respectively. The

same areas are shown stained for DAPI, in addition to the merged

images of YFP immunostaining and DAPI. The ratio of a4YFP-

expressing to DAPI-stained cells was not significantly different in

males and females (males: 0.7660.02, n = 5 mice; females:

0.7360.03, n = 5 mice; unpaired t test, P = NS). While we cannot

distinguish between receptors inserted in the cell membrane and

those in intracellular compartments, this data suggests that males

and females do not differ in the pattern or proportion of neurons

positive for a4YFP in layer VI of prefrontal cortex during

development.

Discussion

In this study, we found a prominent developmental sex

difference in the nicotinic currents activated by acetylcholine in

layer VI pyramidal neurons of the prefrontal cortex. The specific

Æ4H2* nicotinic receptor antagonist, DHHE, suppressed these

currents in both sexes suggesting the currents are mediated

predominantly by Æ4H2* nicotinic acetylcholine receptors. The sex

difference persisted when the nicotinic receptors were activated

with carbachol, an analogue of acetylcholine that is not broken

down by endogenous acetylcholinesterase. Consistent with this

data, nicotine applied at the peak concentration of nicotine found

in the blood of smokers [25] produced larger inward currents in

male layer VI neurons when compared to female layer VI

neurons. The prominent sex differences in nicotinic excitation seen

with several different agonists prompted an anatomical investiga-

tion of nicotinic receptors in layer VI neurons during early

postnatal development. We used a knock-in line of Æ4YFP mice

and found a sex difference in the nicotinic currents in layer VI but

no difference in the proportion of YFP-positive neurons between

males and females. Together, our data raise important questions

about the mechanism that underlies the prominent sex difference

in functional nicotinic currents during development as well as the

consequences of this sex difference for the maturation of

corticothalamic attention circuitry.

Potential Mechanisms Underlying Sex Differences in
Developmental Nicotinic Currents

The functional sex differences in nicotinic currents we observed

could arise at several potential levels. The maturation process of

nicotinic receptors involves a highly-regulated assembly process in

the endoplasmic reticulum, followed by the trafficking of the

receptor to the membrane [27]. Sex and developmental

differences in these processes have not been extensively examined.

Developmental sex differences have not been reported in the

expression of any rodent nicotinic subunits, including the cortical

a4 and b2 subunits which form the majority of nicotinic receptors

in layer VI [28,29], nor the a5 subunit [29,30] which may act as

an accessory subunit in these neurons [9]. As illustrated in our

immunohistochemical analysis and described previously, there is a

large intracellular population of nicotinic subunits [21,27]. In fact,

a large percentage of the assembled receptors may also be located

intracellularly [27,31] and therefore would not contribute to the

electrophysiologically-recorded currents. One chaperone molecule

that increases the surface expression of Æ4H2* nicotinic receptors

[32] has been shown to be developmentally regulated in primary

culture of cortical neurons [33]. There may also be developmental

and sex differences in the length of time nicotinic receptors remain

in the membrane before being subject to ubiquitylation, a process

involved in nicotinic receptor degradation [34].

On the other hand, the differences in nicotinic currents in male

and female rodents may result from sex differences in cortical

neurosteroid levels either directly or through differential nuclear

translocation of steroid receptors. The sex steroid progesterone has

been reported to influence nicotinic receptor function directly

through negative allosteric modulation of Æ4H2* nicotinic receptors

[35,36]. The sex differences we observe in the present study occur

during the pre-pubertal period, before the surge of gonadal

hormones. However, the rodent brain expresses all the enzymes

necessary for the de-novo synthesis of progesterone from cholesterol

[37,38], and the rate limiting enzyme in this pathway shows a

trend toward greater cortical expression in females than males at

P10 [37]. Interestingly, progestin binding is concentrated in layer

VI cortical region early in development [39,40], suggesting that

progesterone receptors are expressed in the deep layers of cortex.

In agreement with the timing of the sex differences we found in

nicotinic currents in the present study, male and female differences

in nuclear progesterone receptor binding are evident at postnatal

days 14 and 21, with females having significantly greater nuclear

translocation of progesterone receptors [41] than age-matched

males.

Consequences of Developmental Sex Differences in
Nicotinic Stimulation of Layer VI Neurons

Lesions of the cholinergic system during development alter

cortical circuitry [42,43] and neuronal morphology [44,45], with

implications for attention. It is likely that the developmental

excitation of high-affinity nicotinic receptors by endogenous

acetylcholine during this period of development would influence

synaptic plasticity, as has recently been shown with excitation of

nicotinic receptors in prefrontal interneurons [46]. In the case of

layer VI pyramidal neurons, the timing of the sex differences in

nicotinic currents suggests that they may contribute to sex

differences in the refinement and maturation of cortical projec-

tions to the inhibitory thalamic reticular neurons and excitatory

thalamic projection neurons [8,47,48,49]. These projections

control the coordination of excitation and inhibition of the

thalamus that underlies attention [8]. The maturation of

corticothalamic circuitry is influenced by nicotinic receptors

during development [50,51] and thus may contribute to lifelong

sex differences in tasks involving attention [52].

Prenatal nicotine exposure is strongly associated with an

increased incidence of attention deficit disorders [13,53]. Sex

differences in the effects of developmental nicotine exposure on

brain and behavior have been reported in rodents and humans

[14,18,54,55]. Work by Jacobsen showed that males exposed to

nicotine during gestation had the most severe impairment in

auditory attention tasks [14]. However, these findings are

confounded by potential sex differences in the systemic metabo-

lism of nicotine. In rodents and humans, nicotine is metabolized at

different rates in males and females [19,56] and thus, may be

present at different concentrations in the brain in males and

females [57]. An advantage of our experimental approach is that

slice electrophysiology allows nicotinic receptor agonists and
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modulators to be applied directly to the brain slice at known

concentrations and under controlled pharmacological conditions.

Under certain circumstances, it is possible that greater nicotinic

excitation of layer VI neurons in males during cortical maturation

may lead to a greater number of stabilized synapses and thus a

higher baseline activation of prefrontal cortex, a pattern which has

been observed in human imaging studies of ADHD [7]. Increased

distractibility is a prominent feature of ADHD that can result from

the inability of the prefrontal cortex to sufficiently deactivate with

increasing difficulty of attention tasks [7]. It is important for future

studies to examine how nicotinic excitation of layer VI neurons

affects their innervation and activation of both inhibitory and

excitatory thalamic nuclei.

Supporting Information

Figure S1 An example multiphoton merged image of layer VI

cells which are stained with both DAPI (green) and NeuroTrace

(red). Since DAPI can label cells other than neurons, we used the

following criteria to count a DAPI-positive cell as a neuron: round

shape with a diameter $7 mm, generally diffuse staining with

punctate regions of intense staining that likely represent hetero-

chromatin [22]. Here, we show that the DAPI nuclei that meet

these criteria are also co-labeled by NeuroTrace. By contrast, the

red arrows illustrate example DAPI nuclei that do not meet the

neuronal criteria due to their shape, size, and/or intensity of

staining. The latter cells were not co-labeled by NeuroTrace. Scale

bar: 50 mm.

Found at: doi:10.1371/journal.pone.0009261.s001 (0.66 MB JPG)
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