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Abstract

Cattle farming is a major source of greenhouse gases (GHGs). Recent research suggests

that GHG fluxes from dung pats could be affected by biotic interactions involving dung bee-

tles. Whether and how these effects vary among beetle species and with assemblage com-

position is yet to be established. To examine the link between GHGs and different dung

beetle species assemblages, we used a closed chamber system to measure fluxes of car-

bon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) from cattle dung pats. Targeting

a total of four dung beetle species (a pat-dwelling species, a roller of dung balls, a large and

a small tunnelling species), we ran six experimental treatments (four monospecific and two

mixed) and two controls (one with dung but without beetles, and one with neither dung nor

beetles). In this setting, the overall presence of beetles significantly affected the gas fluxes,

but different species contributed unequally to GHG emissions. When compared to the con-

trol with dung, we detected an overall reduction in the total cumulative CO2 flux from all treat-

ments with beetles and a reduction in N2O flux from the treatments with the three most

abundant dung beetle species. These reductions can be seen as beneficial ecosystem ser-

vices. Nonetheless, we also observed a disservice provided by the large tunneler, Copris

lunaris, which significantly increased the CH4 flux–an effect potentially traceable to the spe-

cies’ nesting strategy involving the construction of large brood balls. When fluxes were

summed into CO2-equivalents across individual GHG compounds, dung with beetles proved

to emit less GHGs than did beetle-free dung, with the mix of the three most abundant spe-

cies providing the highest reduction (-32%). As the mix of multiple species proved the most

effective in reducing CO2-equivalents, the conservation of diverse assemblages of dung

beetles emerges as a priority in agro-pastoral ecosystems.
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Introduction

Grazing animals release large amounts of nitrogen and carbon through their excreta in pas-

tures. The excess of nutrients creates a release of Green House Gases (GHGs) which steadily

leaks into the atmosphere [1,2]. The dung produced by livestock, in particular, is a significant

source of GHGs such as nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2) [3–

7]. GHG emissions from dung are primarily and directly dependent on microbiological pro-

cesses. CO2 originates from the decomposition of organic material by micro-organisms, CH4

from methanogenic bacteria thriving in anoxic conditions and N2O from microbial nitrifica-

tion, denitrification and nitrifier denitrification, i.e. nitrite reduction by ammonia oxidizers

[8–13].

Yet, GHG fluxes are also affected by the macroscopic fauna. Recent studies reveal that dung

beetles (Coleoptera: Scarabaeoidea) may influence the GHG emissions by aerating the dung

and soil, by reducing organic matter, by relocating dung and by altering microbe communities

[14–16]. Importantly, studies of beetle-mediated effects on GHG emissions have so far been

focused on the general effect of either including or excluding dung beetles [17–19], or on the

effects of single species [20]. In contrast, the effects of variation in species identity and commu-

nity composition has received little or no attention. This status quo clashes with a general

interest in the functional correlates of overall species diversity (from e.g. [21]), and of nesting

strategies within species assemblages [22], with a general review in [23]. What these studies

reveal is that even within larger assemblages, the level of ecosystem functioning may often be

hinged on the presence of specific species [24]. Thus, to understand overall fluxes of GHGs

from dung, we need to dissect the functional contributions of different dung beetle assem-

blages, and of individual taxa within such assemblages.

Importantly, different dung beetle taxa can be expected to modify gas fluxes to different

extents. Dung beetle taxa vary in their nesting strategies, and can be divided in dwellers, tun-

nelers and rollers [25]. Of these, the ‘dwellers’ do not translocate dung but utilise dung pats by

living inside them. The ‘tunnelers’ translocate dung to tunnels dug underneath the dung pat,

whereas the ‘rollers’ first translocate pieces of dung horizontally, then bury them vertically. A
priori, these different nesting strategies and/or the body mass of the species may significantly

affect ecological function, such as dung removal efficiency [22,26–29]. As they result in inter
alia holes of different diameter in different parts of the dung pat, and in different sizes of

brood balls being translocated to different micro-environments, we hypothesized that they

may also affect GHG fluxes differently. To test this hypothesis, we quantified GHG emissions

from dung pats as a function of the identity and assemblage structure of dung beetles within

them. The specific aims of this study were thus to test: i)whether different species displayed

different GHG emission patterns; and, ii) whether mixed species performed differently from

single-species assemblages.

Materials and methods

To examine the functional consequences of variation in dung beetle assemblage composition,

we established replicate laboratory terraria with four monospecific and two mixed assem-

blages, then recorded the outcome in terms of dung removal and on GHG emissions.

Experimental design

Dung beetles were collected from La Mandria Natural Park (45˚ 08’ 48.83’’ N, 7˚ 36’ 02.53’’ E,

290 m above sea level), north-western Italy (using the same locality as [30]). This collection

was authorized by the supervisory official of the “Ente di Gestione delle Aree Protette dei

Parchi Reali” (Venaria, Italy). Species collected were neither endangered nor protected. Beetles
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were collected in May 2015, using standard cattle-dung-baited pitfall traps located in the

broadleaf forest (dominated by Quercus robur and Carpinus betulus). Following [31], a total of

30 traps were interspersed by distances of at least 50 m, and the beetles collected after 48

hours. The design of our experiment was subsequently based on the snapshot of the local dung

beetle fauna thus derived. Thus, the four species most abundantly caught were used in the

experiment (Table 1): Aphodius fimetarius (Linnaeus, 1758) a small dweller; Onthophagus coe-
nobita (Herbst, 1783), a small tunneler; Sisyphus schaefferi (Linnaeus, 1758), a small roller; and

Copris lunaris (Linnaeus, 1758), a large tunneler (Fig 1) (with the classification into “small”

and “large” species based on body mass, following [32]).

To keep the total biomass of beetles at roughly 0.30 g per assemblage, species-specific num-

bers of individuals were varied between two and 31, with a minimum of two individuals per

species (Table 1). This total biomass was chosen based on the mean total dung beetle biomass

found in dung pats of 300g each in a previous pilot field study (mean value = 0.33g, SD. =

0.20g) (with more details in Appendix). Since the bigger species were of vastly larger size and

biomass than the smaller ones, we chose to omit them from the mixed assemblages to maintain

control over total biomass per treatment.

Table 1. Dung beetle species used in the experiment. The table identifies the nesting strategies, species, total number of individuals, mean individual dry

body mass and number of individuals used in each experimental treatment.

Nesting strategies and

beetle size

Species Total number of

individuals

Mean individual body mass [g] Number of individuals

in each treatment

Monospecific

treatments

Mixed

treatments

T1 T2 T3 T4 T5 T6

Small dweller Aphodius fimetarius 413 0.01 31 17 11

Tunneler Small tunneler Onthophagus coenobita 161 0.02 13 6 4

Large tunneler Copris lunaris 14 0.20 2

Small roller Sisyphus schaefferi 56 0.05 6 2

https://doi.org/10.1371/journal.pone.0178077.t001

Fig 1. Species used in the experiment. The same pictograms are used to identify treatments in Figs 2–5. The length of each pictogram is

proportional to the average body size of beetles, as adopted from [33]. Photographs by Göran Liljeberg.

https://doi.org/10.1371/journal.pone.0178077.g001
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We ran six treatments (see Table 1): four monospecific treatments (T1-T4, each with one

species only), and two mixed treatments (T5, T6) where the two versus three most abundant

species, respectively, were included in proportions representative of field densities (Table 1).

We also ran two controls: C1 dung without beetles, and C2 with neither dung nor beetles.

Seven replicates were established for each treatment and control, thus yielding a total of 56 ter-

raria (6 treatments x 7 replicates + 2 controls x 7 replicates = 56). We used terraria that con-

sisted of a 16.5 litre plastic bucket (diameter 28 cm, height 27 cm). Since our experiment

required a total of 576 litres of soil, we decided to use an artificial synthetic substrate rather

than the natural soil from the site of origin. For this purpose, we used humus for gardening

(0.5 Kg NPK 12-14-24 + 2MgO), homogenizing it through a 1cm-mesh. To reduce the organic

content and to arrive at a composition similar to the natural substrate, we then mixed it with

sand in a ratio of 1:2, following [34].

Fresh dung was collected from a herd of twelve Aberdeen Angus cattle grazing on natural

grasslands dominated by graminoids (genera Dactylis, Festuca, Poa, Lolium and Setaria). No

cow in the herd was treated with antibiotics or anthelmintics. The dung was manually homog-

enized before partitioning 300g to each treatment T1-T6 and to the control C1. This pat size

was chosen from the range of typical pat sizes encountered in nature, selected to leave an

uncovered strip of ground surrounding the pat.

The experiment lasted for 32 days, during which time the laboratory was kept at a constant

temperature of 25˚ [35] and 60% humidity [36]. To simulate rain, we added 100 ml of deion-

ized water to each terrarium after 8, 14, 19 and 24 days.

At the end of the experiment we weighed dry residual dung to evaluate the efficiency of

dung removal for each treatment. By using dry weight, we controlled for any difference in

evaporation, thereby isolating the contribution of the insects themselves in dung removal.

Chamber and gas flux measurement

To evaluate gas fluxes from the terraria, we used a non-steady-state closed chamber technique

[37,38] (overall approach adopted from [17], with additional details offered in Appendix).

To close the terraria, we used lids organized with a vent tube and a sampling port following

the USDA-ARS GRACEnet Chambers-base trace gas flux measurement protocol [39].

Between measurements, buckets were closed with a plastic mesh to avoid the escape of any

dung beetles.

Gas fluxes were measured between 09:00am and 2:00pm on eight occasions between June

5th and July 6th, with the timing of measurement (i.e. 1, 4, 7, 11, 15, 20, 26 and 32 days from the

start of the experiment) following that of [17]. On each specific day, gas fluxes were measured

in seven consecutive rounds, with each round encompassing one replicate of each treatment

(T1, T2, T3, T4, T5, T6) and control (C1 and C2). The first round was initiated at 9:00 am, the

last one at 1:30 pm. Gas fluxes measured during different rounds did not detectably differ

from each other (see Table D in S1 Appendix).

Samples were taken with a syringe (50 ml) after 0, 8, and 16 minutes of the chamber being

sealed, and injected into glass vials (12 ml). The contents of CO2, CH4 and N2O were then

quantified in parts per million (ppm by volume) by a gas chromatograph (Agilent mod.

7890A) equipped with thermal conductivity, flame ionization and electron capture detectors.

Fluxes were calculated from the linear or nonlinear [40] increase over time (per hour) in

concentration (selected according to the emission pattern) in the chamber headspace, as sug-

gested by [38].

To evaluate the overall warming effect of GHG emissions from dung pats, compound-spe-

cific emissions should be combined. To weigh the fluxes together, we converted compound-
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specific fluxes of N2O and CH4 to CO2-equivalents by using the IPCC 2013 global warming

potential (GWP) impact factors for 100 years’ time, i.e. 298 for N2O and 34 for CH4. These

fluxes were then summed with the fluxes of CO2.

Following [17] and [20], cumulative fluxes of CO2, N2O, CH4, and CO2-equivalents were

calculated for each chamber and expressed as areas under the curve (AUC) of the gas flux over

time. For the period from the start of the experiment to day i, the cumulative area under the

curve Ai was calculated as: Ai ¼
Pi

k¼1
Ak. Accumulation rates (as trends in cumulative areas

under the curves) and total cumulative fluxes (i.e. sums up to i = 32 days) were used as separate

responses in subsequent analyses.

Statistical analysis

Generalized Least Squares (GLS) models were used to analyse dung removal efficiency and gas

fluxes, which allow the incorporation of autocorrelation structures (i.e. temporal dependencies

between observations). To account for the heterogeneity of variance between treatments, we

included a separate variance structure for each treatment where necessary. The most appropri-

ate structure of random components was determined using a REstricted Maximum Likelihood

(REML) estimation. The optimal random structure was determined by starting with a model

without any variance–covariate terms (equivalent to linear regression) and comparing this

model with subsequent GLS models that contained specific variance structures [41]. Compari-

sons of these models were made using Akaike Information Criteria (AIC) (Table B in S1

Appendix) and plots of residuals versus fitted values. Individual responses were modelled as

follows.

To analyse how dung removal varied with dung beetle assemblage composition, residual

dung weight was modelled as a function of treatment, while including a separate variance

structure for each treatment.

To analyse how the fluxes (both hourly and cumulative) of different gases varied over time

and treatments, a separate model was derived for each compound (CO2, CH4, N2O and CO2-

equivalents, respectively). We run models that took into account the high variability within

treatments and the temporal non-independence of consecutive measurements. Thus, each

compound was modelled as function of measurement day and treatments, using terrarium as

a random effect and including a separate variance structure for each treatment.

To analyse total cumulative fluxes at the end of the experiment, we applied a separate GLS

to each compound, including a separate variance structure for each treatment. Consequently,

each compound was modelled as function of treatments, including a separate variance struc-

ture for each treatment.

To adjust for multiple comparisons in all GLS models and post hoc test, we recalculated the

p-value with a Holm correction (equal to a sequential Bonferroni correction; [42]). In other

words, we multiplied the lowest p-value observed by the number (n) of independent tests con-

ducted or by the number of independent variables, the next-lowest with n-1 etc. Both the

adjusted and non-adjusted p-value are presented in the Tables in Appendix.

All analyses were performed using the ‘nlme’ package (v3.1–124; [43]) in the R (v3.2.1) sta-

tistical and programming environment (R Development Core Team 2005, for the R-scripts see

Table A in S1 Appendix).

Data exploration of GHG fluxes per treatment and day highlighted the presence of an out-

lier from methane emissions of treatment T1 (day 3). This value was completely out of range

of all other data, suggesting that it may come from an error during the gas extraction. For this

reason, this data had not been taken into account in the analysis.
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Results

Dung removal

At the end of the experiment the dry mass of dung remaining did not significantly differs

between the treatments and the beetle-free control C1. The treatment T4 with Copris lunaris
offered a notable exception, as this species removed much more dung than the others (Fig 2

and Table E in S1 Appendix).

GHG emissions

GHG fluxes from soil (i.e. from control C2, containing neither dung nor beetles) were much

lower than fluxes from terraria with dung (Figs 3–5). Fluxes from dung pats decreased over

time and showed different patterns among the compounds considered: while fluxes of all com-

pounds were highest from fresh dung, this pattern was most pronounced for methane and

nitrous oxide, which emissions essentially stopped within a week. By comparison, carbon diox-

ide fluxes continued–albeit at a reduced rate–throughout the duration of the experiment

(Fig 3).

When focusing on the seven terraria types with dung pats (i.e. the set of six treatments with

dung beetles and the control C1 containing dung only), the presence of dung beetles signifi-

cantly reduced GHG emissions as compared to the control C1 containing dung only (Tables F

and G in S1 Appendix).

Fig 2. Dung removal in different treatments. Shown are box plots of the dry weight of dung (in grams) left

at the end of the experiment. Letters above boxes identify differences among means as revealed by post-hoc

analyses of GLS models. Boxes not sharing a letter were significantly different from each other, with

significance levels derived from post-hoc analysis of the GLS model: ‘***’ = p<0.001.

https://doi.org/10.1371/journal.pone.0178077.g002

Greenhouse gas emissions vary with dung beetle species

PLOS ONE | https://doi.org/10.1371/journal.pone.0178077 July 12, 2017 6 / 15

https://doi.org/10.1371/journal.pone.0178077.g002
https://doi.org/10.1371/journal.pone.0178077


Carbon dioxide. Emissions of CO2 varied between a maximum of 2421.15 mg C m-2 h-1

and a minimum of 23.96 mg C m-2 h-1 among the terraria with dung pats (treatments T1-T6

and C1; Fig 3A). CO2 fluxes differed among terraria (F6,336 = 2.57, p = 0.02, adjusted p = 0.057;

with T1/T6 differing from C1) and time periods (F7,336 = 408.32, p<0.001, adj. p<0.001),

with the size of the difference varying between time periods (Interaction treatments × days:

F42,336 = 1.54, p = 0.02, adj. p = 0.04; for more details see Table F and G in S1 Appendix) (Figs

3A and 4A).

The cumulative CO2 flux was lower in all treatments than that of the control C1 (as contain-

ing dung only; T2: t56 = -2.25, p = 0.03, adjusted p = 0.12; T3: t56 = -1.91, p = 0.06, adjusted

p = 0.12, T5: t56 = -2.50, p = 0.02, adjusted p = 0.08, T6: t56 = -2.18, p = 0.03, adjusted p = 0.12),

but this difference was strong in the presence of C. lunaris (T4: t56 = -3.67, p<0.001, adj.

p = 0.001; for more details see Table H in S1 Appendix) (Fig 4A).

Methane. Fluxes of CH4 ranged from a maximum of 5.73 mg C m-2 h-1 to a minimum of

-0.55 mg C m-2 h-1 (treatments T1-T6 and control C1). For this compound, fluxes did not dif-

fer significantly among terraria (F6,335 = 1.03, p = 0.40, adj. p = 0.81), but only between time

periods (F7,335 = 182.15, p<0.001, adj. p<0.001; interaction treatments × days: F42,335 = 1.58,

p = 0.02, adj. p = 0.048; more details in Tables F and G in S1 Appendix) (Fig 3B). The same pat-

terns were evident in cumulative CH4 fluxes (Fig 4B).

Total cumulative fluxes of CH4 from the beetle-free control C1 were significantly lower

than those from the treatment with the big tunneler C. lunaris (treatment T4: t56 = 2.91,

p = 0.00, adj. p = 0.037; more details in Table H in S1 Appendix). The emission pattern from

this treatment (T4) changed over time, with CH4 emissions decreasing until the 7th day, when

Fig 3. Compound-specific gas fluxes observed over time. Individual panels show fluxes of CO2 (a), CH4 (b), N2O

(c) and CO2-equivalents (d), with each treatment represented by day-specific averages and standard deviations from

empirical data. The water drops symbolizes the addition of 100 ml of deionized water to each terrarium. Error bars

show standard deviations.

https://doi.org/10.1371/journal.pone.0178077.g003
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they started to increase. As a result of this trend, cumulative emissions were lower than those

from control C1 with dung at the beginning of the experimental period and higher at the end

(Figs 3B and 4B).

Nitrous oxide. Fluxes of N2O varied between a maximum of 43.31 mg N m-2 h-1 and a

minimum of -0.62 mg N m-2 h-1 among the terraria with dung pats (treatments T1-T6 and

C1). The specific flux rates differed significantly among treatments over time (F6,336 = 2.27,

p = 0.04, adj. p = 0.04) and over time (F7,336 = 95.64, p<0.001, adj. p<0.001; interaction

treatment × days: F42,336 = 1.95, p<0.001, adj. P = 0.001; with more details in Tables F and G

in S1 Appendix) (Figs 3C and 4C).

Cumulative N2O fluxes accumulated slower over time in treatments with beetles than in the

control C1 with dung only (with the notable exception of treatment T2 containing the small

tunneller, Onthophagus coenobita; Fig 4C). However, these differences were significant only

between treatment T6 (with all three dung beetle species present) and the beetle-free control

with dung, C1 (Treatment T6: t56 = -2.65, p = 0.01, adj. p = 0.07; more details in Table H in S1

Appendix).

CO2-equivalents. To the total fluxes of CO2-equivalents, CO2 and N2O contributed the

majority, with a substantially smaller contribution from CH4 (Fig 5). Among the terraria with

dung pats (treatments T1-T6 and control C1), emissions of CO2-equivalents differed signifi-

cantly among terraria (F6,336 = 2.68, p = 0.02, adj. p = 0.02) and over time (F7,336 = 162.10,

p<0.001, adj. p <0.001; interaction treatment × days: F42,336 = 2.14, p<0.001, adj. P = 0.001;

with more details in Tables F and G in S1 Appendix) (Figs 3D and 4D).

Cumulative fluxes of CO2-equivalents accumulated slower in the presence (T1-T6) than in

the absence (control C1) of beetles, with an average reduction of -21,33% (calculated from the

data shown in Fig 5 as
Ti � C1

C1
� 100; see [17]). The largest reduction was provided by the blend of

Fig 4. Compound-specific cumulative fluxes observed over time. Individual panels show cumulative fluxes of CO2

(a), CH4 (b), N2O (c) and CO2-equivalents (d) in different treatments and controls (see details and GLS result in

Appendix).

https://doi.org/10.1371/journal.pone.0178077.g004
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three species (treatment T6), which was also significantly lower than that from the control C1

(Treatment T6: t56 = -3.22, p = 0.00, adj. p-value 0.02; more details in Table H in S1 Appendix;

for post hoc analysis details in Table I in S1 Appendix) (Fig 5).

Discussion

Where previous studies have revealed a general impact of dung beetles on GHG fluxes from

cow pats [17,18,20], the current study reveals a new pattern: that the specific reduction in

GHG emissions depends on the composition of the dung beetle assemblage. Quite surpris-

ingly, we found the very same species to maximize the ecosystem service of dung removal and

of carbon dioxide reduction and the ecosystem disservice of methane emissions from dung

pats. These patterns come with two main implications: first, they support our a priori hypothe-

sis that different dung beetle species, and different dung beetle assemblages, do indeed affect

GHG fluxes differently. Second, they suggest that different ecosystem services may trade off

against each other, and that functionally efficient organisms may simultaneously increase both

desirable and undesirable ecosystem processes. Below, we will address each one in turn.

Different dung beetle assemblages affect GHG emission differently

While previous studies have mainly targeted the overall effect of dung beetles on GHG emis-

sions from dung pats [17,18], not all dung beetles are equal. Variation in nesting strategies

[25] and in the body mass of species may significantly affect their functional efficiency [22,27,

28,29,44]. Thus, we expected different beetles to affect GHG fluxes differently–a hypothesis for

which we found direct support.

Fig 5. Total CO2-equivalents of greenhouse gases emitted in different treatments. To weigh together

individual GHG compounds, we used compound-specific multipliers derived from IPCC (2013). Letters above

bars identify differences among means revealed by post-hoc analyses of GLS models (more details in Table I

in S1 Appendix). Bars not sharing the same letter were significantly different from each other. Stars define

significant differences between terraria (treatment T6 and control C2 without dung) and reference category

(control C1 with dung), revealed by GLS models. Error bars show standard deviations. ‘***’ = p<0.001 and ‘*’

= 0.05.

https://doi.org/10.1371/journal.pone.0178077.g005
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Even though our experimental design was explicitly based on the same total biomass of

dung beetles in each experimental unit, assemblages of the large tunneler, Copris lunaris,
released more total methane per unit beetle mass than did other beetle assemblages–and in

fact, even more methane than did the control with dung only and no beetles. The exact pat-

terns differed not only with the assemblage structure but with the GHG compound consid-

ered. When emissions of all compounds (CH4, N2O and CO2) were combined into the

common currency of CO2-equivalents, dung beetle assemblages consisting of three species

proved to release a full third (32%) less of GHGs than did beetle-free controls.

Exactly what processes are behind the patterns detected is yet to be clarified. For assem-

blages with C. lunaris, fluxes first decreased until day 7 of the experiment, then increased

again. These patterns may reflect the nesting behaviour of this large tunneler, with decreasing

CH4 fluxes during the first week corresponding to dung relocation into chambers before the

brood ball formation starts [45]. During this period, C. lunaris manipulated and transported

the dung into the soil, this may have enhanced its drying and increased the availability of oxy-

gen. This may have decreased anaerobic decomposition and reduced methanogenesis (cf.

[17]). Once in the larval chamber, brood balls will be kept moist by parental care, and may

therefore continue to emit CH4 until the end of the experiment.

That the different activities of different dung beetle species may interact in determining the

net functional outcome is suggested by the functional patterns emerging from monospecific

versus mixed species assemblages.

Overall, the total emission of CO2 equivalents–i.e. the pooled climatic impact–was lower in

the presence than in the absence of beetles and with the mix of three species providing the

highest significant reduction. Yet, the exact mechanisms behind this desirable pattern of atten-

uation of GHG emissions in terms of CO2 equivalents are again to be targeted by further work.

As our current experimental design was explicitly devised to resolve differences among species,

and constrained by limitations on resources and overall terraria numbers, it falls short of

resolving complementarity from facilitation effects (sensu [21])–or indeed any other specific

mechanisms behind the patterns detected. Yet, it does suffice to generate the data-driven

hypothesis that more diverse dung beetle communities may release less GHGs–an explicit

hypothesis to be targeted by future experiments.

Functionally efficient taxa may provide both ecosystem services and

disservices

While the large tunneler C. lunaris was associated with unexpectedly high methane emissions,

it was also the most efficient species in removing dung and reducing CO2 emissions, even

more efficient than mixed assemblages. Thus, functionally efficient organisms may simulta-

neously increase both desirable and undesirable ecosystem processes [46,47] and different eco-

system services may trade off against each other [48,49]. Across different taxa, many species

provide both ecosystem services and disservices. Important pollinators, as hawkmoth species

(Lepidoptera: Sphingidae), have voracious herbivore larval-stages that, damaging the plants,

have an effective fitness cost [50,51] and incur an indirect disservice for the crop. Ants provide

several ecosystem services (reducing leaf herbivory, fruit pest damage and indirect pollination

facilitation), but also disservices, increased mealybug density, phytopathogen dissemination

and indirect pest damage enhancement [47]. Earthworms are also important as soil ecosystem

engineers, they modify soil structure and interact with microbes through their feeding, bur-

rowing and casting activities (ecosystem services) but it was proven that they also increase

GHG emissions from soil (ecosystem disservice) [46].
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Since dung beetles as a group are known to sustain a whole range of ecosystem services

ranging from seed dispersal to parasite control [52], this points to a need for quantifying the

relative role of species identity, functional diversity and overall species diversity for multiple

functions at the same time. Dung removal per se seems not to reflect all other functions and

services (current study; see also [53]), and a species excelling at producing one service may be

either inefficient in producing another, or distressingly efficient in simultaneously sustaining a

disservice.

Conclusions

Overall, our study demonstrates that different dung beetle species contribute differently to

dung removal and to GHG emissions from dung pats–and that one and the same species (C.

lunaris) may contribute to both ecosystem services (dung removal and CO2 reduction) and

disservices (increasing methane emissions). As different species may perform differently

under different conditions [54], the best approach to safeguarding ecological functioning will

be conserving diverse dung beetle communities [53].

In many countries worldwide, dung beetles are currently threatened by changes in pastoral

practices and chemicalization of cattle farming [28,55–57]. As a case in point, the large tun-

neler, C. lunaris, which we identified as so functionally important in our study, has been

declining in many parts of Northern Europe [33]. This and similar changes may incur unpre-

dictable changes in the functioning of pasture ecosystems.

Supporting information

S1 Appendix. Table A. Formula applied to each model. Alternative models fitted to flux

data, with the resultant AIC values offered in Table B. Table B. AIC results for each model

applied. AIC values for each of the models outlined in Table A, as fitted to compound-specific

gas fluxes. Fig A. Terraria. Buckets with lids organized with the vent port and the syringes for

the gas extractions. Table C. Respiration rates per mesocosm. The respiration rate per each

species was estimated using data available from [2]. To evaluate the beetle respiration per each

mesocosm, the species respiration rate was multiplied by the number of individuals in each

treatment. In order to compare the respiration rates with the data recorded in this experiment,

the means of the CO2 fluxes recorded in the experiment were presented in the second column

of the table. Table D. Generalized Least Square models of GHG fluxes over measurement

series (i.e. gas fluxes were measured in different 7 rounds–series- from 9 to 13:30). Shown are

estimates of GLS model of gas fluxes over time series with standard errors and statistical signif-

icance. Reference level: Series 1. Models were fitted assuming a Gaussian error distribution.

Table E. GLS models of dung removal. Generalized least squares (GLS) models on residual

dry dung (g) as a function of treatment. Shown are estimated coefficients with standard errors,

t-value and statistical significance. Here, Control C1 was used as reference category. Column

“p-value” refers to unadjusted probabilities derived from an t-distribution with the appropriate

degrees of freedom, whereas column “Adjusted p-value” refers to probabilities after Holm-

Bonferroni correction. For the latter, we multiplied the lowest p-value observed with the num-

ber (n) of independent variables, the next-lowest p-value with n-1 etc. (here: n = 7 independent

variables). Table F. GLS models of cumulative flux trends. Generalized Least Squares models

of the cumulative fluxes of CO2, CH4, N2O and CO2-equivalents among treatments (T1-T6)

over time. Fluxes of CO2, CH4, N2O and CO2-equivalents, respectively, were modelled as a

function of treatments and measurement time, i.e. days since the start of the experiment, used

as a categorical variable. For further details, see Materials and methods. To estimate the spe-

cific effect of variation in the beetle assemblage on GHG emissions over time, we removed the
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control without dung (C2). Here, control C1 was used as reference category. Column “p-

value” refers to unadjusted probabilities derived from an F-distribution with the appropriate

degrees of freedom, whereas column “Adjusted p-value” refers to probabilities after Holm-

Bonferroni correction. For the latter, we multiplied the lowest p-value observed with the num-

ber (n) of independent tests conducted, the next-lowest p-value with n-1 etc. (here: n = 4 sepa-

rate compounds). Table G. GLS models of hourly GHG flux over time. Fluxes of CO2, CH4,

N2O and CO2-equivalents, respectively, were modelled as a function of treatments and mea-

surement time, i.e. days since the start of the experiment, used as a categorical variable. For

further details, see Materials and methods. To estimate the specific effect of variation in the

beetle assemblage on GHG emissions over time, we removed the control without dung (C2).

Here, control C1 was used as reference category. Column “p-value” refers to unadjusted prob-

abilities derived from an F-distribution with the appropriate degrees of freedom, whereas col-

umn “Adjusted p-value” refers to probabilities after Holm-Bonferroni correction. For the

latter, we multiplied the lowest p-value observed with the number (n) of independent tests

conducted, the next-lowest p-value with n-1 etc. (here: n = 4 separate compounds). Table H.

GLS models of cumulative GHG fluxes. Total fluxes of CO2, CH4, N2O and CO2-equivalents,

respectively, accumulated by the end of the experiment, were modelled as a function of treat-

ment. The table shows compound-specific differences (columns) between treatments (as rows)

control C2 (without beetles and dung) versus the control C1 (which include dung but no bee-

tles) as reference category. Column “p-value” refers to unadjusted probabilities derived from

an t-distribution with the appropriate degrees of freedom, whereas column “Adj. p-value”

refers to probabilities after Holm-Bonferroni correction. For the latter, we multiplied the low-

est p-value observed with the number (n) of independent variables, the next-lowest p-value

with n-1 etc. (here: n = 8 independent variables). Table I. Post hoc analysis of cumulative

CO2-equivalents. Cumulative emissions of CO2-equivalents, accumulated by the end of the

experiment, were modelled as a function of treatment. Column “adjusted p-value” refers to

probabilities after Holm-Bonferroni correction. For the latter, we multiplied the lowest p-

value observed with the number (n) of independent variables, the next-lowest p-value with n-1

etc. (here: n = 28 total number of contrasts).
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