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1   |   INTRODUCTION

The term genotype x environment (GxE) interaction 
describes the variation in phenotypic response of spe-
cific genotypes to specific environments (Lynch & 
Walsh, 1998), i.e. genotypes are differently affected by dif-
ferent environments. Significant GxE interaction can re-
sult in scaling effects, linked with heterogeneity of genetic 
variance in different environments, and in re-ranking of 

genotypes due to their genetic value in different environ-
ments. Ignoring GxE interaction in the context of breed-
ing value estimation can thus lead to suboptimal selection 
decisions given that selection is for a different environ-
ment than the one the trait is measured in. While scaling 
effects only causes problems when breeding indices are 
built from various traits (Dominik & Kinghorn,  2008), 
re-ranking of individuals leads to suboptimal selection 
decisions.
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Abstract
Genotype x environment (GxE) interaction for production traits in Fleckvieh cat-
tle was assessed by means of various environmental descriptors (EDs). It was also 
of particular interest to search for EDs useful for studying differing robustness or 
resilience of individuals which implies reasonable GxE interaction. The set of stud-
ied EDs included farm/herd environment (e.g. herd size, housing/feeding regimes, 
herd production level), geographical location (e.g. height above sea level), tempera-
ture humidity index and fat-to-protein ratio. Milk, fat and protein yield deviations 
for the first test day, the first 100 days and the 305-day-yield of the first lactation 
were used as phenotypes. Genetic correlations were estimated with bi- and multi-
variate sire models in case of categorical EDs and reaction norm sire models in case 
of continuous EDs. Further, rank correlations of bulls' estimated breeding values 
were calculated for different environmental levels/classes. Almost all estimated ge-
netic correlations were significantly different from 1, but not <0.93. There were 
some exceptions for extremely different classes/levels of some EDs (e.g. average 
herd-year production, organic vs conventional farm systems, way of concentrated 
feed supply). Rank correlations were rarely below 0.95. In summary, no substantial 
GxE interactions for milk production traits were found with the studied EDs.
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GxE interaction can only be studied if appropriate vari-
ables are available that allow to distinguish between differ-
ent environments. Analysis of GxE interaction in livestock 
data is mainly performed with two different types of models. 
Which one is chosen is mainly depending on the character 
of the available environmental descriptor (ED). Following 
Falconer  (1952) phenotypes of the same trait obtained in 
a limited number (say n_env) of different environments 
can be understood as phenotypes of n_env genetically cor-
related traits. The genetic correlation between these traits is 
assumed to be 1 when no GxE interaction is present while 
it differs from 1 otherwise. Estimating genetic correlations 
within a mixed model context is still a common way in an-
imal breeding for analysing GxE interaction provided the 
ED is not continuous (e.g. Gerber, Krogmeier, Emmerling, 
& Götz, 2008; König, Dietl, Raeder, & Swalve, 2005; Schmid 
et al., 2021). One international application is the multiple 
across country estimation (MACE) by Interbull which en-
ables bulls with breeding values from another country to be 
compared to bulls on any national scale by assuming phe-
notypes in different countries to be genetically correlated 
traits, i.e. a GxE interaction between traits across countries 
is assumed (Schaeffer, 1994).

Given that the ED is available on a continuous scale, 
reaction norm models have frequently been used in the 
analysis of GxE interactions within the last years (e.g. 
Calus, Groen, & de Jong,  2002; Strandberg, Kolmodin, 
Madsen, Jensen, & Jorjani,  2000; Streit, Reinhardt, 
Thaller, & Bennewitz, 2012). It has been a long time from 
the first description of reaction norm (Woltereck,  1909) 
and the common use of models for estimating the neces-
sary parameters in an animal breeding context. The latter 
was promoted by the description of the use of covariance 
functions (Kirkpatrick, Lofsvold, & Bulmer, 1990) and the 
introduction of random regression models for dairy cattle 
evaluation (Schaeffer & Dekkers, 1994). A reaction norm 
model helps to describe the environmental sensitivity of 
a genotype (Falconer & Mackay,  1996) which might be 
mathematically interpreted as regression of the genetic 
value on the environmental value (de Jong, 1995). In com-
mon reaction norm models, thus, a random intercept de-
scribes the general (environmental-independent) genetic 
level for a given individual while random regression co-
efficients of order 1 to n describe its environmental sensi-
tivity. A better consistency of the performance level across 
all environments can be interpreted as lower environmen-
tal sensitivity or better ability to cope with environmental 
variability (Rauw & Gomez-Raya, 2015).

Random regression models used to model the lactation 
curve of a cow require multiple observations per individ-
ual. For EDs, in many cases, phenotypic measurement of 
an individual is only available in one class or at one or a 
small number of data point(s) of the ED which makes it 

difficult to apply reaction norm models in the form of the 
individual animal model. However, the advantage of dairy 
data in comparison to other data sets is that different en-
vironments are well connected via the sires that often pro-
duce a meaningful number of daughters in different herds 
(Rauw & Gomez-Raya,  2015). Thus, using a sire model 
and relating daughters' observations to the sires allow to 
have multiple data points for a genotype over the whole 
range of classes or along the continuous scale of the ED 
which allows to estimate slopes of a reaction norm more 
accurately.

According to Friggens et al.  (2022), resilience can be 
defined as the “ability of an animal to 'bounce back' from 
a disturbance, which implicitly is of relatively short du-
ration” while robustness can be defined as “capability to 
cope with environments that are unfavorable for a long 
time”. Similarly, Colditz and Hine  (2016) describe resil-
ience as the “capacity of the animal to return rapidly to 
its pre-challenge state following short-term exposure to 
a challenging situation” and a robust individual as one 
that “has the ability to express its production potential 
in a wide range of environments without compromis-
ing its reproduction, health and wellbeing”. Following 
these definitions, EDs that are the same over the whole 
lifespan of an individual or at least for a whole lactation 
(e.g. herd production level as in Strandberg et al.  (2000) 
or Streit et al.  (2012), location of the farm as in König 
et al.  (2005) or organic vs. conventional farm type as in 
Schmid et al.  (2021)) can thus be used to study robust-
ness. In order to study resilience, EDs are required that 
change over time within a lifespan or at least within a lac-
tation of an individual and are thus specific for a record 
on a given test day. Common examples are weather data 
and its derivates (e.g. temperature humidity indices) that 
can indicate heat or cold stress events (e.g. Brügemann, 
Gernand, von Borstel, & König, 2011; Nguyen, Bowman, 
Haile-Mariam, Pryce, & Hayes,  2016; Toghiani, Hay, 
Fragomeni, Rekaya, & Roberts,  2020) or the fat-protein 
ratio which might be used as proxy for challenging meta-
bolic situations (Ha et al., 2017) or feeding regimes (Rauw 
& Gomez-Raya, 2015).

Within the Horizon 2020 project “GenTORE” (https://
www.gento​re.eu) data from the Farm Accountancy Data 
Network (FADN; https://ec.europa.eu/info/food-farmi​
ng-fishe​ries/farmi​ng/facts​-and-figur​es/farms​-farmi​ng-
and-innov​ation/​struc​tures​-and-econo​mics/econo​mics/
fadn_en) and the Gridded Agro-Meteorological Data in 
Europe (AGRI4CAST; https://agri4​cast.jrc.ec.europa.eu/
DataP​ortal/​Index.aspx) were used to classify European 
cattle systems and identify important main environmen-
tal challenges to resilience and efficiency in cattle produc-
tion systems (Quiédeville, Moakes, Leiber, & Pfeifer, 2020) 
with a focus on farm level.

https://www.gentore.eu
https://www.gentore.eu
https://ec.europa.eu/info/food-farming-fisheries/farming/facts-and-figures/farms-farming-and-innovation/structures-and-economics/economics/fadn_en
https://ec.europa.eu/info/food-farming-fisheries/farming/facts-and-figures/farms-farming-and-innovation/structures-and-economics/economics/fadn_en
https://ec.europa.eu/info/food-farming-fisheries/farming/facts-and-figures/farms-farming-and-innovation/structures-and-economics/economics/fadn_en
https://ec.europa.eu/info/food-farming-fisheries/farming/facts-and-figures/farms-farming-and-innovation/structures-and-economics/economics/fadn_en
https://agri4cast.jrc.ec.europa.eu/DataPortal/Index.aspx
https://agri4cast.jrc.ec.europa.eu/DataPortal/Index.aspx
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The aim of our study was to analyse GxE interaction for 
milk production traits in the first lactation given EDs that 
are available for a broad (population-level) Fleckvieh data 
set and might be interesting for studying robustness or re-
silience of individuals or genotypes. We used the factors 
identified in GenTORE as a starting point and identified 
EDs from various sources that allowed a characterization 
of herds and did not only represent the absolute produc-
tion level itself, but different farm characteristics, climatic 
conditions or localization.

2   |   MATERIALS AND METHODS

2.1  |  Phenotypic observations and 
pedigree

Yield deviations (YD) for milk, fat and protein kilogram 
from April 2019 were available for all Bavarian Fleckvieh 
cows that were part of the German-Austrian routine ge-
netic evaluation. YDs (accounting for all fixed effects) were 
derived from a model that included the same fixed and 
random effects as the official conventional routine breed-
ing value estimation model (a test day model, see Lidauer, 
Emmerling, and Mäntysaari (2008) for more details), but 
which was run without heterogeneous variance correc-
tions. In our analyses, we then used YDs for the first test 
day in the first lactation (YDDay1), cumulative YDs for 
the 305-day standard length of the first lactation (YDL) as 
well as cumulative YDs for the first third of the first lacta-
tion, i.e. the first 100 days (YD100) as phenotypes in mod-
els for variance component estimation. YD100 and YDL 
were derived via best prediction (VanRaden, 1997) which 
uses available test day YDs for a specific individual as well 
as covariance structures between test days to interpolate 
YDs for specific time periods (in our case first 100 days and 
305 days of the first lactation). Data from years 2013 to 2018 
was used for most of the analyses due to the limited avail-
ability of information about the environmental descriptors 
(EDs). For some EDs, we had to restrict the data to years 
2015 to 2018 (see File S1) as we had access to Integrated 
Administration and Control System (IACS) based data 
only for these years. Only cows with valid YDs for milk, fat 
and protein kilogram were retained for further analyses. 
For YDDay1, cows were required to have an observation 
between day 8 and day 40 after calving. YD100 (YDL) were 
considered when cows had at least three (eight) observa-
tions between day 8 and 120 (335) days. After first quality 
control, there were 1.15 M, 1.13 M and 998 K observations 
for YDDay1, YD100 and YDL available.

Observations were retained when the cow had a known 
sire, the cow and the sire were both purebred Fleckvieh 
(as defined by EU-regulation 2016/1012, i.e. parents and 

grandparents are recorded in the same herdbook) and the 
sire had observations of daughters located in at least 10 dif-
ferent farms for the respective environmental descriptor.

As only sire models were applied to the data, pedigree 
was built starting from all sires with an observation in at least 
one ED within a given type of studied YDs. The final pedi-
gree contained five generations of ancestors for these sires.

2.2  |  Environmental descriptors

A measure of the average performance level of a herd 
has often been used in GxE studies (e.g. Calus, Windig, 
& Veerkamp, 2005; Streit et al., 2012) in order to describe 
management differences between farms which can be an 
indicator of differently challenging environments for the 
individuals. We used the herd-year solution of the trait 
milk yield (HYSM) and the herd-year solutions of the sum 
of fat and protein yields (HYSFP) from the test-day model 
of the routine breeding value estimation as a continu-
ous ED. For quality control, we removed observations of 
HYSM and HYSFP that were below the respective 0.01% 
and above the 99.9% quantiles. Furthermore, for com-
parison, we built categorical EDs by splitting HYSM and 
HYSFP into the quartiles of all respective herd-year solu-
tions between years 2012 and 2019. For HYSM, the classes 
were ≤5400, >5400- ≤6000, >6000- ≤6600, >6600 kg milk 
yield and for HYSFP they were ≤390, >390- ≤440, >440- 
≤490, >490 kg fat plus protein yield. Since it was not clear 
whether all models with four classes would converge, we 
also tested the two extreme classes, i.e. the first and the 
last quartile, in bi-variate models. The four class models 
are named HYSM4, HYSFP4 and the extreme class mod-
els HYSM2extreme and HYSFP2extreme in the following. 
Since EDs derived from performance data which was also 
used as phenotype tend to underestimate the slope in re-
action norm models (Calus, Bijma, & Veerkamp,  2004), 
we were also interested in using EDs originating from 
other sources than the data set itself.

Farm-based descriptors were available for all farms 
under milk recording. The Bavarian milk recording orga-
nization (LKV, Landeskuratorium der Erzeugerringe für 
tierische Veredelung in Bayern e.V.) collects data of herd 
size, average milk yield, husbandry and basic forage sys-
tem and type of concentrated feed supply for most of the 
participating farms. Since we only had farm descriptors 
for one reporting date, we performed some quality control 
steps in order to exclude farms that probably had major 
system changes within the last years (e.g. by excluding 
data from farms in which the herd size varied consider-
ably). For herd size, we defined a categorical ED with two 
classes (HERD2) splitting the data into farms with a herd 
size of <60 and ≥60 cows and with four classes (HERD4), 
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namely a herd size of <30, 30–59, 60–119 and >120 cows. 
Regarding concentrated feed supply, a categorical ED 
with two classes (CONCFEED2) was defined by splitting 
the data into farms having “exact ration/transponder sup-
ply” against all others or into four classes (CONCFEED4) 
which were “no supply”, “total mixed ration” (TMR), “ap-
proximate supply” and “exact ration/transponder supply”. 
We further defined EDs with two classes in order to distin-
guish between farms with and without an automatic milk-
ing system (AMS) and one to distinguish between farms 
with tie-stall and loose housing (HOUSE).

We further had access to some Integrated 
Administration and Control System (IACS) based data 
from the years 2015 to 2018. Using this data, we could 
classify the farms with respect to their agricultural sys-
tem. For conventional and organic farming systems, we 
defined a categorical ED with two classes (ORG). The data 
did not contain direct information about a farm's basic for-
age system. Therefore, we derived a proxy for the forage 
system from IACS data: For each farm with milk record-
ing and each observed year, the size of permanent pasture 
area in hectares and the area of fodder maize in hectares 
were extracted and the proportion

was calculated. Calculated proportions were averaged across 
years within farms. For quality reasons, PP% was only used 
for further analyses when there were at least two data points 
per farm. A farm was discarded when one of the yearly obser-
vations deviated more than 2 standard errors from the farm 
average or more than 10 absolute percentage points from 
all others. The quality checked PP% were used as continu-
ous EDs. We further constructed two EDs with two classes 
each: PP%80 by splitting PP% in classes of ≤80% and >80% 
and PP%50 by splitting PP% in classes of ≤50% and >80% 
and omitting the data for PP% values from >50% and ≤80%. 
PP% represented not only differences in basic forage systems 
themselves, but also has a geographical context since farms 
in the alpine regions tend to have quite uniform PP% because 
there is almost no cultivation of maize whereas in flat regions 
in lower Bavaria generally low PP% can be expected.

Based on address data, GPS coordinates were derived 
for all farms and only used in cases in which the farm lo-
cation could be clearly assigned. A publicly available data 
set of a digital elevation model in a 50 m grid for Bavaria 
(https://geoda​tenon​line.bayern.de/geoda​tenon​line/seite​
n/dgm_info) was used to define the ED “meters above 
sea level” (termed MASL in the following) for all farms. 
GPS coordinates of the farms were matched to the closest 

available GPS coordinate from the raster and MASL of this 
raster coordinate was taken as MASL for the respective 
farm. MASL was used as continuous ED directly and as 
categorical ED MASL750 (two classes, ≤750 and >750 m) 
and MASL600 (two classes, ≤600 and >600 m). Since not 
only the absolute height above sea level, but also height in 
combination with climatic conditions is very different in 
alpine areas and areas close to the alps as compared to the 
rest of Bavaria, farms were classified into farms in the alps 
or the alpine upland (following the definition of Würfl, 
Dörfler, & Rintelen, 1984) and others in order to build a 
categorical ED (ALPINE).

All EDs described above have a lifelong influence on 
an individual and thus can only be used to study robust-
ness following the definition from Friggens et al.  (2022) or 
Colditz and Hine (2016). For studying resilience, it is nec-
essary to use EDs that vary during an individual's lifespan 
and that allow to observe its reaction on a punctual exter-
nal (e.g. heat stress) or internal (e.g. diseases) disturbance.

Weather data was available on an hourly basis for the 
years 2013 to 2018 for 216 weather stations in Bavaria 
(https://www.wette​r-by.de/; https://www.dwd.de/DE/
leist​ungen/​cdc_porta​l/cdc_portal.html) which provided 

dry bulb temperature in °C (T◦C) and relative humidity 
in % (RH%) data, both measured 2 m above ground, with 
<10% of missing values. For each station, data was only 
used from days on which at least 20 hourly observations 
were available. GPS coordinate information and the height 
above sea level of all farms and weather stations were used 
to assign weather station data to a specific farm. Weather 
data were assigned to a farm when the nearest weather 
station was not located more than 200 m higher or lower 
than the farm and when it was not more than 20 km away. 
If no weather station matched these criteria for a given 
farm, cows from this farm were excluded from all analy-
ses based on weather data. For the remaining farms, mean 
(±s.d.) distance to the chosen weather station was 8.88 km 
(±4.31).

Many different formulas can be found in literature for 
combining information of humidity and temperature to a 
temperature–humidity index (THI). Since in our data, dry 
bulb temperature and relative humidity were available, 
we used an index given in NRC (1971) but rephrased for 
temperature measures in Celsius instead of Fahrenheit. 
Thus, hourly temperature–humidity indices (THI) were 
calculated as

PP% = 100% × permanent pasture area∕(permanent pasture area + fodder maize area)

THI = 46.3 + 0.81 × T◦C + 0.99 ×

(

RH%

100

)

× T◦C − 14.3 ×

(

RH%

100

)

https://geodatenonline.bayern.de/geodatenonline/seiten/dgm_info
https://geodatenonline.bayern.de/geodatenonline/seiten/dgm_info
https://www.wetter-by.de/
https://www.dwd.de/DE/leistungen/cdc_portal/cdc_portal.html
https://www.dwd.de/DE/leistungen/cdc_portal/cdc_portal.html
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All hourly THI values from a specific weather station were 
then averaged to obtain the average daily THI (THIday). In 
addition, we calculated an average THI per day that only 
consisted of values from 10 a.m. to 4 p.m. (THIday10to4) to 
capture only the hours that are potentially the most chal-
lenging ones regarding heat stress. Because performance of 
a cow on a specific day will also be influenced by climatic 
conditions on the days before the recording day, different 
authors have used THI on specific days before recording or 
an average of THI values from these days (e.g. Brügemann 
et al., 2011). Another ED was thus defined as the mean of 
the average daily THIs of the three days before the record-
ing date (THIminus3). Brügemann, Gernand, König von 
Borstel, and König  (2012) found a lower limit of THI ~ 60 
for substantial decrease of milk yield in Holstein dairy cat-
tle herds in Germany. Given these results, we defined an-
other ED by counting the number of hours of the recording 
date in which the THI was more than 60 (THIhours60). 
THIday, THIday10to4, THIminus3 and THIhours60 were 
used as continuous EDs. In order to use THI data also 
in models with categorical EDs, we split the data into 
two classes with THIminus3 ≤ 60 and THIminus3 > 60 
(THIcat60daily) and into two classes with THIhours60 ≤ 10 
and THIhours60 > 10  h (THIcat60hours). All THI values 
were used as EDs in analyses of YDDay1 only as this was 
the only phenotype for which a real recording date was 
available.

Fat-to-protein ratio from milk recording results can be 
used as an indicator for studying resilience to sub-optimal 
feeding regimes or diseases with values of ≤1.0 indicating 
sub-acute ruminal acidosis and ≥1.5 indicating ketosis 
are found in literature (e.g. Enemark,  2008; Heuer, Van 
Straalen, Schukken, Dirkzwager, & Noordhuizen,  2000). 
Fat and protein kilogram recordings for all cows from the 
first test day in the first lactation were available from milk 
recording. Individual fat-to-protein ratio values were cal-
culated for all cows with a first test day record for which 
the fat kg and protein kg recordings were not less than the 
1% and not greater than the 99% quantile. In order to check 
for the influence of different days in milk on the first test 
day, we applied a quadratic regression of the fat-to-protein 
ratio on days in milk on the first test day. The coefficient 
of determination was low, but the regression coefficients 
were highly significant, so we nevertheless corrected for 
the days in milk by standardizing all individual fat-to-
protein ratios to the individual fat-to-protein ratios (FPR) 
expected on the mean value of days in milk in our data set 
which was 24. FPR was used as continuous ED in analyses 
of YD100 to assess whether a disturbance in very early lac-
tation affects production traits across the first 100 days of 
the lactation. Categorical EDs (FPR1.5 and FPR1.0) were 
built by splitting the cows in two groups, those with FPR 
of >1.5 (≤1.0) and others, respectively.

An overview of all EDs and their definitions can also 
be found in Table 1 and in more detail in File S1.

2.3  |  Statistical analyses

Assessment of GxE interaction can be performed with 
different types of models. The model choice is mainly de-
pending on the kind of ED to be analysed.

For all categorical EDs, we considered the phenotypes 
obtained in the different environments to be correlated 
traits and estimated their genetic correlation with multi-
variate sire models. For YDL and YD100 of milk, fat or 
protein yield, the model was

while for YDDay1 it was

with yijk being the respective YD of either milk, fat or protein 
yield in environment k from daughter j of sire i, �k was an 
overall mean in environment k, bk1 and bk2 were regression 
coefficients of the linear and quadratic fixed regression on tij 
which was days in milk of daughter j of sire i. sik was the sire 
effect of sire i in environment k and �ijk was the residual 
term of daughter j of sire i in environment k. The variance 
structure of the sire effect was assumed to be

where A was the full pedigree-based relationship matrix of 
the sires, G was a nc x nc matrix with genetic sire variances 
on the diagonal and covariances on the off-diagonals with 
nc equals 2 for all 2-class-ED models and 4 for all 4-class-ED 
models.

For environmental descriptors that were available on a 
continuous scale (PP%, MASL, HYSM, HYSFP, FPR and 
different THI variables), we used a sire reaction norm 
model to check for GxE interaction. Heterogeneous resid-
ual variances across the environments might influence 
the estimates of the genetic components when not ac-
counted for (Lillehammer, Ødegård, & Meuwissen, 2009). 
In our models, we estimated a residual variance for each 
of the four quartiles of data that resulted from ordering 
the phenotypes according to their respective ED value. 
We decided to model also fixed regressions of the respec-
tive EDs (see e.g. Schaeffer, 2004) so that the random re-
gression coefficients represent a deviation from the 
average reaction norms. Uncorrelated coefficients might 
be favourable for higher-order regressions 
(Schaeffer, 2004). Ordinary polynomials are not indepen-
dent of each other, but Legendre polynomials are 

yijk = �k + sik + �ijk

yijk = �k + bk1tij + bk2t
2
ij + sik + �ijk

V (s) = G⊗A
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Environmental 
descriptor Categorical/continuous Definition

HYSM Continuous Herd-year-solutionsa for milk yield

HYSM4 Categorical Quartiles of HYSM

HYSM2extreme Categorical Lowest 25% and highest 25% of HYSM

HYSFP Continuous Herd-year-solutionsa for sum of fat and 
protein yield

HYSFP4 Categorical Quartiles of HYSFP

HYSFP2extreme Categorical Lowest 25% and highest 25% of HYSFP

HERD2 Categorical Herd size in two categories (<60/≥60)

HERD4 Categorical Herd size in four categories 
(<30/31–59/60–119/≥120)

CONCFEED2 Categorical Way of concentrated feed supply in 
two categories (exact ration or 
transponder vs all others)

CONCFEED4 Categorical Way of concentrated feed supply in four 
categories (see text for details)

AMS Categorical Automatic milking system yes/no

HOUSE Categorical Tie-stall or loose housing

ORG Categorical Organic farm system yes/no

PP% Continuous Proportion of permanent pasture area 
to the sum of permanent pasture 
plus fodder maize area of the farm

PP%80 Categorical PP% in two categories (≤80%/>80%)

PP%50 Categorical PP% in two categories (≤50%/>80%)

MASL Continuous Height above sea level of the farm 
location in meters

MASL750 Categorical MASL in two categories (≤750/>750)

MASL600 Categorical MASL in two categories (≤600/>600)

ALPINE Categorical Farm location in alps or alpine upland 
yes/no

THIday Continuous Average THI on the first test day in the 
first lactation

THIday10to4 Continuous Average THI between 10 a.m. and 
4 p.m. on the first test day in the first 
lactation

THIminus3 Continuous Average THI on the three days before 
the first test day in the first lactation

THIhours60 Continuous Number of hours with an hourly 
THI>60 on the first test day in the 
first lactation

THIcat60daily Categorical THIminus3 in two categories (<60/≥60)

THIcat60hours Categorical THIhours60 in two categories 
(<10/≥10)

FPR Continuous Fat-to-protein-ratio on day 24 in milk in 
the first lactation

FPR1.5 Categorical FPR in two categories (≤1.5/>1.5)

FPR1.0 Categorical FPR in two categories (≤1.0/>1.0)

Note: Abbreviation: THI, temperature humidity index.
aHerd-year-solution quartiles were built based on solutions from the routine breeding value estimation of 
all farms from years 2012 to 2019.

T A B L E  1   Definition of all categorical 
and continuous environmental descriptors 
used in this study
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orthogonal. We thus used normalized Legendre polyno-
mials for defining the random regression terms. As 
Legendre polynomials are only defined in a parameter 
space of [−1,1], EDs were limited to this space by calcu-
lating EDscaledij = − 1 + 2

(

EDij−min(ED)

max(ED)−min(ED)

)

 with individ-

ual ij being a daughter j of sire i. Minima and maxima 
were found within each set of individuals given a specific 
phenotype and ED. When using this transformation, the 
intercept of the reaction norm estimates the genetic effect 
for the environment that equals 0.5(max(ED) +min(ED)) .
The reaction norm model for YDL and YD100 of milk, fat 
or protein yield and any continuous ED was

while for YDDay1, it was

yijm was one of the yield deviation measures of either 
milk, fat or protein yield as defined above of a daughter j 
within sire i assigned to one (m) of four random error 
classes as described above. b1 and b2 were regression coef-
ficients of the linear and quadratic fixed regression on tij 
which was days in milk of daughter j of sire i. �q was a re-
gression coefficient of the qth order fixed regression on zijq 
(i.e. �0 was an overall mean), and zijq was calculated as 
�q

(

EDscaledij

)

 with �q being the qth order normalized 
Legendre polynomial. liq was the regression coefficient for 
sire i of the qth order random regression on zijq (i.e. li0 was 
a random intercept of sire i). n was 1 for linear reaction 
norm models and 2 for reaction norm models which also 
included quadratic regressions. �ijm was the random error 
term of daughter j of sire i in random error class m.

The breeding value of sire i estimated by a reac-
tion norm model for a given environment env was 
gi_env = 2 ⋅

∑n
q=0 liqzenvq. Variance structures of sire regres-

sion effects were assumed to be

with U  being a 2x2 matrix with (co)variances of ran-
dom intercept (l0) and linear regression term (l1) for 
reaction norm models of order 1 and a 3x3 matrix with 
(co)variances of random intercept (l0), linear (l1) and 
quadratic (l2) regression terms for reaction norm mod-
els of order 2.

All models were solved, and all variance components 
were estimated with ASReml 3.0 (Gilmour, Gogel, Cullis, 
& Thompson, 2009).

To test if specific (co)variance components were dif-
ferent from zero, we performed likelihood ratio tests of 

the original and reduced models for all reaction norm 
models. For linear reaction norm models, we tested 
H0lin: �lo,l1 = 0 and �2

l1
= 0 using the full model and a re-

duced one in which both �l0,l1 and �2
l1

 were fixed at 0. For 

reaction norm models that included also a random qua-
dratic regression coefficient per sire, we tested 
H0qua: �l1,l2 = 0; �l0,l2 = 0; �2

l2
= 0 with the respective 

likelihood ratio. Following Stram and Lee (1994), we as-
sumed the null distribution of the likelihood ratio to be 
a mixture of two �2-distributions so that the p-value for 
a calculated likelihood ratio L was 
0.5

∑x1
x=x1−1

P
�

�2
df=x

≥ L
�

 with x1 being 2 and 3 for tests 

of H0lin and H0qua, respectively.
For reaction norm models, we calculated genetic cor-

relations between different environments. The genetic cor-
relation of a trait in any two environments env1 and env2 is 

defined as rg_env1,env2 =
cov

(

genv1 ,genv2

)

√

var
(

genv1

)

⋅ var
(

genv2

)

. Numerator 

and denominator for a reaction norm model with linear 
regression terms when normalized Legendre polynomials 
are used can be calculated as follows:

and

with h being 1 and 2 for the two different environments, 
respectively.

Following the same scheme, the solutions for reaction 
norms with random intercept, linear and quadratic regres-
sion terms were:

and

with h being 1 or 2 for the two different environments, 
respectively.

Standard errors of the correlation coefficients in 
the reaction norm models were calculated using an ap-
proximation with Taylor series (see e.g. Su, Lund, & 
Sorensen, 2007).

Scaling effects between EBVs of different categories 
in multi-trait models might arise if the genetic variances 

yijm =

n
∑

q=0

�qzijq +

n
∑

q=0

liqzijq + �ijm

yijm = b1tij + b2t
2
ij +

n
∑

q=0

�qzijq +

n
∑

q=0

liqzijq + �ijm

V (l) = U ⊗A

cov
(

genv1 , genv2

)

=4 ⋅

(

�1

(

EDscaledenv1

)’
U�1

(

EDscaledenv2

)

)

var
(

genvh

)

= 4 ⋅

(

�1

(

EDscaledenvh

)’
U�1

(

EDscaledenvh

)

)

cov
(

genv1 , genv2

)

=4 ⋅

(

�2

(

EDscaledenv1

)’
U�2

(

EDscaledenv2

)

)

var
(

genvh

)

= 4 ⋅

(

�2

(

EDscaledenvh

)’
U�2

(

EDscaledenvh

)

)
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in the studied environmental categories are not the 
same. We studied this for all bi-variate models with 
two-categorical EDs by calculating the 95%-confidence 
intervals of the genetic variances in the two categories 
and comparing them. If there was intersection of confi-
dence intervals for genetic variance components of dif-
ferent environments, scaling effects were considered to 
be negligible.

3   |   RESULTS

Genetic correlations (rg) of milk, fat and protein yield (MY, 
FY and PY in the following) in the first lactation (L), in the 
first 100 days of the first lactation (100) and on the first 
test day of the first lactation (Day1) in the two respective 
categories of all two-categorical EDs are shown in Table 2. 
In general, all but one rg were larger than 0.9 (between 
0.909 for PY_L with ED HYSFP2extreme and 0.997 for 
FY_Day1 with CONCFEED2) and the 95%-confidence in-
tervals showed that most of them could be considered dif-
ferent from 1 (except PY_Day1 with ORG, FY_Day1 with 
MASL750 and CONCFEED2). The lowest rg was found for 
PY_100 given the ED HYSFP2extreme.

For herd size, concentrated feed supply and herd year 
performances, multi-trait models that split the phenotypic 
data into four different categories of EDs were also used. 
For some runs, we found poor convergence behaviour or 
models converged formally (based on ASReml criteria), 
but they ended up having a negative definite genetic cova-
riance structure. Results for trait MY are shown in Table 3. 
Models for MY_Day1 with EDs HYSM4 and HYSFP4 did 
not converge. For MY_L and MY_100, all rg were larger 
than 0.91 with EDs HYSM4 and HYSFP4. The smallest 
values for rg were found between the most extreme herd 
sizes (<30 and >120 cows, rg_cat1,cat4 in Table 3) and con-
firmed the estimates of the bi-variate runs HYSM2extreme 
and HYSFP2extreme (see Table  2). While CONCFEED2 
distinguished phenotypes from farms that were recorded 
with concentrated feed supply that is specifically adapted 
to individual performance and all others, CONCFEED4 
also included one category with observations of cows that 
did not obtain any concentrated feed supply (category 1 
in Table  3). This category showed clearly lower rg to all 
other categories (rg_cat1,catx with x ∈ {2, 3, 4}) than did the 
other categories among each other. However, due to a rel-
atively low percentage of observations in category 1, these 
rg_cat1,catx also had quite large standard errors. Results for 
FY and PY are in File S2 and mainly followed the same 
trends as described for MY.

In order to check for re-ranking of individuals due to 
their EBVs in different environments for categorical ED, 
we calculated Spearman's rank correlation. Results for 

Day1 analyses and all two-category EDs are shown in 
Table  4 (further results from all other YD types can be 
found in File S2). In general, rank correlations were very 
high and somewhat lower for the subset bulls20cat (bulls 
with at least 20 daughters in each of the categories) com-
pared to subset bulls40 (bulls with at least 40 observations 
of daughters irrespectively in which category). The low-
est rank correlation was found in the subset bulls20cat for 
PY_Day1 when data was split due to ED HYSFP2extreme 
(rSpearman = 0.950) which was also only one of three correla-
tions below 0.96. Rank correlations below 0.97 in the sub-
set bulls20cat were also found with EDs HYSFP2extreme 
and HYSM2extreme for MY_Day1 and with PP%50 and 
HYSM2extreme for PY_Day1. For models with YD types 
YDL and YD100 as phenotypes, there were no rank cor-
relations below 0.93 at all (File S2). Rank correlations 
below 0.96 were found in some cases with different EDs 
(e.g. AMS, ORG, HYSFP2extreme, HYSM2extreme) more 
often for PY or FY than for MY. Regarding the models 
with four-categorial-EDs (File S2), obviously lower rank 
correlations of EBVs of two categories accumulated when 
EBVs of the most extreme categories (1 and 4 within an 
ED) were compared, especially when the subset of bulls 
used for comparison was chosen such that each bull had 
at least 10 daughters in each of the categories.

Results for the comparison of the 95%-confidence in-
tervals of the genetic variance components in the two 
categories of all bi-variate runs with two-categorical EDs 
can be found in Table 5. For many of the EDs studied the 
confidence intervals of the genetic variances of the two 
categories did overlap and thus scaling effects should be 
negligible. For models splitting the data into two classes 
based on EDs HYSM2extreme or HYSFP2extreme, the ge-
netic variances seemed to be different for most of the sce-
narios applied. For models based on phenotypes YDL or 
YD100, runs with EDs ORG, HERD2, HOUSE, AMS and 
FPR were also found to sometimes have non-overlapping 
confidence intervals of the genetic variances in the two 
categories.

Likelihood ratio tests (LRT) were performed for the 
reaction norm models to check if the inclusion of an 
environment-dependent part of the breeding value (i.e. a 
random linear or even quadratic regression term) signifi-
cantly improved the model. All LRT comparing models 
with a linear random slope to models without any random 
regression term were highly significant (i.e. we could re-
ject H0lin: �lo,l1 = 0 and �2

l1
= 0 with p < 0.001 in all cases). 

Adding a quadratic regression term did not lead to a bet-
ter model fit for some ED and phenotype combinations 
(Table  6). LRT with H0qua: �l1,l2 = 0; �l0,l2 = 0; �2

l2
= 0 

could not be rejected with p < 0.01 for all THI-EDs stud-
ied, except for FY_Day1 with THIhours60 and for PY_
Day1 with THIminus3; further for FY_Day1, MY_Day1, 
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T A B L E  3   Genetic correlations and their standard errors for milk yield in the first lactation, in the first 100 days of the first lactation and 
on the first test day of the first lactation obtained from multivariate mixed models splitting the phenotypes into four categories based on 
different four-categorical environmental descriptors (ED)

YD type as 
phenotypea EDb rg12 ± s. e. rg13 ± s. e. rg14 ± s. e. rg23 ± s. e. rg24 ± s. e. rg34 ± s. e.

YDL HYSM4 0.989 ± 0.003 0.966 ± 0.005 0.947 ± 0.007 0.990 ± 0.002 0.975 ± 0.004 0.993 ± 0.002

HYSFP4 0.980 ± 0.003 0.959 ± 0.005 0.928 ± 0.008 0.993 ± 0.002 0.970 ± 0.004 0.989 ± 0.002

HERD4 0.990 ± 0.003 0.960 ± 0.007 0.937 ± 0.013 0.988 ± 0.003 0.962 ± 0.009 0.982 ± 0.006

CONCFEED4 0.884 ± 0.043 0.933 ± 0.035c 0.918 ± 0.036 0.956 ± 0.010 0.981 ± 0.005 0.985 ± 0.004

YD100 HYSM4d 0.984 ± 0.003 0.959 ± 0.006 0.933 ± 0.008 0.993 ± 0.002 0.973 ± 0.004 0.993 ± 0.002

HYSFP4 0.978 ± 0.004 0.953 ± 0.006 0.919 ± 0.009 0.993 ± 0.002 0.971 ± 0.004 0.991 ± 0.002

HERD4 0.971 ± 0.006 0.932 ± 0.011 0.909 ± 0.017 0.984 ± 0.003 0.956 ± 0.010 0.978 ± 0.007

CONCFEED4 0.880 ± 0.046 0.912 ± 0.042 0.889 ± 0.043 0.942 ± 0.012 0.987 ± 0.005 0.971 ± 0.006

YDDay1 HYSM4 n.c.e n.c.e n.c.e n.c.e n.c.e n.c.e

HYSFP4 n.c.e n.c.e n.c.e n.c.e n.c.e n.c.e

HERD4 0.974 ± 0.007 0.940 ± 0.012 0.906 ± 0.021 0.973 ± 0.006 0.937 ± 0.016 0.980 ± 0.009

CONCFEED4 0.868 ± 0.068c 0.916 ± 0.061c 0.871 ± 0.064 0.931 ± 0.016 0.992 ± 0.005c 0.962 ± 0.009
aYDL = best prediction YD for the first lactation, YD100 = best prediction YD for the first 100 days of the first lactation, YDDay1 = YD solution for the first test 
day in the first lactation.
bHYSM4/HYSFP4 = quartiles of herd-year-solutions for milk yield or sum of protein and fat yield, respectively, CONCFEED4 = way of concentrated feed 
supply in four categories, HERD4 = herd size in four categories – for more details see Table 1.
cThe 95%-confidence interval includes 1.
dASReml showed convergence for this run, but we found the estimated genetic covariance matrix to be negative definite.
eThe model did not converge.

T A B L E  4   Rank correlations for estimated breeding values (EBVs) in the two different categories of the environmental descriptors 
within two subsets of sires. Results are shown for models with YDs of the first test day as phenotype

Data subset 

Environmental 
descriptora

Sires with ≥40 obsdau
b Sires with ≥20 obsdau

b in both categories

# of sires

Spearman's rank correlation 
of EBVs

# of sires

Spearman's rank correlation 
of EBVs

Milk 
yield

Fat 
yield

Prot. 
Yield

Milk 
yield

Fat 
yield

Prot. 
Yield

HYSM2extreme 906 0.972 0.982 0.967 597 0.966 0.979 0.959

HYSFP2extreme 899 0.968 0.979 0.958 602 0.961 0.974 0.950

HERD2 1245 0.985 0.991 0.980 1075 0.985 0.991 0.979

CONCFEED2 1242 0.999 1.000 0.998 847 0.999 1.000 0.998

AMS 1243 0.991 0.989 0.986 417 0.987 0.983 0.981

HOUSE 1243 0.984 0.993 0.974 905 0.982 0.992 0.972

ORG 1299 0.996 0.990 0.993 211 0.990 0.979 0.983

PP%80 1134 0.993 0.990 0.988 528 0.991 0.988 0.984

PP%50 547 0.983 0.987 0.969 333 0.980 0.986 0.963

MASL750 2137 0.995 0.998 0.993 125 0.985 0.992 0.980

MASL600 2137 0.995 0.998 0.994 565 0.993 0.997 0.991

ALPINE 2152 0.992 0.996 0.988 549 0.987 0.992 0.980

THIcat60daily 2076 0.997 0.999 0.997 829 0.996 0.998 0.997

THIcat60hours 2054 0.997 0.999 0.997 878 0.996 0.998 0.996
aFor definition of the classes of the environmental descriptors, see Table 1.
bobsdau = number of daughters of the respective sire with observations.
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PY_Day1 and FY_100 with MASL and for MY_Day1 with 
HYSFP and HYSM.

Results for genetic correlations and rank correlations 
of estimated breeding values from reaction norm mod-
els will be shown in the following. Results for a given YD 
type with a given ED are based on a reaction norm model 
with a random quadratic regression term included when 
the corresponding likelihood ratio test was significant (see 

Table  6) and based on a model without a random qua-
dratic regression term otherwise.

Genetic correlations between each two values along 
the gradient of possible ED values (rg_envx ,envy) can be cal-
culated from the results of the reaction norm models. 
Figure 1 shows genetic correlations for PY_Day1 and dif-
ferent EDs for all combinations of values between the 
0.1% and the 99.99% quantiles of the respective ED. 

T A B L E  5   Number of bi-variate models with data split based on different two-categorical environmental descriptors (ED) for which the 
95% confidence intervals of the estimated genetic variances of a given trait in the two ED categories are/are not overlapping. For the cases of 
no overlap, the respective EDs are also stated

Trait Result

YD type as phenotype

YDL YD100 YDDay1

Milk yield Overlap 7 7 12

No overlap 5 (HYSM2extreme, 
HYSFP2extreme, HERD2, 
HOUSE, ORG)

7 (HYSM2extreme, HYSFP2extreme, 
HERD2, AMS, HOUSE, ORG, 
FPR1.5)

2 (HYSM2extreme, 
HYSFP2extreme)

Fat yield Overlap 9 11 12

No overlap 3 (HYSM2extreme, 
HYSFP2extreme, ORG)

3 (HYSM2extreme, HYSFP2extreme, 
FPR1.0)

2 (HYSM2extreme, 
HYSFP2extreme)

Protein yield Overlap 9 9 12

No overlap 3 (HOUSE, ORG, MASL750) 5 (HYSFP2extreme, HOUSE, ORG, 
FPR 1.5, FPR1.0)

2 (HYSM2extreme, 
HYSFP2extreme)

Abbreviations: YD100, best prediction YD for the first 100 days of the first lactation; YDDay1, YD solution for the first test day in the first lactation; YDL, best 
prediction YD for the first lactation.

T A B L E  6   p-values of likelihood ratios tests for reaction norm models with H0: “inclusion of random quadratic regression on the 
environmental descriptor does not improve the model”, i.e. �l1,l2 = 0 and �l0,l2

= 0 and �
2

l2
= 0 with �l1,l2 being the covariance between 

random linear and random quadratic regression term, �lo ,l2 the covariance between random intercept and random quadratic regression term 
and �

2

l2 the variance of the random quadratic regression coefficient. All p-values presented in the table are rounded to 3 digits

Environmental 
descriptora

Phenotypeb

YDL YD100 YDDay1

Milk kg Fat kg Protein kg Milk kg Fat kg Protein kg Milk kg Fat kg Protein kg

HYSM <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.035 <0.001 0.001

HYSFP <0.001 <0.001 <0.001 <0.001 0.005 <0.001 0.059 <0.001 <0.001

PP% <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.001 <0.001

MASL <0.001 0.002 <0.001 <0.001 0.078 <0.001 0.065 n.c.c 0.014

THIday –d – – –d – – 0.486 0.580 0.172

THIday10to4 – – – – – – 0.501 0.709 0.266

THIminus3 – – – – – – 0.023 0.129 0.010e

THIhours60 – – – – – – n.c.c 0.005 n.c.c

FPR –d – – <0.001 <0.001 <0.001 –d – –
aFor definition of the environmental descriptors, see Table 1.
bYDL = best prediction YD for the first lactation, YD100 = best prediction YD for the first 100 days of the first lactation, YDDay1 = YD solution for the first test 
day in the first lactation.
cFull model did not converge.
dAll THI-based environmental descriptors were used with phenotype YDDay1. FPR was only used with phenotype YD100.
eThe original (non rounded) p-value for ED THIminus3 with YDDay1 for protein kg was slightly below 0.010.
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rg_envx ,envy for PY_Day1 were above 0.95 in many cases. In 
general, as expected, the lowest values of rg_envx ,envy were 
mostly found between most extreme levels within a given 

ED and were below 0.8 for HYSFP and HYSM as can be 
seen in Figure  1. For THI-based EDs, rg_envx ,envy did not 
drop below 0.9. rg_envx ,envy was significantly different (5% 

F I G U R E  1   Genetic correlations between different levels of the environmental descriptors (ED) for protein yield on the first test day in the 
first lactation estimated with reaction norm models. Correlations were calculated for all possible combinations of values between the 0.1% and 
the 99.9% quantile of the ED. The results shown are for the model with a random quadratic regression term on the ED included in cases where 
the likelihood ratio test as shown in Table 6 was significant on a 1% error level, otherwise for the model without a random quadratic regression 
term. The model for the combination YDDay1 and environmental descriptor THIhours60 did not converge when a random quadratic regression 
term was included. Thus, results for the model without a random quadratic regression term are shown. HYSFP, HYSM = herd year solutions of 
the routine breeding value estimation for the sum of fat and protein yield or milk yield, respectively, MASL = height above sea level of the farm 
location in meters, PP% = proportion of permanent grassland area to the sum of permanent grassland plus fodder maize area of the farm in %, 
THIday = average temperature humidity index on the first test day in the first lactation, THIminus3 = average temperature humidity index on 
the three days before the first test day in the first lactation, THIday10to4 = average temperature humidity index between 10 a.m. and 4 p.m. on the 
first test day in the first lactation, THIhours60 = number of hours with an hourly THI > 60 on the first test day in the first lactation
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error level) from 1 in almost all cases if studied for envx 
equals the 1% quantile and envy the 25, 50, 75 or 99% quan-
tile of the EDs (see File S2). With THI-based EDs except 
THIminus3 and MASL, the underlying models included 
no quadratic random regression term on the ED which is 
reflected in the course of the curves of equivalent rg_envx ,envy 
over the whole gradient. For the others, shape of the dis-
tribution of the rg_envx ,envy was quite different for different 
EDs. For PP%, for example, rg_envx ,envy between very high 
ED values (e.g. above 90%) and most of all other lower ED 
values were very similar while for HYSM for a very high 
value of e.g. above 8000 a relatively steady decrease of 
rg_envx ,envy appeared along the gradient from high to low 
ED values. As can be seen in File S2 and File S3c, the same 
trends could be observed also for traits FY and MY. Results 
for rg_envx ,envy of models with phenotypes YDL and YD100 
differed only very slightly (File S2, File S3a and File S3b). 
With ED FPR, which was only analysed based on YD100, 
genetic correlations were also above 0.9 in almost all cases. 
Only for FY, some correlations were slightly below 0.9 
when looking at very extreme values of FPR. In general, 

the decline of rg_envx ,envy when comparing similar and ex-
treme levels of the EDs were somewhat more pronounced 
for PY than for MY and FY.

Results from calculations of rank correlations of EBVs 
for quantiles of the different EDs within traits can be found 
in Table 7 and File S2. Rank correlations were calculated 
between EBVs estimated for a given trait for the 1% and 
99% quantile values of the EDs, respectively, and the EBVs 
for the 1%, 25%, 50%, 75% and 99% quantiles of the EDs. 
Rank correlations were higher than 0.95 in most of the 
cases and in general, lowest for EBVs of most extreme en-
vironmental levels within EDs. For protein yield, rank cor-
relations dropped below 0.92 for EBVs on the 1% and the 
99% quantiles for PY_L and PY_100 with ED HYSFP and 
for PY_100 with ED HYSM (Table 7). In general, very high 
rank correlations over the whole range of environments 
appeared for all models including random regressions on 
THI-based EDs.

Figure 2 shows EBVs (for a subset of bulls with at least 
40 daughter observations) estimated with reaction norm 
models for protein yield based on YDDay1 phenotypes 

T A B L E  7   Rank correlations for estimated breeding values (EBVs) for protein yield in different environments (defined by different 
quantiles of the environmental descriptor) within a subset of sires with at least 40 daughters with observations

YD type as 
phenotypea

Environmental 
descriptorb

Rank correlation of EBVs between the xth and the yth quantile of the ED (x%-y%)c

1%–25% 1%–50% 1%–75% 1%–99% 25%–99% 50%–99% 75%–99%

YDL HYSM 0.985 0.978 0.97 0.936 0.969 0.978 0.986

HYSFP 0.979 0.968 0.957 0.914 0.966 0.978 0.987

PP% 0.993 0.992 0.990 0.964 0.959 0.969 0.982

MASL 0.993 0.989 0.985 0.947 0.961 0.967 0.974

YD100 HYSM 0.981 0.971 0.959 0.919 0.967 0.979 0.988

HYSFP 0.976 0.961 0.945 0.889 0.959 0.974 0.986

PP% 0.992 0.993 0.993 0.978 0.967 0.974 0.985

MASL 0.996 0.994 0.992 0.966 0.970 0.973 0.978

FPR 0.995 0.991 0.986 0.981 0.992 0.994 0.996

YDDay1 HYSM 0.984 0.974 0.963 0.934 0.978 0.987 0.993

HYSFP 0.977 0.964 0.951 0.921 0.981 0.990 0.996

PP% 0.993 0.990 0.985 0.956 0.960 0.972 0.986

MASL 0.998 0.997 0.995 0.981 0.991 0.993 0.996

THIday 0.998 0.995 0.990 0.979 0.989 0.994 0.998

THIday10to4 0.999 0.996 0.991 0.981 0.989 0.995 0.998

THIminus3 0.996 0.992 0.987 0.978 0.988 0.993 0.997

THIhours60 1.000d 1.000d 0.999 0.993 0.993 0.993 0.997
aYDL = best prediction YD for the first lactation, YD100 = best prediction YD for the first 100 days of the first lactation, YDDay1 = YD solution for the first test 
day in the first lactation.
bFor definition of the environmental descriptors, see Table 1.
cThe results for a given YD type with a given ED are based on a reaction norm model with a random quadratic regression term included when the 
corresponding likelihood ratio test was significant (see Table 6) and based on a model without a random quadratic regression term otherwise.
dSince the variable THIhours60 is heavily left skewed on the original scale, the 1, 25 and 50% quantile values are the same and the rank correlations of EBVs 
between them are 1 consequently.
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F I G U R E  2   Breeding values (EBVs) of different levels of the respective environmental descriptor (ED) estimated with reaction norm 
models for protein yield on the first test day in the first lactation. The EBVs are from a subset of bulls that had at least 40 daughters with 
observations. EBV curves for the 20 bulls for which the EBVs changed most (least) over the range of the respective ED are highlighted in red 
(blue). The results shown are for the model with a random quadratic regression term on the ED included in cases where the likelihood ratio 
test as shown in Table 6 was significant on a 1% error level, otherwise for the model without a random quadratic regression term. The model 
for the combination YDDay1 and environmental descriptor THIhours60 did not converge when a random quadratic regression term was 
included. Thus, results for the model without a random quadratic regression term are shown. HYSFP, HYSM = herd year solutions of the 
routine breeding value estimation for the sum of fat and protein yield or milk yield, respectively, MASL = height above sea level of the farm 
location in meters, PP% = proportion of permanent grassland area to the sum of permanent grassland plus fodder maize area of the farm 
in %, THIday = average temperature humidity index on the first test day in the first lactation, THIminus3 = average temperature humidity 
index on the three days before the first test day in the first lactation, THIday10to4 = average temperature humidity index between 10 a.m. 
and 4 p.m. on the first test day in the first lactation, THIhours60 = number of hours with an hourly THI > 60 on the first test day in the first 
lactation
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over the range of all values between the 0.1% and the 
99.9% quantile of the EDs. For the THI-based values ex-
cept THIminus3 and MASL, only linear changes could be 
observed as the basis were models including only a linear 
random regression term on the ED. Scaling effects and re-
ranking events of individuals due to their environmental 
dependent EBVs when moving along the gradient of a re-
spective ED were present for all EDs as depicted with the 
20 bulls with the highest and lowest changes in EBVs in 
Figure 2 and Files S4a–c. In order to be able to interpret 
the importance of changes in EBVs along the gradient of 
an ED not only from a graphical output and the rank cor-
relations mentioned above, we checked the bulls with the 
10% highest changes for all lactation traits (MY_L, FY_L, 
PY_L). For those, we calculated the difference of mini-
mum and maximum observed EBVs (which did not have 
to be the EBVs at the extremes of EDs) along the ED gradi-
ent and averaged it. The results showed a mean difference 
of 860, 758, 497 and 344 kg milk, 35, 33, 14 and 12 kg fat 
and 27, 24, 20 and 12 kg protein for HYSFP, HYSM, MASL 
and PP%, respectively.

4   |   DISCUSSION

The aim of this study was to check if different categorical 
and continuous environmental descriptors (EDs) obtained 
from various sources can be used to study resilience and 
robustness of different sires with respect to changing en-
vironments. We could not find substantial GxE interac-
tion for any of the various ED studied. As a consequence, 
this means that breeding for robustness or resilience is not 
sensible in the present situation for Fleckvieh in Bavaria 
with respect to available data and environmental condi-
tions. However, this may change in future especially if 
more precise phenotypes will become available or pheno-
types will be available in higher temporal frequency.

For all studied EDs, no or only weak evidence of GxE 
interaction on yield traits could be found. Even though 
most of the estimated genetic correlations between dif-
ferent environments were significantly different from 1, 
the values were greater than 0.9 in almost all cases and 
even those that were smaller hardly fell below 0.8. None 
of them justify reflections about special breeding pro-
grams for different environments. Mulder, Groen, De 
Jong, and Bijma  (2004) showed with a simulation study 
that this might be justified only when values are below 
0.61. Nevertheless, scaling effects and rank changes could 
be found, especially for EDs based on herd performance 
level, roughage or concentrated feed system. From a prac-
tical point of view, if one wants to consider GxE interac-
tion in the breeding value estimation process, this could 
be implemented relatively easy in an existing breeding 

program, for example, by providing different indices for 
different environments. However, one has also to be aware 
of how this will influence the population structure and 
stratification, the overall response to selection and the 
number of bulls that will have to be provided on AI sta-
tions. Such a course of action has thus to be thought of 
carefully before implementation. From a scientific point 
of view, EDs that were shown to influence breeding values 
at least when comparing their extreme values might be 
used for further studies including genomic data in order 
to find specific regions of the genome that respond differ-
ently in different environments.

Our results are in accordance with other studies on 
GxE interaction with a wide range of types of EDs. Mostly, 
no substantial GxE interaction could be detected except 
when extremely different groups were investigated (e.g. 
populations in different countries with different climatic 
and/or management conditions as, for example,in Ojango 
& Pollott, 2002). For the same population as in our study, 
the German-Austrian Fleckvieh population, Gerber 
et al.  (2008) also did not find any considerable GxE in-
teraction when studying herd performance level as cate-
gorical EDs and production traits as phenotypes. Pfeiffer, 
Fuerst, Schwarzenbacher, and Fuerst-Waltl  (2016) used 
high-performance and low-performance conventional 
farms and organic farms as categorical EDs. The authors 
found genetic correlations between those environments of 
greater than or equal to 0.886 for all traits studied. Studies 
based on production trait data in German Holstein cat-
tle populations include work with environments de-
scribed by herd size, region and performance level. König 
et al.  (2005) estimated a genetic correlation of 0.79 for 
protein yield with ED herd size in two classes in German 
Holstein data while the correlation was at least 0.9 when 
the ED was describing regions in Germany (Western vs. 
Eastern states). Streit et al.  (2012) used reaction norm 
models with ED milk energy yield level of the herd in 
German Holstein data and found genetic correlations to 
be always greater than 0.89 for traits milk, fat and protein 
yield. For first lactation production traits in Dutch dairy 
herd data, Calus et al. (2002) discovered no considerable 
GxE interaction with EDs protein performance level of 
the herd and herd size. Nauta, Veerkamp, Brascamp, and 
Bovenhuis (2006) estimated genetic correlations for pro-
duction traits in conventional and organic Holstein farms 
in the Netherlands and obtained values of 0.8, 0.88 and 
0.71 for milk, fat and protein yield, respectively. Schmid 
et al.  (2021) evaluated data from the German-Austrian 
Brown Swiss population and could not discover substan-
tial GxE interaction for milk, fat and protein yield with 
EDs categories conventional vs organic farm system (no 
genetic correlation <0.93) and altitude of the farm below 
and above 800 m (none < 0.87). Basic forage system as ED 
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was studied by Boettcher, Fatehi, and Schutz (2003) who 
distinguished between farms that rely on stored feeds vs 
those who intensively grazed the cows for at least half of 
the year. For production traits, none of the estimated ge-
netic correlations was <0.88. Hayes, Carrick, Bowman, 
and Goddard (2003) found a genetic correlation for pro-
tein yield with extreme levels of THI (60 and 78) of 0.9 
in Australian Holstein data. Brügemann et al.  (2011) 
assessed possible GxE interactions for protein yield in 
German Holstein with different THI values. Genetic cor-
relation between all combinations of occurring THI val-
ues was greater than 0.9 in their study, too.

In this study, yield deviations on the first test day or cu-
mulated over the first 100 days or the whole (305d) first 
lactation were used as phenotypes. For computational rea-
sons, we wanted to restrict ourselves to first lactation obser-
vations which implies that information for the estimation 
of herd-related fixed effects is scarce given the herd struc-
tures in Bavaria (many of the herds are relatively small). 
YDs were thus chosen instead of raw phenotypes in order 
to benefit from well-estimated fixed effects from the more 
sophisticated routine breeding value estimation system 
including data from all lactations and all years. We never-
theless performed some bivariate GxE analyses with raw 
100-day-yields for milk, fat or protein (extrapolated from 
the routine milking records) to preclude any misinterpre-
tation of our results based on YD phenotypes because of 
any kind of systematic bias (e.g. reduced GxE interaction 
due to unintended precorrections). No evidence for such a 
bias could be verified based on these extra analyses (results 
not shown). In the official routine system, heterogeneous 
variance correction is applied in a random regression test 
day model (Emmerling, Lidauer, & Mäntysaari,  2002; 
Lidauer et al., 2008). We avoided to obtain YDs used for 
this study from a model with such pre-correction in order 
to avoid confusion. Nevertheless, we saw from further 
analyses that there was hardly an influence on the esti-
mates of GxE interaction when comparing results based 
on YDs originating from models with or without heteroge-
neous variance adjustment (results not shown).

Especially, for studying robustness, the management 
level of a farm is an important parameter that helps to 
describe different production environments. The classi-
cal approach is to use herd performance level (e.g. Hayes 
et al., 2003; Pfeiffer et al., 2016; Streit et al., 2012). In this 
study, we used herd-year-effects for milk yield (HYSM) 
and for fat-plus-protein-yield (HYSFP) which were a by-
product of the routine breeding value estimation and 
pre-corrected for known fixed and random effects. We ex-
cluded the most extreme values (below 0.01% and above 
99.9% quantiles) but did not additionally filter for herd 
size. Since Calus et al. (2004) showed that small herd sizes 
might influence the estimated parameters in reaction 

norm models, we ran some extra analyses for phenotypes 
MY_L and MY_Day1 with ED HYSFP in which we ex-
cluded data from farms with a herd size of less than 30 or 
60 milking cows, respectively, and calculated the estimated 
genetic correlations between different environments (1%, 
25%, 50%, 75% and 99% of the ED in the original analyses 
with each other). While we lost one third and two third of 
the data with herd size requirement of ≥30 and 60 cows, 
respectively, values for original analyses and analyses with 
restriction on herd sizes were very similar (results not 
shown). We thus do not assume that our original filtering 
biased the results.

When resilience is defined as the reaction of an indi-
vidual to a short disturbance, EDs have to describe en-
vironmental parameters that change during the life (or 
lactation) of a cow. The background of the available phe-
notypic data in our study is the routine milk recording 
data in Bavaria which is the basis for the routine genetic 
evaluation. Up to now, only monthly recorded data is used 
there. Especially for EDs that should be used to study re-
silience properties of individuals, this time scale is often 
not detailed enough. If there was, for example, a heat 
stress event on a specific farm, but no milk recording in 
these days, the information about the reaction of the cows 
is missing. The same is true, for example, for somatic cell 
score spikes due to mastitis or fat metabolism anomalies 
that might be depicted by extreme fat-to-protein-ratios. 
Data from robotic milking system may help to overcome 
this and were shown to be extremely interesting by, for ex-
ample, Poppe, Mulder, Kamphuis, and Veerkamp (2021). 
Poppe et al.  (2021) and Poppe, Bonekamp, van Pelt, and 
Mulder (2021) used daily milk yield observations of cows 
of 2000 herds, calculated residuals of its specific lactation 
curve for each cow and studied variance, skewness and 
autocorrelation of residuals in order to check for new re-
silience traits. Variance of residuals had the highest her-
itability estimates with around 0.15. Recent studies with 
chicken and pig data have also shown that the variation 
of deviations of expected curves may be a good resilience 
indicator (Berghof, Bovenhuis, & Mulder,  2019; Putz 
et al., 2019).

The correlation between the continuous EDs used in 
this study were very low in general except for HYSFP 
and HYSM and for some of the studied THI-based EDs. 
Thus, for a future study, it might be interesting to com-
bine two or some of them in order to estimate their GxE 
contribution simultaneously. A model with a continu-
ous ED modelled within different class environments 
was used in some applications in dairy (Windig, Calus, 
Beerda, & Veerkamp,  2006; Windig, Mulder, Bohthe-
Wilhelmus, & Veerkamp,  2011) and beef breeding 
(Santana et al., 2015). Given our EDs, it might thus, for 
example, be possible to study PP% within CONCFEED4 
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or THIminus3 within HYSFP in classes. Another pos-
sibility would be to combine different EDs via a princi-
pal component approach as performed, for example, in 
Windig et al.  (2006). The authors used the four largest 
principal components obtained from 65 environmental 
variables and applied those to different reaction norm 
models. Combining different EDs might also be useful 
for different categorial EDs, for example, for informa-
tion sources like weather station data plus information 
of barn type or grassland proportion plus information 
about the type of concentrated feed supply.

One major drawback of many GxE-studies is the non-
availability of precise environmental descriptors which 
leads to the usage or derivation of more general and thus 
mostly less accurate proxies. This may cause an under-
estimation of existing GxE-interaction. In this study, we 
used different THI values calculated from measures of the 
weather station closest to the barn in which a cow's per-
formance is recorded. This is a proxy but cannot consider 
the individual situation for a specific cow, i.e. if its barn 
is cooled down with ceiling fans, if the barn is directed 
to the south with a lot of solar radiation or the cows have 
access to pasture. Temperature and humidity measures 
directly from a barn (as e.g. used in Lambertz, Sanker, & 
Gauly,  2014) or body temperature measures (e.g. via in-
frared cameras, see, for example, Hoffmann, Schmidt, & 
Ammon, 2016) would be more precise measures to iden-
tify heat-stress events for a particular individual or herd. 
However, such values are often not available for popula-
tion wide data. Similar problems exist for description of 
the level of energy input or generally the feeding regime. 
We decided to use the ratio of permanent grassland to the 
sum of permanent grassland and fodder maize and the 
type of concentrated feed supply as proxies in this study. 
Further projects are underway that will enable us to have 
access to barn-specific weather station data and farm-
specific feed ration data.

For studying the influence of weather conditions, es-
pecially with a focus on heat stress events, we used a 
temperature–humidity index (THI) in a very classical 
definition (NRC, 1971). There has been lot of research on 
what is the best way of calculating THI (e.g. Bohmanova, 
Misztal, & Cole, 2007) and what is the lower threshold for 
heat stress (e.g. Brügemann et al., 2011). One should not 
forget that the origin of THI lies in an attempt to calculate 
the energy demand for air conditioning systems in the US 
and was used to describe discomfort in human when spe-
cific THI values were exceeded (Thom, 1959). Thom (1959) 
found a value of 70 from which on people began feeling 
uncomfortable. In animal literature, different values for the 
lower limit of THI values from which on heat stress reaction 
could be observed are described. Since THIs calculated with 
different formulas scale differently, these absolute values 

have to be interpreted with caution. Values include 60 (e.g. 
Brügemann et al., 2012; Hayes et al., 2003), 70 (Brügemann 
et al., 2012) or 72 (e.g. Ravagnolo & Misztal, 2002) for dif-
ferent formulas, breeds and regions. In our study, we found 
only slight influence of THI on breeding values for the traits 
milk, fat and protein yield. This might be due to the follow-
ing aspects: THI values exceeding a limit from which on 
heat stress is expected are relatively seldom (17.7% of the 
data with a THI > 60) in our data. The effect of extreme THI 
values on phenotypes was less pronounced when work-
ing with YDs than with corresponding raw data (data not 
shown). Our conclusion is that extreme weather conditions 
did not occur frequently enough in Bavaria to detect sig-
nificant GxE interaction. This might change in future. In 
further analyses, it might also be worth to test an approach 
in which the model assumes that THI affects performances 
only above a certain threshold as, for example, used by 
Bohmanova, Misztal, Tsuruta, Norman, and Lawlor (2008) 
or Nguyen et al. (2016).

An analysis studying GxE interaction with a model 
assuming genetic, random error and GxE variances im-
plicitly assumes that there is a balanced contribution of 
genotypes to the range of environments. If this is not the 
case, additionally a GxE covariance can be considered 
in the model which can capture variation that is due to 
a non-random distribution to environments (Lynch & 
Walsh, 1998). Regarding our dairy data, for example, for 
ORG or HYSM, there might be specific bulls that contrib-
ute almost exclusively to one of the different classes (e.g. 
bulls that are mainly used in organic farms) or specific 
parts of the whole range (e.g. bulls with very high perfor-
mance breeding values that are mainly used in farms with 
a high level of HYSM). Omitting the GxE covariance in 
the model in such cases might lead to inflated estimates of 
the GxE interaction as shown by Ni et al. (2019) in human 
data. The aspect of GxE covariance will have to be studied 
more closely in future also in dairy data.
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