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Bone regeneration or replacement has been proved to be one of the most effective
methods available for the treatment of bone defects caused by different musculoskeletal
disorders. However, the great contradiction between the large demand for clinical
therapies and the insufficiency and deficiency of natural bone grafts has led to an
urgent need for the development of synthetic bone graft substitutes. Bone tissue
engineering has shown great potential in the construction of desired bone grafts,
despite the many challenges that remain to be faced before safe and reliable clinical
applications can be achieved. Graphene, with outstanding physical, chemical and
biological properties, is considered a highly promising material for ideal bone
regeneration and has attracted broad attention. In this review, we provide an
introduction to the properties of graphene and its derivatives. In addition, based on the
analysis of bone regeneration processes, interesting findings of graphene-based materials
in bone regenerative medicine are analyzed, with special emphasis on their applications as
scaffolds, membranes, and coatings in bone tissue engineering. Finally, the advantages,
challenges, and future prospects of their application in bone regenerative medicine are
discussed.
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INTRODUCTION

For the past decades, the incidences of bone defects caused by different musculoskeletal conditions
(e.g., congenital, degenerative, post-traumatic, neoplastic, metabolic and infectious) are continuously
increasing (Katagiri et al., 2017). Bone regeneration or substitution has been proved to be valid
approaches for the current therapy (Bhattacharjee et al., 2017; Zhang et al., 2019a). In this context,
bone transplantation has become the second frequent tissue transplantation after blood transfusion,
with over two million cases worldwide per year (Liu et al., 2017). With the advent of an aging society,
the clinical requirement for effective bone regeneration therapy will continue to increase. Despite
autogenous bone transplantation has undoubtedly become the gold standard for bone regeneration,
the applications are still limited because of the insufficient supply, loss of function as well as
secondary defects at the bone donor site (Shukla et al., 2017; Benlidayi et al., 2018; Zhang et al.,
2019b). Allogenous bone transplantation is an alternative approach, but this therapeutic method has
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to face risks such as disease transmission, infection, and
immunogenicity (Calori et al., 2011; Campana et al., 2014).
Although some existing synthetic biomaterials have achieved
favorable clinical efficacy, there is still a lack of outstanding
biomaterials that can provide excellent load-bearing, complete
biodegradability, osteogenesis and osteoconductivity
simultaneously (Fayyazbakhsh et al., 2017; Li et al., 2018a; Ju
et al., 2021). As a result, there has been an urgent need for the
development and application of synthetic bone graft substitutes.

Tissue engineering has been considered as a viable solution to the
aforementioned challenges, which has led to significant advances in
cell and organ transplantation over the past decades, as well as
greatly stimulating innovation in newmaterials, applicationmodels,
preparation techniques, and performance evaluation (Rose and
Oreffo, 2002; O’Keefe and Mao, 2011). Tissue engineered bone
grafts have great potential to alleviate the need arising from the lack
of suitable autograft and allograft materials for bone repair (Yadav
et al., 2021). Up to now, a great deal of effort has been made in the
design, fabrication, characterization, and application of emerging
materials, such as scaffolds, coatings, membranes. (Zwingenberger
et al., 2012; Eivazzadeh-Keihan et al., 2019; Du et al., 2021). Among
these promising solutions, scaffolds play a central role and exhibit
several unique advantages in bone tissue engineering (Shadjou and
Hasanzadeh, 2016). Scaffolds can not only provide mechanical
support for local load-bearing, but also offer structural support
for specific cells, and thus guide new tissue growth and promote
bone regeneration (Sill and von Recum, 2008). Coatings for bone
repair implants are perceived as another promising approach in
bone tissue engineering. Coated materials can enhance the
mechanical properties of the implants and improve the
interfacial reaction physiologically (Pereira et al., 2020).
Membranes for bone tissue engineering can provide an
independent space for bone regeneration and act as a barrier
against soft tissue ingrowth (Du et al., 2020).

The success of tissue engineering heavily depends on the
performance of the materials. For the desired bone regeneration
materials, excellent biocompatibility, controlled biodegradability,
appropriate mechanical strength, and suitable porosity to support
cell differentiation, growth, and proliferation all should be
emphasized (Kim et al., 2013; Freeman et al., 2021; Hajiali et al.,
2021). Research on graphene-based nanomaterials has boomed in
biomaterial applications over the past few years. With outstanding
physical, chemical and biological properties, graphene is considered
to be revolutionary material and shows great potential for
applications in tissue regeneration, drug delivery and other
biomedical areas (Hu et al., 2020; Fu et al., 2021; Unal et al.,
2021). Therefore, the purpose of this review is to highlight the
scientific progress over the years and further summarize the physical
and chemical properties, family members and applications in bone
tissue engineering of this graphene-based nanomaterial.

ADVANTAGES OF GRAPHENE IN BONE
TISSUE ENGINEERING

Graphene, a single-atom thick and two-dimensional sheet of sp2-
hybridized carbon atoms, was isolated from highly oriented

pyrolytic graphite by two British physicists (Feng and Liu,
2011). This revolutionary discovery quickly attracted great
attention in the fields of materials science, chemistry, physics
and biotechnology, and the 2010 Nobel Prize in Physics attests to
its extraordinary significance (Dresselhaus and Araujo, 2010).
Since its discovery in 2004, graphene has received increasing
interest for its remarkable properties, including high fracture
strength, outstanding Young’s modulus, excellent thermal and
electrical conductivity, large specific surface area, atomic
structure stability and biocompatibility (Kumar et al., 2016;
Sayyar et al., 2017; Zhao et al., 2017; Nezakati et al., 2018).
There have been great expectations for the application of this
“future material”.

Graphene is known as one of the strongest materials in
existence (Lee et al., 2008). With exceptional mechanical
properties, graphene stands out as the most promising
candidate to be a major filling agent for bone repair
composite. Nevertheless, it should be emphasized that the
mechanical reinforcement effect from graphene is closely
related to its distribution in the composite (Young et al.,
2012). Homogeneous distribution leads to effective mechanical
property enhancement, but the cohesion between graphene
molecules can hinder the distribution and therefore needs to
be overcome (Gao et al., 2018). Electrical conductivity can confer
better osteogenic activity to bone repair materials (Huang et al.,
2019). Owing to its unique molecular structure, graphene can be
used to formulate three-dimensional composites with good
electrical conductivity. Moreover, the large specific surface area
of graphene can greatly improve cell adhesion, which likewise
benefits the osteogenic activity (Gao et al., 2017). Large specific
surface area also facilitates the further functionalization of
graphene, thus being able to impart better chemical activity
and improve its hydrophilicity and dispersibility (Trusek et al.,
2020). The molecular size, content and uniformity of graphene
will significantly affect the mechanical and electrical properties of
the bone repair composite, and it is therefore important to
determine the appropriate graphene content and ratio.

Biocompatibility is a prerequisite for the in vivo application of
bone repair materials (Mehrali et al., 2014; Qi et al., 2020; Jyoti
et al., 2021). A number of studies have demonstrated the
biocompatibility of graphene through in vitro cell co-culture
and in vivo metabolic analysis, however, this observation is
accompanied by qualifying conditions (Alaghmandfard et al.,
2021). The physical and chemical properties have been proved to
greatly affect the interaction of graphene with living cells, and that
the dose and concentration of graphene in the matrix are also
related to its cytotoxicity (Cao et al., 2021; Pulingam et al., 2021).
The resulting cytotoxic effects occur mainly at the cellular and
molecular levels and may be attributed to increased oxidative
stress (Sasidharan et al., 2016). Therefore, as with other
nanomaterials, smaller particle sizes and higher concentrations
are more likely to induce cytotoxic effects, while concentrations
below 5–10 μg/ml are relatively safe (Chang et al., 2011). The
long-term safety of biomaterials for in vivo applications also
depends on their biodegradability. The degradation products
from graphene have not been shown to cause substantial cell
damage, however, the in vivo retention period may be associated
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with several pathological changes (Mukherjee et al., 2018;
Daneshmandi et al., 2021). The enzymatic environment as well
as specific chemical modifications are available to regulate the
rate of degradation and thus reduce the potential of graphene-
induced cytotoxicity (Palmieri et al., 2019; Ma et al., 2020; Peng
et al., 2020).

DERIVATIVES OF GRAPHENE

The growing demand for solving clinical challenges is forcing the
studies on tissue engineering to progress (Wang et al., 2021). As
one of the most promising emerging materials, graphene has been
widely explored in the fields of regenerative medicine (Kolanthai
et al., 2018; Liu et al., 2019; Cojocaru et al., 2021). Nevertheless,
there are still much room for improvement to overcome existing
challenges for its application in bone regeneration (Cernat et al.,
2020; Nimbalkar and Kim, 2020; Bruschi et al., 2021). In spite of
remarkable properties, it is difficult for pristine graphene to form
three-dimensional scaffolds on its own. In general, graphene
needs to be compounded with other materials for bone repair
(Raslan et al., 2020), but the strong van der Waals forces between
particles lead to the poor dispersibility in aqueous media and
physiological fluids (Li et al., 2017a). Functionalization of pristine
graphene is an effective method to improve the solubility and
dispersibility, so that a growing number of studies have been
focusing on its derivatives for regenerative applications in recent
years (Driscoll et al., 2021).

Graphene oxide (GO) is the oxidized form of graphene, which
has been the most widely used graphene family member in
biomedical applications today (Reina et al., 2017; Han et al.,
2018a; Martín et al., 2019). After oxidation, GO retains its laminar
structure. There are various oxygen functional groups distributed
on the carbon atom sheet, mainly including hydroxyl and epoxy
groups on the basal plane, carboxyl and carbonyl groups attached
to the edge (Park et al., 2009). The introduction of functional
groups not only offer the hydrophilicity and dispersibility (Chen
et al., 2012), but also provide more opportunities to manipulate
and customize the properties of GO (Kim et al., 2010). On the
other hand, the presence of these functional groups produces high
defect density in the perfect planar structure of graphene, which
leads to the reduction of its mechanical, electrical, and thermal
properties (Zhao et al., 2021). Therefore, GO is considered as an
attractive and cost-effective alternative for graphene due to its
accessibility, hydrophilicity, dispersibility, chemical tunability
and processability.

Reduced graphene oxide (rGO) is obtained through chemical
or physical methods to eliminate the oxygen functional groups
(Dash et al., 2021). Reduction of GO is done to restore physical
properties to some extent, but this also leads to a decrease in
hydrophilicity and dispersibility, as well as a weakening of the
chemical tunability (Bagri et al., 2010). rGO can be used as an
alternative for large-scale production of graphene-based
materials. Based on number of layers in the sheet, graphene
can be classified into single layer graphene, few-layers graphene
and multi-layer graphene (Daneshmandi et al., 2021). Ultimately,
the application of graphene and its various functionalized

derivatives can be selected according to specific clinical needs
in bone regenerative medicine (Zhao et al., 2017). Currently,
graphene and its derivatives (GDs) have been used to prepare
various scaffolds, coatings, membrane materials and injectable
hydrogels for bone tissue engineering by compounding with
various matrices such as metals, polymers and inorganic
substances (Park et al., 2016; Li et al., 2018b; Saravanan et al.,
2018).

APPLICATIONS OF GDS IN BONE TISSUE
ENGINEERING

It is necessary to have a thorough understanding of the basic
structure before discussing bone tissue engineering. In addition to
bone cells, bone tissue contains a large number of matrices,
mainly including collagen, non-collagenous proteins and
calcium phosphate deposits (Katz and Meunier, 1987).
Macroscopically, bone tissue can be divided into dense cortical
bone and porous cancellous bone or trabecular bone. In general,
cortical bone acts as a shell to encase cancellous bone. Tissue
regions with higher mechanical stress contain a higher percentage
of cortical bone (Rho et al., 1998). It can be assumed from the
composition contained in bone tissue, the mineral component
provides stiffness while the collagen assemblies provide
viscoelasticity and toughness (Kadler et al., 1996; Iyo et al.,
2004; Shah et al., 2019). Microscopically, pristine fibers,
formed from collagen and minerals, can aggregate and
assemble into nanoscale fibers. Subsequently, the nanoscale
fibers gathering as lamellar structures that are arranged in
cylinders parallel to the long axis in cortical bone and
irregularly woven arrays in cancellous bone (Rho et al., 1998).
Bone tissue is also a highly dynamic system. Continuous
remodeling occurs through osteolysis by osteoclasts and
osteogenesis by osteoblasts (Hadjidakis and Androulakis,
2006). The process of bone remodeling can be induced by
mechanical stress, with areas of higher mechanical stress
producing stronger tissue and higher overturn rates (Herring,
1968).

GDs-Based Scaffolds
Synthetic scaffolds have become attractive alternative to natural
graft materials due to their accessibility, affordability,
adjustability and stability (Damien and Parsons, 1991). In
addition to immediately restoring the mechanical integrity at
the bone defect site, the ideal biodegradable scaffolds should also
provide spaces to guide new bone tissue growth and
reconstruction (Kim and Mooney, 1998). The selection of
suitable materials for the fabrication of high-quality three-
dimensional porous scaffolds is quite an important issue in
bone tissue engineering. On account of the ability to
significantly improve mechanical and biological properties in
the field of synthetic scaffolds, significant research has focused
on GDs in recent years.

Hydroxyapatite (HAP), due to its similarity to the inorganic
composition of bone tissue and good biocompatibility, was the
most popular bone replacement material. However, its low
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fracture toughness, low wear resistance, brittleness, and poor
osteoinductive ability greatly limit the application, which needs to
be solved urgently (Shin et al., 2015). Zhou et al. (2019)
successfully prepared a porous scaffold with hierarchical pore
structure and good biomechanical strength using a soft template
method. With HAP as substrate of the scaffold, rGO was
introduced to improve mechanical properties and promote
proliferation and spontaneous osteogenic differentiation of
bone marrow mesenchymal stem cells (BMSC). More
importantly, it allowed the rate of scaffold degradation to
closely match the rate of new bone growth. The hierarchical
porous HAP/rGO composite scaffolds was proved to accelerate
bone growth in the scaffold, providing a potential clinical
candidate for regeneration of critical bone defects (Figure 1).
To avoid HAP agglomeration affecting the overall bioactivity and
stability, Zhao et al. (2019) introduced nano-hydroxyapatite
(nHAP) into the chitosan (CS)/GO covalently-bound network
matrix. The covalent bonding between CS and GO provided the
underlying stability of the scaffold. The nanoscale network
substrate could promote uniform dispersion of nHAP,
reinforcing the interactions between organic and inorganic
materials, which further increased the overall bioactivity and
stability. The lamellar structure of GO created a certain spacing
between the composite units, thus enhancing the hydrophilicity
of the scaffold. The abundant functional groups on the surface of

GO and CS promoted the recruitment, proliferation and
differentiation of endogenous stem cells. In vitro experiments
demonstrated that these GO/CS/nHAP scaffolds achieved
excellent endogenous bone tissue regeneration, and the new
bone formed an almost complete structure with the
surrounding natural bone.

Collagen is an organic component of the bone tissue matrix
that is widely used in bone tissue engineering (Ahn et al., 2021).
Biocompatibility, biodegradability, bioactivity, and low
immunogenicity are the advantages of collagen-based scaffolds.
However, due to insufficient mechanical strength, they usually
need to be used in conjunction with other materials for bone
reconstruction, wherein GDs are one of the ideal choices (Sarker
et al., 2015). Taking advantage of the biocompatibility of collagen
and GO, Liu et al. (2018) constructed a novel scaffold that mimic
the extracellular matrix environment of BMSC. An
osteoinductive extracellular matrix (OiECM) was obtained by
incubation of osteo-differentiated BMSC for 21 days. Then the
OiECMwas completely wrapped with GO-collagen (Col) hybrids
to construct the OiECM-GO-Col scaffold. The excellent bone
repair effect of the new scaffold was demonstrated using a 5 mm
rat cranial defect model. In addition, Zhou et al. intended to form
bone-like apatite (Ap) on natural polymers through biomimetic
mineralization using simulated body fluid (SBF), thus enhancing
the osteoconductivity and biocompatibility (Zhou et al., 2018). To

FIGURE 1 | SEM image of (A) the porous structure in HA/rGO-6/0.3 composite scaffold, and (B) (D) the pore structure, (C) cross-sectional structure of hole wall,
(E) pore wall structure and (F) enlarged view of the cross-section of hole wall. (G) Pore structure of HA/rGO-6/0.3 and EDS (H) Ca, (I) P (J) C mapping images of
Figure 2G. Reproduced from Zhou et al. (2019) with permission from Copyright 2019 American Chemical Society.
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improve the coating efficiency of the bone-like apatite layers, GO,
which is rich in functional groups, was utilized to provide more
active sites for biomimetic mineralization. Different
concentrations (0, 0.05, 0.1, and 0.2% w/v) of GO were
introduced into the collagen scaffold, and the fabricated
scaffolds were then immersed into SBF for 1, 7, and 14 days.
Through a series of experiments, it was observed that the 0.1%
GO-Col-Ap group formed more bone-like apatite and showed
significantly higher rat BMSCs adhesion and proliferation in vitro
and higher bone formation in vivo (Figure 2).

A microenvironment with adequate blood supply is equally
crucial for bone tissue engineering (Yap et al., 2018). Some
implant failures were caused by the lack of nutrients
secondary to insufficient vascularity (Auger et al., 2013). Wang
et al. (2019) designed a scaffold comprising of mesoporous
bioactive glass (MBG) and GO to investigate its ability to
promote local angiogenesis and bone healing. In a rat cranial
defect model, the MBG-GO scaffold demonstrated its ability to
promote inward vascular growth. The osteogenic-angiogenic
properties made this novel material as an attractive candidate
for bone repair. For example, Zhao et al. (2018) developed a novel

thermosensitive injectable scaffold material via combination of
GO with a citrate-based hydrogel called PPCNg. BMP9-
encapsulated GO-PPCNg scaffold greatly enhanced the
expression of osteogenic regulators, bone markers and vascular
endothelial growth factor (VEGF). Moreover, the formation of
well-mineralized and highly vascularized trabecular bone was
observed in vivo. Tissue engineering chamber is an in vivo
transplantation device that cannot only provide the
mechanical support for transplanted tissue or cells but also
endow a relatively isolated and vascularized environment
(Rouwkema et al., 2008). Fang et al. (2020) established a
vascularized GO-collagen chamber by embedding blood vessels
into the internal BMSCs-gelatin grafts (Figure 3). After
placement in the inguinal region of rats for 1 month, GO-
collagen chambers were shown to significantly improve the
angiogenic process and promote the survival and osteogenic
differentiation of BMSCs.

GDs-Based Membranes or Films
Artificial barrier membranes can seal bone defects and promote
bone regeneration during a regenerative period of up to several

FIGURE 2 | In vivo evaluation of the scaffolds using the critical-sized defect (A, C) Three-dimensional reconstruction and (B, D) coronal section analysis of the
defect areas at 4 and 12 weeks (A, B)New bone was formed in the four groups at 4 weeks, and (C, D) almost complete healing of the bone defects was observed in 0.1
and 0.2%GO−Col−Ap groups at 12 weeks. Dotted red circle: defect area. Reproduced from Zhou et al. (2018) with permission fromCopyright 2018 American Chemical
Society.
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weeks, and have likewise attracted a lot of attention in bone tissue
engineering (Retzepi and Donos, 2010). Previous studies have
reported the use of titanium, polymers and some bioactive
materials for fabrication of bone repair membranes (Molly
et al., 2006; Gentile et al., 2011; Tejeda-Montes et al., 2014).
Its properties are yet to be improved, especially mechanical
properties matching the bone tissue, osteogenic activity,
controlled degradability and selective permeation of nutrients
(Lee et al., 2009; Pinheiro et al., 2009; Choi et al., 2010). During
regenerative period, the bone repair membrane not only acts as a
framework allowing new bone formation, but also provides a
sealed space to prevent rapid ingrowth of connective tissue
(Zhang et al., 2021).

Lu et al. (2016) reported a graphene hydrogel (MGH)
membrane fabricated by multiple, face-to-face stacked
chemically converted graphene (CCG) sheets. This multilayer
nanostructure was robust and flexible, with an average tensile
modulus close to the order of magnitude of that of rat skull.
Removal of water molecules between the CCG layers resulted in

the irreversible collapse of the multilayer microstructure to form a
more compact structure. In a typical rat cranial defect model, the
authors verified that the MGH membrane could act as a barrier
membrane for guiding bone regeneration. Micro-CT and
histological analysis demonstrated the potential of the
membrane to promote early osteogenesis and accelerate
regenerative mineralization of mature lamellar bone
(Figure 4). Lu et al. (2013) designed a self-supporting
graphene hydrogel (SGH) film as an experimental platform to
evaluate the biomedical properties of graphene particularly for
bone regeneration. This strategy provided a valuable information
for developing further applications of graphene in bone tissue
engineering. Prakash et al. (2020) prepared a series of
nanocomposite films containing GO, CS, HAP, polyvinyl
alcohol (PVA), and gold for bone tissue engineering. The CS/
PVA/GO/HAP/Au film showed good biocompatibility and
osteogenic differentiation ability. The antimicrobial analysis
demonstrated its significant inhibition against both Gram-
positive and Gram-negative bacteria.

FIGURE 3 | Schematic illustration of the preparation and in vivo application of the GO-collagen tissue engineering chamber in a rat groin model. GO and collagen
were dissolved, blended and injected into molds to obtain GO-collagen scaffolds with disc shape and hollow cylindrical shape. After the cross-linking process, GO-
collagen scaffolds were fabricated to make a tissue engineering chamber. Then, the BMSCs-gelatin grafts were encased in the GO-collagen chamber and implanted into
the rat groin area, with vessels traversing through the graft. Reproduced from Fang et al. (2020) with permission from Copyright 2020 Ivyspring International
Publisher.
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FIGURE 4 | The bone regeneration 8 weeks after surgery. (A) Micromorphometric analysis of treated calvarial defects including superficial, interior, coronal, and
sagittal section views of micro-CT images taken at the eighth week after surgery. (B) Micromorphometric bone parameters including bone volume fraction and bone
mineral density analyzed after 8 weeks of surgery. Note that both the bone volume fraction and mineral density of the MGHmembranes group are higher than the rest of
the groups analyzed. (C) Van Gieson’s staining of calvarial undecalcified sections after 8 weeks of implantation. Low-magnification histological images (left)
showed osteogenesis of the testing groups with/without barrier membranes (M). High magnification histology (right) showed boxed areas in the left images, both the
lateral margin and center region of defects. In the MGH membrane group, the newly formed bone (NB) exhibited a mature lamellar bone structure with external cortical
bone (E), diploic bone (D), and internal cortical bone (I) all discernable. Triangles denote the original bone margins. Scale bars, 250 μm. Reproduced from Lu et al. (2016)
with permission from Copyright 2016 Wiley.
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By incorporating graphene nanoplates into poly (lactic-co-
glycolic acid) (PLGA), Wu et al. (2018) fabricated a biofilm with
osteogenic activity. The composite film was observed to enhance
alkaline phosphatase (ALP) activity, calcium mineral deposition
and osteogenesis-related gene expression levels. The activation of
PI3K/Akt/GSK-3β/β-catenin signaling pathway by graphene may
be the mechanism behind its osteoinductive properties.
Pazarçeviren et al. (2019) fabricated a bilayer membrane
through the covalent bonding of a dense polycaprolactone-
polyethylene glycol-polycaprolactone (PCEC) membrane layer
and a hydrogel layer, which was composed of bismuth doped
bioactive glass (BG, 45S5) and graphene oxide (GO) particles
incorporated in gelatin. The membrane could fill cavities and
prevent soft tissue invasion, thus providing a barrier function for
months. It also showed good osteoinductivity, osteoconductivity,
high-resorbability and flexibility, thus creating a favorable
microenvironment for bone regeneration. Su et al. (2019)
prepared a highly interconnective nanofibrous membrane by
electrospinning technique with GO and electrospun poly
(lactide-co-glycolide acid) (PLGA). In a rabbit supraspinatus
tendon repair model, membranes were implanted in the gap
between the tendon and the bone. Compared with the PLGA
group, GO-PLGA membrane could promote the tendon healing
and bone regeneration, which significantly improved the collagen
alignment and biomechanical properties (Figure 5).

Implants Coated with GDs
GDs have been used as coatings for implants to improve
durability and mechanical properties (Shin et al., 2017; Tobin,
2017; Madni et al., 2018). Many scaffolds including metals,
inorganic nonmetals, natural or synthetic polymers can be
coated with GDs to better adapt to the load-bearing
environment of bone tissue (Lee et al., 2008). At the same

time, surface properties of implants such as porosity,
hydrophilicity, biomineralization ability, cell adsorption can be
enhanced to improve the interaction between implants and bone
tissue interface (De Marco et al., 2017). In addition, the
osteoconductive and osteoinductive properties of GDs facilitate
the new bone formation and promote the new bone integration
with the surrounding bone tissue (Erezuma et al., 2021).

Inspired by the natural layer-by-layer assembly process, Guo
et al. (2019) developed a multifunctional tissue scaffold with
porous polyurethane as the matrix and a mixture of nanoscale CS
and GO as the coating. CS and GO nanosheets were alternately
held together by powerful electrostatic interactions, forming a
robust multilayer structure to encase the polyurethane substrate.
The authors were able to control the orientation and chemical
composition of structural elements at the nanoscale and fill them
with drug components. This multifunctional material could
repair bone defects while allowing for drug release in response
to pH changes, thus enabling potential multimodal therapeutic
applications. Lee et al. (2015) explored the effect of rGO-coated
HAP composites on osteogenic differentiation of BMSC. Using
ALP activity and calcium-phosphate mineralization as early and
late markers of osteogenic differentiation, respectively, this study
confirmed that rGO synergistically enhanced the spontaneous
osteogenic differentiation of human BMSC when wrapped
around HAP particles. In addition, Zhao et al. (2015) explored
the preparation, characterization, and cellular behavior of GO
coatings on quartz substrates. These coatings with uniform
thickness were prepared by a modified dip-coating procedure.
Compared with the non-coated substrata and tissue culture
plates, higher levels of ALP activity and osteocalcin secretion
were revealed on the GO-coated substrates, while no significant
differences in cytotoxicity, viability, proliferation and apoptosis
were observed. Miyaji et al. (2014) wrapped the collagen scaffolds

FIGURE 5 | (A) General view of PLGAand PLGA-GO membranes and (B–F) surgical procedure of interposition of PLGAand PLGA-GO membranes in the rabbit
supraspinatus tendon repair model. Reproduced from Su et al. (2019) with permission from Copyright 2019 Dove Medical Press Ltd.
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with GO and rGO, and then examined the bioactivity of GO and
rGO films respectively. Compared with the non-coated group,
GO- and rGO-coated groups showed significant increases in
compressive strength and bioactivity. Moreover, rGO-coated
scaffolds were more bioactive than GO-coated scaffolds due to
their higher tissue ingrowth rate and better enhancement of
calcium absorption and ALP activity.

Titanium (Ti)-based endosseous implants have been widely used
for a variety of bone defects and conditions because of their suitable
mechanical properties, biocompatibility, and chemical stability (Rad
et al., 2013; Abdel-Hady Gepreel and Niinomi, 2013; Qiang et al.,
2021). However, weak osteoinductivity and osteoconductivity result
in a lack of integration of the Ti scaffolds with the surrounding bone
tissue (Li et al., 2015). This situation is expected to be improved by
the addition of GDs-coating. To overcome the challenge of
uniformly depositing GO on chemically inert Ti scaffolds, Han
et al. (2018b) designed and developed a strategy by inspiration of
mussels. Polydopamine (PDA) mediated the interaction between
GO and Ti surfaces, thereby resulting in a homogeneous coverage of
GO on Ti scaffolds (Figure 6). The nanostructure and functional
groups of GO enabled the delivery of biomolecules and provided
sites for cell adhesion, which provided a nanostructured
environment for bone regeneration. Li et al. (2017b) further

explored the effect of graphene coating on the bioactivity of Ti
alloy (Ti6Al4V), which was widely used for hip and knee joint
replacements. The final results showed that the cell proliferation rate
and the level of osteoblast-specific gene transcription of graphene-
coated Ti6Al4V were significantly increased.

Zhang et al. (2016) fabricated the water-soluble GO-copper
nanocomposites (GO-Cu) as coating for porous calcium
phosphate (CaP) scaffold (Figure 7). The composite material
could be uniformly distributed on the scaffold surface and
maintain the long-term release of copper ions. The GO-Cu-coated
CaP scaffolds significantly promoted the angiogenesis and
osteogenesis after implanting into the critical-sized rat cranial
defects. Santos et al. (2015) prepared a multifunctional
biodegradable coating material by hybridization of GO and HAP
nanoparticles. The coatingwas then deposited on the ultra-high purity
magnesium surface by a parallel nano assembling process. The surface
properties of the coating can be tailored by adjusting the content of
GO andHAP. Thereby, appropriate hydrophilicity, degradability, and
surface mineralization could be obtained. The cobalt-chromium-
molybdenum-based alloy (CoCrMo) was also an important
candidate for orthopedic implants due to its excellent corrosion
and wear resistance. Nonetheless, their biocompatibility and
bioactivity were unsatisfactory (Lohberger et al., 2020). Although
many attempts have been made to improve their biocompatibility,
none of the efforts are effective (Poh et al., 2011; Logan et al., 2015;
Sahasrabudhe et al., 2021). Zhang et al. (2018) intended to propose a
solution to this challenge. Though an improvedwet transfer approach,
graphene was transferred to the surface of the alloy. Ultimately,
in vitro experiments showed the improved biocompatibility and
bioactivity of the graphene-coated CoCrMo alloy.

SUMMARY AND PROSPECT

The ultimate goal of bone tissue engineering is to achieve restoration
and reconstruction of human bone tissue to meet clinical treatment
requirements, including but not limited to bone defects caused by
trauma, infections, sarcomas andmetabolic diseases (Holzapfel et al.,
2013; Jakob et al., 2013; Fernandez-Yague et al., 2015). Bone
regeneration is a complex and dynamic physiological process
which macroscopically involves local mechanical stability,
environmental matrix, and blood supply, and microscopically
involves the interaction of multiple cells, signaling molecules, and
effectors in a spatiotemporal sequence (Winkler et al., 2018).
Therefore, an ideal bone graft substitute should exhibit the
following characteristics: 1) good biocompatibility and non-
immunogenicity to ensure safe clinical application; 2) suitable
mechanical properties, including strength, viscoelasticity,
toughness, and wear resistance to match the properties of host
bone and ensure adequate longevity; 3) porous structure or rough
surface to facilitate the ingrowth of cells and tissues; 4) favorable
osteoconductivity and osteoinductivity to promote new bone
production; 5) controlled degradability to match the rate of new
bone ingrowth; 6) facile modifiability to meet the specific functional
requirements of different application scenarios.

GD’s outstanding properties make it as one of themost anticipated
materials for bone tissue engineering (Guo andDong, 2011;Ding et al.,

FIGURE 6 | (A) Photo of the pure Ti, PDA modified Ti (PDA-Ti), and GO-
wrapped Ti scaffolds. (B)SEMmicrographs showingmicropores in the Ti scaffold.
(C) PDA ad-layer was coated on the surface of the Ti scaffold. (D) GO uniformly
coveredon thePDA-Ti scaffold. (E)Magnified imageof (D), showingwrinkled
GO nanosheets wrapped in the pores of the Ti scaffold. Reproduced from Han
et al. (2018b) with permission from Copyright 2018 Royal Society of Chemistry.
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2015). Mechanical properties including strength, stiffness, and
flexibility can best reflect the irreplaceability of GDs in bone repair.
The mechanical reinforcement of GDs on the bone repair composites
can be adjusted by the selection of different derivatives or by changing
their content. GDs-based composites possess favorable viscoelasticity
that can be molded as needed to better adapt to the physical
characteristics of bone tissue. GDs also has strong structural
stability and is less likely to be destroyed during complex
preparations as well as in the physiological environment of the
implant site. In addition, good electrical conductivity of GDs can
not only directly stimulate cellular osteogenic activity, but also
indirectly adsorb active factors to promote bone formation (Turk
and Deliormanlı, 2017; Dalgic et al., 2018). Conductivity can also be
used for signal control or magneto-thermal therapy in special cases,
such as focal clearance for osteosarcoma or local infections. Moreover,
GDs can promote biomineralization and bone-like apatite formation
on the implant surface, thus enhancing osseointegration and
osteoconductivity. Planar structure and large specific surface area
impart GDs with excellent ability to immobilize various
biomolecules, cells, drugs and other desired substances (Wang
et al., 2011; Shen et al., 2012; Feng et al., 2013; Yang et al., 2013).
On the other hand, such structure makes it easier for GDs to be
modified with multifunctional groups, which in turn significantly
improve the dispersibility and hydrophilicity ofGDs in the composites.
Based on the above advantages, GDs have become an indispensable
component of bone repair composites in many studies.

Although promising progress has been made in current research
of GDs-based materials, there are still many challenges to be faced
before clinical application. Firstly, taking into account the cost-
effectiveness and accessibility, the production and processing
techniques of GDs are yet to be broken through. At present, the
broad application of GDs is restricted due to the difficulty of large-
scale synthesis. Cost may become a constraint for further research.

Furthermore, the problemof GD’s aggregation in solution during the
fabrication of composites also remains to be solved (Xu et al., 2016;
Syama et al., 2017). How to promote the homogeneous distribution
of GDs in the matrix will also be a focus of future research. Secondly,
the long-term safety of GDs-based materials for in-vivo use is still
unclear. It is imperative to gain insight into the interactions of GDs
with biological systems. There have been concerns regarding its
biocompatibility and toxicity, but convincing, high-quality studies
are still insufficient. The observation period of existing studies is not
long enough, so chronic toxicity studies longer than 6months
should be encouraged; on the other hand, the most of adopted
animal models were rats and rabbits, lacking large animal models
such as pigs, goats and monkeys. What’s more, the mechanism of
interaction between GDs and the in vivo environment after
implantation needs to be further clarified. Exploration of
osteogenic mechanisms may point out the right direction for
further study; analysis of cellular uptake and response
mechanisms facilitates the prediction of acute and chronic
adverse reactions; then the clarification of degradation and
metabolism mechanisms will help to understand the
spatiotemporal distribution of GDs in vivo. In summary, in spite
of various challenges, GDs are likely to be a real breakthrough for
future research in regenerative medicine, and advances in related
technologies will pave the way for earlier clinical use of GDs.
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