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Lupus nephritis (LN) is a common complication of systemic lupus erythematosus (SLE) 
with unclear etiology and limited treatment options. Immune cell infiltration into the kid-
neys, a hallmark of LN, triggers tissue damage and proteinuria. CD11b, the α-chain of 
integrin receptor CD11b/CD18 (also known as αMβ2, Mac-1, and CR3), is highly expressed 
on the surface of innate immune cells, including macrophages and neutrophils. Genetic 
variants in the human ITGAM gene, which encodes for CD11b, are strongly associated 
with susceptibility to SLE, LN, and other complications of SLE. CD11b modulates several 
key biological functions in innate immune cells, including cell adhesion, migration, and 
phagocytosis. CD11b also modulates other signaling pathways in these cells, such as the 
Toll-like receptor signaling pathways, that mediate generation of type I interferons, a key 
proinflammatory cytokine and circulating biomarker in SLE and LN patients. However, 
how variants in ITGAM gene contribute to disease pathogenesis has not been completely 
established. Here, we provide an overview of CD11b modulated mechanisms and the 
functional consequences of the genetic variants that can drive disease pathogenesis. 
We also present recent insights from studies after pharmacological activation of CD11b. 
These studies offer novel mechanisms for development of therapeutics for LN, SLE and 
other autoimmune diseases.
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inTRODUCTiOn

Lupus nephritis (LN) is an inflammatory kidney disease that is a common complication of systemic 
lupus erythematosus (SLE), an autoimmune disease that affects women nine times more often than 
men and is characterized by aberrant autoimmune responses to self-antigens that can result in 
multiple end organ pathologies. Approximately 50–60% of SLE patients develop LN over the course 
of the disease, making LN the common cause of morbidity and mortality (1). There is considerable 
variation in the prevalence of SLE and the frequency of LN in different regions of the world and 
different races and ethnicities [reviewed in Ref. (2)]. In the United States and Canada, the prevalence 
of SLE ranges from 4.8 to 78.5 cases per 100,000 people (2, 3). LN cumulative incidence is higher in 
African descent (51%), Asian (55%), and Hispanic (43%) populations as compared with European 
ancestry (14%) (4–6). LN severity also differs among the ethnicities with more renal involvement in 
individuals of African lineage, Hispanics, and Asian populations (4–6). The discrepancies between 
ancestral backgrounds could be due to the complex interplay between genetic and environmental 
risk factors that drives kidney inflammation in LN. These factors could compromise mechanisms 
that normally assure immune tolerance to nuclear autoantigens leading to the activation and pro-
liferation of immune cells, including monocytes, autoreactive B and T cells that are recruited to 
the kidney tissue where they produce destructive cytokines and chemokines, which in turn attract 
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FigURe 1 | Biological functions of CD11b and the functional outcomes of CD11b variants. Indicated are examples of well described physiological functions of 
integrin CD11b and the functional consequences of the genetic variations that can drive lupus nephritis pathogenesis.
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more infiltrating cells. This inflammatory cascade causes kidney 
damage and triggers proteinuria. Recent genome-wide associa-
tion studies (GWAS) have revealed strong associations between 
single-nucleotide polymorphisms (SNPs) in the ITGAM gene 
(located at chromosome 16p11.2) and susceptibility to SLE and 
LN (7–9). Understanding how such mutations in the ITGAM 
gene change the molecular and cellular mechanisms that are 
modulated by integrin CD11b is essential for understanding the 
pathobiologic mechanisms driving this disease and for identify-
ing novel therapeutics.

MUTATiOnS in THe ITGAM gene  
ARe STROng geneTiC RiSK FACTORS 
FOR Ln

Recent GWAS have reported a significant association between 
three different variants in the ITGAM gene and LN susceptibility 
(7–9). Rs1143678, rs1143679, and rs1143683 are three non-
synonymous ITGAM SNPs (10, 11) that translate into mis-sense 
mutations P1146S, R77H, and A858V, respectively, in the CD11b 
protein, and confer risk for SLE and SLE subphenotypes including 
LN, discoid rash and immunological manifestations [reviewed 
in Ref. (12)]. The rs1143678 (P1146S) and rs1143683 (A858V) 
SNPs have been found to be mostly in complete linkage disequi-
librium (LD), forming a haplotype (10, 13, 14). Additionally, a 
strong LD has also been noticed between rs1143678 (P1146S) 
and rs1143679 (R77H) in SLE patients (9, 10, 15). The association 
between ITGAM SNPs and disease susceptibility holds among 
individuals across all different ancestries, including European 
ancestry, Hispanics, African Americans, and Asians (7–9, 13, 
15). In particular, there is a robust association between ITGAM 
variants and renal disease in SLE patients (11, 13, 16–18). Higher 
prevalence of LN was reported in SLE patients carrying risk 
alleles rs1143679 (R77H) [odds ratio (OR)  =  3.35, p  =  0.029] 
or rs1143683 (A858V) (OR  =  2.05, p  =  0.022) in Hong Kong 
Chinese and Thai patients as compared to lupus patients without 
renal nephritis (13). Another study also demonstrated a strong 
genetic association of the rs1143679 (R77H) variant and LN 
(OR = 2.15, p = 4.69 × 10−21) in a large European ancestry SLE 

cohort where the risk allele frequency increased from 10.6% in 
healthy controls to 17% in SLE and 20.4% in LN (11).

BiOLOgiCAL FUnCTiOnS OF CD11b—
BOTH PRO- AnD AnTi-inFLAMMATORY 
ROLeS

ITGAM encodes for CD11b, the 165-kDa alpha chain that non-
covalently binds with its β-chain partner, CD18, to form the func-
tional integrin heterodimer CD11b/CD18, also known as Mac-1, 
αMβ2, and CR3. This integrin is one of the four members of the 
hetrodimeric β2 integrin family, which share the common CD18 
chain (19–22) (Figure 1). Integrin CD11b is primarily expressed 
on monocytes, macrophages, neutrophils, dendritic cells (DCs), 
NK cells, and a subset of B and T cells (23–28). It binds to a diverse 
array of ligands, including intercellular adhesion molecule family 
members, complement protein iC3b and fibrinogen (29–32), and 
mediates leukocyte adhesion, migration and tissue recruitment 
(Figure  1). CD11b participates in many proinflammatory bio-
logical processes primarily associated with controlling infection. 
For example, in response to inflammatory stimuli, it mediates 
leukocyte activation and accumulation at the sites of inflamma-
tion, by increasing leukocyte rolling, stable adhesion, crawling 
and transmigration across blood vessels (31, 33, 34). CD11b also 
plays a key role in the phagocytosis of opsonized particles, such 
as iC3b-coated bacteria, apoptotic cells and immune complexes 
(ICs), that is essential to limit unwanted inflammatory immune 
responses (34–36). Ligation of CD11b by iC3b also results in the 
production of anti-inflammatory cytokines such as IL-10 and 
TGF-β (37).

Integrin CD11b signaling also negatively regulates other pro-
inflammatory signaling pathways, such as the toll-like receptor 
(TLR) and FcγR signaling pathways (14, 38–41). Under basal 
conditions, integrin CD11b is present in an inactive conforma-
tion on circulating leukocytes, but it is rapidly activated after 
TLR stimulation (42–44). Activation of CD11b, through intracel-
lular signaling pathways including the PI(3)K and effector RapL 
pathways, after TLR stimulation, induces activation of Src and 
Syk, which phosphorylates MyD88 and TRIF leading to their 
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ubiquitin-mediated degradation via Cbl-b (38). Consequently, 
there is reduction in activation of transcription factor NFκB, 
which correlates with reduced production of IL-6 and other 
proinflammatory proteins. Macrophages deficient in CD11b  
have reduced TLR-induced degradation of MyD88 and TRIF 
resulting in enhanced activation of NFκB and other TLR-
dependent pathways and inflammatory cytokine production  
(14, 38). This suggests that CD11b negatively regulates innate 
immune cell activation downstream of TLR pathways, and mis-
regulation of this key regulatory mechanism might underlie LN 
and SLE pathogenesis.

CD11b also negatively regulates other immune cell signaling 
pathways following ligand binding. Studies report that CD11b 
negatively regulates BCR signaling to maintain autoreactive B cell 
tolerance (38, 45), suppression of T-cell activation (46), nega-
tive regulation of Th17  cell development (47) and suppression 
of DC maturation and function (Figure  1). All together, these 
studies indicate that functional CD11b is crucial for maintaining 
homeostasis and tolerance and downregulating inflammatory 
mechanisms that contribute to LN development.

FUnCTiOnAL OUTCOMeS OF CD11b 
RiSK vARiAnTS

The three most common ITGAM SNPs are distributed in dif-
ferent CD11b domains across this large protein (Figure 1). All 
three variants result in functionally deficient CD11b protein on 
leukocytes, with limited effects on its surface expression levels 
(10, 14, 48–50) (Figure 1). Studies using cell lines expressing the 
R77H variant or monocytes/macrophages derived from R77H 
donors reveal that the mutation reduces the integrin’s ability to 
bind to ligands, including ICAM1 and iC3b, in static conditions 
as well as sheer flow conditions that closely mimic blood flow  
(48, 49). Similarly, firm adhesion of CD11b expressing neutro-
phils was significantly reduced in cells from individuals carrying 
any of the three common ITGAM SNPs (10). Integrin CD11b also 
contributes to the process of phagocytosis of opsonized particles 
that include apoptotic cells and ICs (36, 51, 52). CD11b-mediated 
phagocytosis was significantly reduced in neutrophils from 
donors carrying ITGAM variant alleles that was related to vari-
ations at rs1143679 (R77H), rs1143678 (P1146S), or rs1143683 
(A858V) (10, 49, 50). Similarly, phagocytosis mediated by Fcγ 
receptors was also significantly reduced in cells from donors with 
ITGAM variant alleles (10). This defect is also apparent in cells 
that are heterozygous for the R77H allele, further implicating the 
importance of functional CD11b for normal phagocytosis (10, 
49, 50). CD11b also plays an important role in downregulating 
TLR- and FcγR-dependent inflammatory pathways (38, 41, 53). 
Among these ITGAM risk variants, most of the functional studies 
to date have primarily been focused on the R77H variant, which 
was the first ITGAM variant identified. More studies are needed 
to fully define the structural and functional effects of all three 
variants on CD11b. The R77H substitution results in failure to 
downregulate IL-6, TNF-α, and IL-1β, expression in monocytes, 
and IL-6 expression in macrophages, indicating that the integrin 
is deficient in regulating proinflammatory cytokine production 

(40, 48, 49). The R77H substitution also abolishes the regulatory 
effect of CD11b on BCR signaling on B cells (45). Under normal 
conditions, CD11b colocalizes with BCR and CD22 to form a 
complex on the B cell surface hindering BCR-mediated signaling 
via the Lyn-CD22-SHP1 pathway to ensure auto-reactive B cell 
quiescence. Upon BCR ligation, CD11b-CD22 quickly dissoci-
ates from the activated BCR that results in a rapid increase of 
intracellular free calcium concentrations indicating activation. 
Interestingly, the R77H mutation in CD11b induces a drastic 
reduction in colocalization of BCR-CD11b with CD22, result-
ing in an abnormal influx of intracellular calcium and B  cell 
hyperactivation. These studies suggest that the R77H substitu-
tion disrupts the direct binding of CD11b-CD22 thus abrogating 
the regulatory effect of CD11b on B cell activation (45). Rosetti 
et al. reported that the R77H mutation reduces affinity for ligand 
binding by CD11b and its ability to form catch-bonds, which 
strengthen receptor–ligand bonds under mechanical forces (54), 
How this decrease in catch bond formation plays a role in disease 
susceptibility is unclear, but it might be related to CD11b’s role in 
regulating the proinflammatory TLR and FcγR signaling in cells, 
which might be compromised due to reduction in mechanical 
forces in R77H mutant cells (54). We recently found that all 
three ITGAM variants show strong association with elevated 
type I interferons (IFN-I) serum activity in SLE patients (14). 
Transcriptional induction of IFN-I is mediated by transcription 
factors IRF3 and IRF7 that require phosphorylation for nuclear 
entry and activity (55). Under normal conditions, nuclear FOXO3 
acts as a negative regulator of IFN-I pathway by imposing a brake 
on IRF7 (56). Upon TLR stimulation, FOXO3 is shuttled from 
the nucleus to the cytoplasm and degraded, via its AKT-mediated 
phosphorylation, consequently removing the brake on IRF7 
and the IFN-I pathway. Interestingly, cells from donors carrying 
ITGAM variants showed increased transcript levels of IFNB and 
IRF7 and significantly reduced protein levels of FOXO3 in the 
nucleus (14), suggesting a key mechanism behind increased IFN 
I levels in SLE and LN patients—that the ITGAM variants likely 
reduce a CD11b-dependent tonic suppression of TLR signaling 
in cells, due to a failure of the mutant CD11b integrin in main-
taining nuclear FOXO3 levels, resulting in reduced suppression 
of IRF7 (56) and increased IFN-I (14). Altogether, these studies 
indicate the importance of normal activity of CD11b for efficient 
clearance of dead cells and ICs, and for regulating proinflamma-
tory pathways that, in cells expressing disease-associated ITGAM 
variants, elicits unchecked, chronic inflammation.

PATHOgeniC MeCHAniSMS DRiven BY 
DeFiCienT CD11b THAT COnTRiBUTeS 
TO Ln

How these ITGAM SNPs confer disease risk is not fully under-
stood, but they have been shown to produce a dysfunctional 
CD11b protein that is deficient in many functions, as compared 
to the wild-type CD11b; activation, ligand binding and cell 
adhesion, phagocytosis, catch-bond formation and restricting 
TLR -signaling that mediate generation of IFN I (Figure  1). 
High levels of serum IFN-I is a heritable risk factor for SLE and 
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is the main pathogenic mediator of disease (57). Elevated IFN-I 
makes lupus-prone mice more susceptible to disease, accelerates 
disease progression, and contributes to renal damage by directly 
damaging podocytes and inducing leukocyte infiltration of the 
kidney and other tissue (58, 59). IFN-I also activates adaptive 
immune responses, including B cells that secrete autoantibodies 
that form ICs that are deposited in the kidney, resulting in tissue 
scarring that leads to LN. Interestingly, studies show that CD11b 
downregulates TLR-induced pathways and B cell autoreactivity 
(38, 45), suggesting that SLE patients that carry CD11b variants 
have increased disease activity due to a reduction in CD11b’s 
normal anti-inflammatory signaling activities in immune cells. 
Perhaps because of these suppressive roles in immune system 
regulation, CD11b deficiency in murine systems results in higher 
susceptibility to autoimmune diseases including SLE [reviewed 
in Ref. (60)] and increased cellular infiltration of tissue and 
immune-mediated injury in lupus-prone mice (41, 61).

Although ample evidence indicates that ITGAM variants result 
in dysfunctional CD11b associated with SLE, it is still unknown 
how the mutations in CD11b contribute to intrarenal and systemic 
mechanisms that drive SLE and LN. Most of the current knowl-
edge comes from studies performed in genetically modified and 
drug-induced mouse SLE models in the absence of CD11b (by 
blocking antibodies or CD11b knockout mice) and limited stud-
ies that report direct outcomes of ITGAM SNPs in SLE patients. 
Although CD11b deficiency has been reported to reduce renal 
accumulation of inflammatory neutrophils and complement-
mediated proteinuria in an acute anti-glomerular basement 
membrane (GBM) nephritis model (62), it has also been reported 
to increase susceptibility to chronic inflammatory and autoim-
mune diseases (38, 41, 60, 61, 63–65) and to exacerbate disease 
that is associated with elevated neutrophil accumulation in tissue 
and elevated proteinuria (41, 61). Specifically, in lupus-prone 
MRL/lpr mice, CD11b deficiency resulted in severe glomerulo-
nephritis (GN) as indicated by the accumulation of neutrophils  
in the kidney with elevated IC deposition, complement fixation and 
glomerular injury (61). Interestingly, transfer of human SLE sera 
into mice expressing the human FcγRIIA and FcγRIIIB receptors 
and lacking CD11b induced GN that was associated with elevated 
proteinuria, increased renal accumulation of neutrophils, and 
the presence of crescents (41). How CD11b deficiency results in 
proinflammatory or anti-inflammatory outcomes is not clear and 
needs further investigation. The differences in the disease models 
(acute vs. chronic) and/or the specific CD11b ligands involved in 
driving disease could possibly explain the discrepancies.

The decreased ability of mutant CD11b to bind to iC3b 
and subsequent reduction in phagocytosis and inflammatory 
responses may play a major role in driving disease. CD11b 
deficiency enhanced inflammation in a complement-induced 
tubulointerstitial nephritis model. In this study, Crry−/− C3−/− 
kidneys were transplanted into healthy WT mice that resulted 
in inflammation stemming from robust complement activation 
that leads to severe tubulointerstitial nephritis marked with 
leukocyte infiltration, tubular damage, and interstitial fibrosis. 
CD11b deficiency enhanced this phenotype, which was associ-
ated with an expansion of CD11b + F4/80 + macrophages. The 
in  situ proliferation of CD11b+ F4/80+ macrophages suggests 

that the CD11b and iC3b interaction can limit the infiltration 
of monocytes into the kidney and subsequent differentiation/ 
expansion of macrophages (66). CD11b deficiency in mice 
enhances humoral responses and circulating IC levels and reduces 
renal function in a chronic serum sickness model of IC-mediated 
GN (36). Altogether, these studies suggest that defective regula-
tory functions of CD11b (due to variants) in several processes 
known to be relevant in SLE and LN could have pathogenic 
outcomes in a permissive environment.

Deficient CD11b is unable to negatively modulate autoreactive 
B cells (45), which are expanded in SLE and secrete pathogenic 
autoantibodies, promote autoreactive T  cells, and produce a 
wide variety of cytokines. Ding et al. recently reported that BCR 
crosslinking in CD11b deficient mice leads to strikingly enhanced 
B  cell activation, differentiation, and survival and elevated 
autoantibody production and kidney Ig deposition. Studies in 
which B cells were transfected with WT or R77H CD11b suggest 
that the mutation completely abrogates the regulatory role of 
CD11b in maintaining auto-reactive B cell tolerance (45). More 
importantly, a GWAS reported that elevated anti-dsDNA autoan-
tibody was strongly associated with ITGAM gene variants in lupus 
patients (67), which suggests that functional CD11b is required 
for suppressing B cells that drive SLE and LN pathogenesis.

CD11b plays an important role in negatively regulating 
TLR-induced signaling pathways and disruption of this anti- 
inflammatory property may affect processes that are implicated in 
driving disease. We recently reported that SLE subjects carrying 
ITGAM SNPs that produce defective CD11b have significantly 
elevated serum IFN-I activity, suggesting a strong direct link between 
reduced CD11b activity and the chronically increased inflammatory  
status in patients (14). This correlates with higher expression 
of IL-6, TNF-α, and IL-1β in R77H expressing cells, indicating 
that the integrin is deficient in regulating proinflammatory 
cytokine production (48, 49). Similarly, elevated levels of IL-6, 
TNF, and IFN-β are reported in CD11b deficient mice injected 
with TLR ligands (38). Interestingly, elevated levels of circulating 
IL-6 found in CD11b deficient mice promote the differentiation 
of naïve T cells into IL-17 producing helper T cells (47), which 
are involved in the development of many autoimmune diseases 
including LN (68). Altogether these studies suggests that variants 
in CD11b disrupts its modulatory mechanisms of suppressing 
TLR-induced inflammation and possibly restricting Th17  cells 
that are both important processes in lupus development.

THeRAPeUTiC TARgeTing OF CD11b

Given that CD11b activity and function plays a vital role 
in reducing proinflammatory signaling pathways, and that 
LN-associated mutations in CD11b reduce its biological activ-
ity, it suggests therapeutic targeting of CD11b and its variants 
with CD11b agonists. Toward that, we utilized a novel small 
molecule CD11b agonist leukadherin-1 (LA1) that we recently 
discovered (69). LA1 activates CD11b and increases CD11b-
dependent cell adhesion that results in decreased cell chemot-
axis and transendothelial migration. We found that induction 
of disease in an anti-GBM nephritis model led to an influx of 
neutrophils into the kidney and elevated proteinuria, which 
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were both significantly reduced with LA1 treatment (69). CD11b 
activation with LA1 significantly reduced TLR-dependent 
NFκB signaling and generation of proinflammatory cytokines 
IL-1β and IL-6 in primary neutrophils and macrophages (14). 
It also suppressed levels of IFN-I. More importantly, treatment 
with LA1 reduced IFN-I responses in WT but not CD11b-
deficient mice, and protected lupus-prone mice from end-organ 
renal injury. Specifically, vehicle treated MRL/Lpr mice devel-
oped significant features consistent with lupus GN, including 
elevated proteinuria and IgG renal IC deposition, which were 
significantly reduced with treatment with LA1. CD11b activa-
tion via LA1 suppressed TLR dependent AKT/FOXO3/IRF7 
pathway and IFN-I levels in vivo (14). Cells expressing either 
the wild-type CD11b or the R77H mutant CD11b displayed a 
similar level of LA1-mediated adhesion to immobilized ligand, 
suggesting that LA1 is able to bind and activate the WT and the 
CD11b variant integrin equally well (14). Furthermore, human 
macrophages from ITGAM variant carriers displayed elevated 
basal expression of IRF7 and IFN-β, as well as increased nuclear 
exclusion of FOXO3, which were further increased upon TLR-
stimulation, and LA1 mediated activation of CD11b suppressed 
these proinflammatory changes (Figure  2). Altogether, these 

studies imply that CD11b activation via pharmacologic agents 
abrogates abnormal IFN-I signaling and is a novel therapeutic 
strategy for SLE and LN.

COnCLUSiOn

Genetic variants in ITGAM, the gene that encodes CD11b, 
confer high risk for SLE and LN in patients. The ITGAM variant 
produces dysfunctional CD11b that has defects in ligand bind-
ing, cell adhesion, phagocytosis, catch-bond formation, and 
downregulation of inflammatory cytokine production. These 
functional deficits result in pathological consequences that drive 
systemic and intrarenal mechanisms that contribute to LN. 
Pharmacologic activation of CD11b suppresses systemic increase 
in inflammatory cytokines and reduces tissue accumulation of 
activated leukocytes, thereby reducing disease. Small molecule 
agonists directed to the ligand binding αA/I-domain of CD11b 
are also able to efficiently rescue the functional defects in mutant 
CD11b commonly associated with LN. Future studies will deter-
mine how well such a strategy is able to ameliorate disease in LN 
patients.
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