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A tissue-specific gene expression shapes the formation of tissues, while gene expression changes reflect the
immune response of the human body to environmental stimulations or pressure, particularly in disease condi-
tions, such as cancers. A few genes are commonly expressed across tissues or various cancers, while others are
not. To investigate the functional differences between widely and rarely expressed genes, we defined the
genes that were expressed in 32 normal tissues/cancers (i.e., calledwidely expressed genes; FPKM N1 in all sam-
ples) and those that were not detected (i.e., called rarely expressed genes; FPKM b1 in all samples) based on the
large gene expression data set provided by Uhlen et al. Each genewas encoded using the gene ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment scores. Minimum redundancy maximum rele-
vance (mRMR) was used to measure and rank these features on the mRMR feature list. Thereafter, we applied
the incremental feature selection method with a supervised classifier recurrent neural network (RNN) to select
the discriminate features for classifying widely expressed genes from rarely expressed genes and construct an
optimum RNN classifier. The Youden's indexes generated by the optimum RNN classifier and evaluated using a
10-fold cross validation were 0.739 for normal tissues and 0.639 for cancers. Furthermore, the underlying mech-
anisms of the key discriminate GO and KEGG features were analyzed. Results can facilitate the identification of
the expression landscape of genes and elucidation of how gene expression shapes tissues and the microenviron-
ment of cancers.

© 2018 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Cancer, which is a general term for describing malignant prolifera-
tive diseases with abnormal cell growth, invasion, and metastasis, has
been widely confirmed to be one of the major threats to human health
[1,2]. Statistics provided by Lancet publications [3–5] indicate that over
90million and approximately 9million people suffered fromand died of
cancer, respectively, in 2015 with an average five-year survival rate of
approximately 60%. Moreover, epidemiologic statistics indicates that
cancer has been regarded as one of the leading killers of humans, rank-
ing just behind infectious and cardiovascular and cerebrovascular dis-
eases, thereby seriously threatening human health [6,7]. However, the
basic pathogenic characteristics and underlying mechanisms of cancer,
gtao@sibs.ac.cn (T. Huang),

. on behalf of Research Network of C
even on the tissue level, have yet to be completely revealed and remains
to be explained by further studies.

Gene expression analysis reflects the quantity and quality of mes-
senger RNAs in certain cell subtypes and has its tissue specificity [8].
As a core intermediate segment of the so-calledcentral dogma, gene
expression profile can relatively represent and describe the detailed
biological status and related biological functions [9]. Therefore, gene
expression analysis/profiling has long been regarded as an effective
parameter for measuring and describing the characteristics of certain
biological processes in specific tissue subtypes. In oncology studies,
the identification and validation of tumor-specific biological processes
is a major approach to revealing crucial carcinogenic factors and pro-
cesses. Recent publications [10–12] have indicated that the expression
profiles of tumor and normal tissues are relatively different, thereby sig-
nifying their distinctive biologicalmetabolismprocesses [12]. Therefore,
gene expression profile function analysis may be a relatively effective
method for identifying potential tumor-specific pathogenic factors and
processes.
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Fig. 1. A Venn diagram to illustrate the widely and rarely expressed genes for normal
tissues and cancers. NW represents the set consisting of widely expressed genes for
normal tissues, NR represents the set consisting of rarely expressed genes for normal
tissues, CW represents the set consisting of widely expressed genes for cancers, CR
represents the set consisting of rarely expressed genes for cancers.
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However, the traditional identification of gene expression pano-
rama profile is difficult and expensive; hence, functional enrichment
analyses of the distinctive expression genes is impossible to perform
on the entire transcriptome level [13]. The traditional gene expres-
sion analysis has two major limitations: (1)focus on a few limited
functional genes and not on the entire transcriptome level and (2)
concentrates on the biological function of each differential expressed
gene and not on their functional enrichment. Given the development
of high throughput sequencing technologies, transcriptome analyses
are deemed to be an economical and effective high throughput se-
quencing based approach to identify tissue specific gene expression
patterns on the entire transcriptome level and reveal the detailed ex-
pression characteristics of each tissue subtype, thereby addressing
the first limitation [14]. Various studies [15–17] have introduced
transcriptome sequencing and analysis into oncology studies and
revealed the distinctive expression pattern of tumor and normal tis-
sues in different tumor subtypes. However, the so-called expression
pattern identification can only reveal the distinctive expression
genes (i.e., genes with high or low expression level) but not their re-
lated biological functions. To address the second limitation, we intro-
duced two bioinformatics concepts to summarize the function
enrichment of genes with different expression levels: gene ontology
(GO) [18] and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways [19]. These pathways have been extensively reported
and applied to describe the biological functions and certain cellular
components of a few screened gene clusters [20,21], thereby
providing an accurate reference for biological functions, annotating
the differential gene expression distribution, and improving the
level of transcriptomic function analysis from a single gene to gene
clusters.

A study [22] has recently revealed the differential expression pat-
tern of 32 tumor and normal tissues. However, the aforementioned
study remained limited to the gene level and did not identify the
optimal biological processes, in which genes may be enriched.
These biological processes can distinguish genes of different clusters
with a differential expression level. The current study further ex-
tended the aforementioned research. We used the transcriptomic
data provided by the preceding study [22] as basis to simply distin-
guish the genes with a specific expression pattern into two sub-
groups: (1) expressed in all (detected in all 32 tissues/cancers with
FPKM N1) and (2) not detected (FPKM b1 in all tissues/cancers). For
convenience, these two gene types are called widely and rarely
expressed genes, respectively. Thereafter, we applied functional en-
richment analysis on the two subgroups of genes rather than per-
form the classification on the gene level. First, each investigated
gene was encoded into a vector via enrichment theory of GO and
KEGG. Second, the minimum redundancy maximum relevance
(mRMR) [23], which is a well-known feature selection method, was
employed to extensively analyze the GO and KEGG features, thereby
producing the mRMR feature list. Third, the incremental feature se-
lection (IFS) [24], which uses recurrent neural network (RNN) [25]
as the classification algorithm, was applied to this feature list. Ac-
cordingly, the optimal enriched GO terms, which describe either bio-
logical processes, cellular components, or molecular functions; and
KEGG pathways for the distinction of the two groups of genes in
the cancer and normal tissues, are extracted individually. Lastly, we
compared the obtained GO terms and KEGG pathways of the cancer
and normal tissues, thereby revealing the tumor-specific enrichment
items. On one hand, this study may identify the specific biological
processes that can distinguish genes with a distinctive expression
pattern (FPKM b1 or N 1 in all samples) in multiple tissue subtypes,
thereby raising the gene expression distribution analysis to the func-
tional level. On the other hand, the comparison of the screened bio-
logical processes in the tumor and normal tissues may reveal the
tissue specificity and carcinogenic contribution of the differentially
expressed genes' function distribution.
2. Materials and Methods

2.1. Datasets

We accessed original materials from Uhlen et al.'s study [22]
(Table S2), in which 19,571 geneswere categorized into several clusters
in normal tissues or cancers. The current study aims to investigate the
genes that were expressed in all tissues/cancers (FPKM N1 in all sam-
ples) or not detected (FPKM b1 in all samples). The genes that were
expressed in all tissues/cancers represent the widely existing common
functions, while the genes that were not detected represent the rarely
expressed genes.

Fromnormal tissues, we extracted 5873widely expressed genes and
1810 rarely expressed genes. From cancers, we extracted 8173 widely
expressed genes and 2570 rarely expressed genes. Each investigated
gene in this study was encoded via enrichment theory of GO and
KEGG [26]. Thus, the genes with unavailable enrichment information
were discarded. Lastly, we obtained 5669 widely expressed genes and
1207 rarely expressed genes from normal tissues and 7889 widely
expressed genes and 1838 rarely expressed genes from cancers. To
clearly illustrate the distribution of above-mentioned widely and rarely
expressed genes, a Venn diagram was plotted in Fig. 1, from which we
can see that lots of widely expressed genes for normal tissues are also
widely expressed genes for cancers and vice versa, rarely expressed
genes also have such property.

The genes were categorized into two subgroups in the normal
tissues or cancers. To describe the differences between the genes in
these two clusters, we set up a binary classification problem for normal
tissues and cancers, respectively. For convenience, widely expressed
genes were deemed as positive samples, while rarely expressed genes
were called negative samples.
2.2. Feature Construction

This study aims to perform functional enrichment analysis on the
two clusters of genes in the normal tissues and cancers. Accordingly,
we employed the GO terms and KEGG pathways to quantify the func-
tions of genes. Enrichment theory [26] of GO and KEGG was adopted
to encode each gene. Compared with the classic encoding method that
always uses 0 or 1 to represent whether a gene is annotated by a GO
term or pathway, the encoding method used in this study can produce
features with less sensitivity. The obtained features are more robust
[27] because enrichment theory can consider the significance of the
overlap between a set about the gene and another set about the GO
term or pathway. The detailed descriptions of how to encode each
gene via such method are presented as follows.
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2.2.1. GO Enrichment
Given gene g and the GO term Gj, the gene set GSGj contains the an-

notated genes of Gj and gene set GS(g) containing the interacting genes
of g are defined and can be accessed using the protein–protein interac-
tion (PPI) network reported in STRING [28]. The GO enrichment score
between g and Gj is the hypergeometric test P value of GS(g) and GSGj,
which is calculated as follows:
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where N represents the total number of human genes,M is the number
of genes in GSGj, n the number of genes in GS(g), and m the number of
genes in the intersection of GSGj and GS(g). The high outcome of
Eq. (1) means that g is highly enriched on Gj. A total of 20,681 GO
terms were used in this study, thereby resulting in 20,681 GO enrich-
ment scores for each gene.

2.2.2. KEGG Enrichment
The definition of KEGG enrichment score is similar to that of GO

enrichment score. For a given gene g and one KEGG pathway Pj, GS(g)
is the same as that in the GO enrichment and GSPj is the gene set con-
taining the annotated genes of Pj. The KEGG enrichment score between
g and Pj is the hypergeometric test P value of GS(g) and GSPj, which is
calculated as follows:
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whereN and n are identical to those in Eq. (2),M is the number of genes
in GSPj, andm is the number of genes in the intersection of GSPj and GS
(g). Similarly, a high score indicates that g is highly enriched on Pj.
A total of 297 KEGG pathways were adopted in this study, thereby
producing 297 KEGG enrichment scores to represent the relationships
between each gene and the 297 pathways.

By collecting all the GO and KEGG enrichment scores, any investi-
gated gene can be represented by a 20,978- dimensional vector. Several
GO andKEGG features can be extracted by applying advanced computa-
tionalmethods on all the gene vectors. The corresponding GO terms and
KEGG pathways can be obtained, which may be important for the
distinction of the two clusters of genes in normal tissues and cancers.

2.3. Feature Selection Method

Several feature selection methods are necessary to analyze the
20,978 GO or KEGG features. Hence, we designed a two-stage feature
selection to extract important features, thereby obtaining the important
GO terms and KEGG pathways. In thefirst stage, themRMR [23]method
was adopted to analyze all features, thereby resulting in a feature list.
Thereafter, we applied IFS [24] with a supervised classifier RNN [25] to
the feature list in the second stage, thereby selecting discriminate fea-
tures for classifying the genes in two clusters.

2.3.1. Minimum Redundancy Maximum Relevance (mRMR)
In the field of machine learning, several feature selection methods

have been proposed to deal with different types of data, such as ReliefF
[29], maximum relevancemaximum distance (MRMD) [30], etc. Differ-
ent methods have their own advantages. Here, we selected the mRMR
method, proposed by Peng et al. [23], because it is a widely used feature
selection method and deemed an excellent method for analyzing the
importance of features. To date, it has been applied in several biological
problems [31–40].
The mRMR method adopts mutual information (MI) to indicate the
relationships between two variables. For two variables x and y, the MI
can be calculated as follows:

I x; yð Þ ¼ ∬p x; yð Þ log p x; yð Þ
p xð Þp yð Þ dxdy ð3Þ

where p(x) and p(y) indicate the marginal probabilistic densities of x
and y, respectively, and p(x,y) represents the joint probabilistic density
of x and y. mRMR generates the mRMR feature list that indicates the
importance of each feature. This list is produced in terms of two criteria:
(1) Max-Relevance between features and targets and (2) Min-
Redundancy between features. These two criteria are quantified using
MI. LetΩ be the set containing all features andΩs be the set comprising
the features that have already been selected. For each unselected
feature f, evaluate its relevance to target variable c using D = I(c, f)
and further measure its redundancies to already selected features inΩs

byR ¼ 1
jΩs j∑ f 0∈Ωs

Ið f ; f 0 Þ (IfΩs is empty,R is set to zero). The next selected

feature is the feature that has Max-Relevance to the targets and Min-
Redundancy to the already selected features in Ωs. Thus, a feature with
maximum D-R value is selected and put it intoΩs. After all features have
been selected, that is, Ωs =Ω, each feature is assigned a selection order
based on which the mRMR feature list is produced. That is, the first se-
lected feature is at the top rank, the second selected feature is second,
and so on. The obtained mRMR feature list (F) is formulated as follows:

F ¼ f 1; f 2;…; f N½ � ð4Þ

where N is the total number of features (N= 20,978 in this study). Evi-
dently, the features with high ranks in F are relatively important.

2.3.2. Incremental Feature Selection (IFS)
Determining which features are of immense importance based only

on F is relatively difficult. Accordingly, the IFS method and RNN were
employed. However, it was impossible to test all possible feature sets
by the original IFS procedures because there were N20,000 sets that
should be tested for genes of normal tissues or cancers, respectively.
To save time, we performed a two-step IFS method. In the first step,
we generated a series of feature subsets with step ten from feature list
F, formulated as S11, S21, …, SM1, where Si1 = [f1, f2,…fi∗10]. That is, the
first 10☓i features in F constitute the ith subset. For these feature sub-
sets, a classification algorithm RNN was built on the samples repre-
sented by the features from each feature subset. We also evaluated the
corresponding performance of RNN using a 10-fold cross-validation
[41]. The feature set that can provide RNN with the best classification
performance can be accessed. According to the number of features in
the above feature set, a small interval around such number was deter-
mined. In the second step, we constructed all possible feature sets, in
which the numbers of features were in the obtained interval. Likewise,
a classification algorithmRNNwas built on samples represented by fea-
tures in each of above sets and evaluated its performance via 10-fold
cross-validation. Accordingly, a feature set yielding the best perfor-
mance for RNN can be obtained. The features in this set are called opti-
mum features, while the corresponding RNN classifier is termed as the
optimum classifier.

2.4. Recurrent Neural Network (RNN)

We need a prediction engine to classify the genes in two groups for
normal tissues and cancers. The current study employed RNN [25].
A traditional neural network constantly supposes that all inputs (and
outputs) are independent of each other. However, the output for
sequential data is related to previous computations. RNN is a type of
neural network with loops inside, thereby enabling information to per-
sist for the subsequential outputs. RNNs can theoretically memorize
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information with any long sequences. However, they are limited in
practice to looking back only a few steps.

Long short term memory (LSTM) network [25] is a special type of
RNN that can learn long-term dependencies [42]. LSTM includes three
types of layers: (1) forget gate layer, (2) input gate layer, and (3) output
layer. First, a forget gate layer is used to decidewhich information of the
previous layer should be disregarded. Second, an input gate layer iden-
tifies which information should be passed to the subsequent layer and
updates the current state value. Third, an output gate layer decides
what parts of the state value can be outputted.

If we assume that we have a sequence {x}T, while LSTM has hidden
states {h}T, cell state {c}T, and output {o}T, then the preceding steps
can be formatted as follows:

f t ¼ Sigmoid Wfxt þ Ufht−1 þ bfð Þ
it ¼ Sigmoid Wixt þ Uiht−1 þ bið Þ
ct ¼ f t ⊙ ct−1 þ it ⊙ tanh Wcxt þ Ucht−1 þ bcð Þ
ot ¼ Sigmoid Woxt þ Uoht−1 þ boð Þ
ht ¼ ot ⊙ tanh htð Þ

ð5Þ

where ⊙ is the element-wise multiplication; W∗, U∗, and b∗ are the
parameters of LSTM; and it, ft, ct, and ot are the input, forget, cell, and
output gate, respectively.

This study implemented RNN to classify the genes in two groups
using Tensorflow [43].

2.5. Performance Measurement

This study performed a 10-fold cross-validation [41] to evaluate
each model. This method equally and randomly divides the original
data set into 10 parts. The samples in each part are singled out one
after the other and tested by the model built on the samples in the
other nine parts. Compared with another cross-validation called the
Jackknife test [44,45], 10-fold cross-validation needs less time and con-
stantly produces similar results. To date, 10-fold cross-validation has
been applied to the evaluation of different constructed models
[34,36,37,46–49].

To investigate two clusters of genes in normal tissues and cancers,
we set up a binary classification problem for each case. For this type of
problem, the predicted results can constantly be counted as true posi-
tive (TP), true negative (TN), false negative (FN), and false positive
(FP), where TP/TN indicates the number of correctly predicted posi-
tive/negative samples, while FN/FP denotes the number of incorrectly
predicted positive/negative samples. Accordingly, four measurements,
namely, sensitivity (SN), specificity (SP), accuracy (ACC), Matthew's
correlation coefficient (MCC) [32–34,36,37,44,47,50,51] and Youden's
index (J) [52] can be calculated. Thesemeasurements are defined as fol-
lows:

SN ¼ TP
TP þ FN

; ð6Þ

SP ¼ TN
TN þ FP

; ð7Þ

ACC ¼ TP þ TN
TP þ TN þ FP þ FN

; ð8Þ

MCC ¼ TP � TN−FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FPð Þ TP þ FNð Þ TN þ FPð Þ TN þ FNð Þp : ð9Þ

J ¼ SN þ SP−1 ð10Þ

ACC, MCC and Youden's index can evaluate the overall performance
of the classifier. In addition, the sizes of the two clusters of genes for nor-
mal tissues and cancers had substantial difference. That is, the two
constructed datasets were imbalanced. In this case, ACC is not a proper
measurement because it does not consider the different sizes of classes,
while MCC and Youden's index further consider this fact. According to
Section 2.1, widely expressed genes for normal tissues were more
than four times as many as rarely expressed genes and the same
phenomenon also occurred for widely and rarely expressed genes of
cancers. Thus, the investigated datasets were quite imbalanced. In this
case, Youden's index is deemed to be a more proper measurement as
suggested in some previous studies [53–55]. Thus, we used Youden's
index as the key measurement in evaluating the performance of differ-
ent models and provided other measurements as references.

3. Results

This study investigated two clusters of genes (i.e., widely and rarely
expressed genes) in normal tissues and cancers using the GO terms and
KEGG pathways. Several advanced computational methods were incor-
porated in this study. Fig. 2 illustrates the entire procedure.

3.1. Results of the mRMR Method

The 5669 widely expressed genes and 1207 rarely expressed genes
of normal tissues were represented by 20,978 GO or KEGG features
(see description in Section 2.2). A powerful feature selection method
(i.e., mRMR) was applied to analyze these features, thereby generating
an mRMR feature list (provided in Supplementary Material S1).

The 7889 widely expressed genes and 1838 rarely expressed genes
of cancers were processed in the same manner. We also obtained an
mRMR feature list (provided in Supplementary Material S2).

3.2. Results of the IFS Method and RNN

A two-step IFS method was employed to extract the discriminative
GO and KEGG features for widely and rarely expressed genes of normal
tissues and cancers. In the first step, we used step 10 to construct a
series of feature sets. That is, we constructed feature sets that contain
first 10, 20, 30, and so on features in the mRMR feature set. Thereafter,
a powerful classification algorithm (i.e., RNN) was adopted as the pre-
diction engine in evaluating these feature sets. For each feature set, all
investigated genes (widely and rarely expressed genes) of the normal
tissues and cancers were represented by the features in the set, while
an RNN classifier was executed on this representation. 10-fold cross-
validation was used to evaluate the performance of this RNN classifier.
The results were counted as SN, SP, ACC, MCC and Youden's index
using Eqs. (6)–(10). Furthermore, according to the obtained measure-
ments, we determined a small interval for the second step of IFS proce-
dures. All possible feature sets, whose sizes were in this interval, were
constructed and evaluated by RNN via 10-fold cross-validation. The
results were also counted as measurements listed in Eqs. (6)–(10).

For normal tissues, the obtained SNs, SPs, ACCs, MCCs and Youden's
indexes yielded by RNN on different feature sets that were constructed
in the first and second steps of IFS method are provided in Supplemen-
tary Material S3. Youden's index was selected as the major measure-
ment. For the Youden's indexes obtained in the first step of IFS
method, we plotted an IFS curve using Youden's index as the Y-axis
and the number of features in the set as the X-axis (see Fig. 3(A)). It
can be observed that this curve first follows a sharp increasing trend
and stabilizes thereafter. The highest Youden's index was 0.739 when
the first 14,890 features were used. Thus, we determined the interval
[14,850, 14,950] for the second step of IFS method. Likewise, for ease
of observation, an IFS curve was also plotted, as shown in Fig. 3(B),
from which we can see that the highest Youden's index was still 0.739
and it was still obtained by the first 14,890 features. Therefore, we con-
firmed that these 14,890 features were the optimum features for RNN
and the corresponding RNN classifier was the optimum RNN classifier
for detecting the widely and rarely expressed genes of the normal



Fig. 2. Detailed procedure for investigating the widely and rarely expressed genes of normal tissues and cancers. All investigated genes were encoded using enrichment theory of GO and
KEGG. Thereafter, the minimum redundancy maximum relevance (mRMR) method was adopted to analyze the encoded features, thereby resulting in an mRMR feature lists for normal
tissues and cancers, respectively. Lastly, the incremental feature selection (IFS) method and recurrent neural network (RNN)were both used to extract the important GO terms and KEGG
pathways and construct the optimum RNN classifiers based on the mRMR feature list.
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tissues. Table 1 lists the detailed performance of this classifier. SN, SP,
ACC and MCC were 0.965, 0.774, 0.932, and 0.758, respectively. SP was
substantially lower than the SN because the number of rarely expressed
genes (termed as negative samples) were less than that of the widely
expressed genes (termed as positive samples).

Weperformed the sameprocedure for cancers. The obtained SNs, SPs,
ACCs, MCCs, Youden's indexes are listed in Supplementary Material S4.
For the Youden's indexes yielded in the first step of IFS method, we also
plotted an IFS curve to describe the performance of RNN on different fea-
ture sets (see Fig. 4(A)). The highest Youden's indexwas 0.639when the
first 3640 features were used. Accordingly, an interval [3600, 3700] was
determined and tested in the second step of IFS method. An IFS curve
was also plotted, as shown in Fig. 4(B), to illustrate the obtainedYouden's
indexes.We can see that the highest Youden's indexwas still 0.639 and it
was still yielded by the first 3640 features. Accordingly, these 3640 fea-
tureswere termed as the optimum features for RNN,while the RNN clas-
sifier based on these features was called the optimum RNN classifier for
distinguishing the widely and rarely expressed genes in cancers. Table 2
lists the detailed performance of this classifier. SN, SP, ACC, and MCC
were 0.947, 0.693, 0.899, and 0.660 respectively. In addition, SP was sub-
stantially lower than SN because of the considerable difference between
the numbers of the widely and rarely expressed genes.

3.3. Comparisons of the IFS Method and Random Forest

This study adopted RNN as the prediction engine in evaluating the
discriminative ability of the different feature sets and constructing the
optimum classifier. To show its reasonability, we further employed
another popular machine learning algorithm (i.e., random forest (RF))
[56] following the same procedures for comparison. This algorithm
has been applied to the construction of several effective prediction
models that deal with different biological problems [36,57–61].

For normal tissues and cancers, the performance of RF on the differ-
ent constructed feature sets is provided in Supplementary Materials S5
and S6, respectively. Figs. 5 and 6 present the IFS curves that show the
relationships between Youden's index and the number of features
used. For normal tissues, the highest Youden's index was 0.680 in the
first step of IFSmethodwhen the first 330 features in themRMR feature
list were used (see Fig. 5(A)). Then, we further evaluated the feature
sets in interval [300, 400] (see Fig. 5(B)), from which we can see that
the highest Youden's index was 0.681 and it was yielded by the first
372 features in the list. Therefore, we built an optimum RF classifier
for normal tissues by using these 372 features to represent widely and
rarely expressed genes. Table 1 shows the detailed performance of
such optimum RF classifier. For cancers, in the first step of IFS method,
the highest Youden's index was 0.594 when the first 80 features were
used (see Fig. 6(A)). Then, an interval [1, 150] was determined and all
feature sets in this interval were evaluated by RF, resulting an IFS
curve, as shown in Fig. 6(B). It can be observed that thehighest Youden's
index was 0.594 when the first 80 features were used. Accordingly, an
optimum RF classifier using these features was built. The detailed
performance of this classifier is listed in Table 2.

For normal tissues, the optimum RF classifier yielded an SN of 0.985,
SP of 0.696, ACC of 0.934, MCC of 0.758, Youden's index of 0.681
(see row 3 of Table 1). The optimum RF classifier produced a higher
SN, lower SP, higher ACC, equal MCC compared with those of optimum



Fig. 3. IFS curves to show the trends of Youden's indexes that correspond to the number of features involved in constructing the recurrent neural network (RNN) classifier for normal
tissues. (A) IFS curve with step 10. (B) IFS curve between 14,850 and 14,950 with step 1.
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RNN classifier. However, the optimum RNN classifier yielded a higher
Youden's index, thereby indicating that the RNN classifier was superior
to the RF classifier. For cancers, the optimum RF classifier yielded a
higher SN, lower SP, higher ACC, and higher MCC. However, RF still pro-
duced a lower Youden's index than that of optimum RNN classifier.
Thus, the optimum RNN classifier for caners was still better than the
optimumRF classifier. These results suggest that RNNwas a good choice
for distinguishing widely and rarely expressed genes.
4. Discussion

In this study, the GO terms and KEGG pathways were introduced for
the first time to describe the differential gene expression pattern distri-
bution at the functional level and not just at the gene level as in previous
studies.We screened out several GO terms and KEGGpathways that can
distinguishwidely expressed genes (FPKM N1 in all samples) and rarely
expressed genes (FPKM b1 in all samples) for normal tissues and can-
cers. For normal tissues, the optimum RNN classifier used 14,890 fea-
tures, which involved 14,742 GO terms and 148 KEGG pathways. The
Table 1
Performance of the optimum RNN and RF classifiers in detecting the widely and rarely
expressed genes of normal tissues.

Prediction
engine

Number of
features

SN SP ACC MCC Youden's
index

RNN 14,890 0.965 0.774 0.932 0.758 0.739
RF 372 0.985 0.696 0.934 0.758 0.681
optimum RNN classifier for cancers adopted 3640 features, correspond-
ing to 3616 GO terms and 24 KEGG pathways. The distribution of above
optimum features for normal tissues and cancers is illustrated in Fig. 7. It
can be observed that the biological process GO terms were most,
followed by molecular function GO terms, cellular component GO
terms and KEGG pathways. This section discussed the investigation on
several top GO terms and KEGG pathways. Furthermore, the enriched
KEGG and GO terms in tumor tissues are relatively different from
those in normal tissues, thereby reflecting the potential specific
biological characteristics of tumors. The detailed analyses of each pre-
dicted KEGG and GO terms are presented as follows.

4.1. Analysis of the GO Terms and KEGG Pathways that Can Distinguish the
Widely and Rarely Expressed Genes of Normal Tissues

We obtained themRMR feature list that indicated the importance of
the GO terms and KEGGpathways. Hence,we selected several GO terms
with top ranks from the mRMR feature list for detailed analysis.

GO:0010992 (ubiquitin homeostasis) was the top distinguisher
for widely and rarely expressed genes of normal tissues. A recent publi-
cation presented by the University of Ghent indicates that genes that
contribute to ubiquitin homeostasis turns out to be up-regulated in
normal homeostatic epithelial tissues, thereby activating the NF-kB reg-
ulatory pathways. Therefore, the genes related to this GO term can
maintain a relatively high expression level in certain normal tissues
compared with genes that contribute to other biological processes
[62]. The following GO term, GO:0071875, describes the adrenergic
receptor signaling pathway. As a specific G protein-coupled receptor,
adrenergic receptor has been identified in multiple tissues with a



Fig. 4. IFS curves to show the trends of Youden's indexes that correspond to the number of features involved in constructing the recurrent neural network (RNN) classifier for cancers.
(A) IFS curve with step 10. (B) IFS curve between 3600 and 3700 with step 1.
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specific expression level [63,64]. Therefore, such biological process,
which describes the biological function of adrenergic receptor, can be
confirmed to be one of the effective biological processes that distinguish
widely and rarely expressed genes. The following GO term was a spe-
cific mRNA expression regulatory biological process, GO:0035925, that
describes the mRNA 3’-UTR AU-rich region binding. Undoubtedly, the
biological process can distinguish the widely or rarely expressed genes
of normal tissues. Similarly, the downstream of the gene expression,
the synthesis of functional proteins associated biological processes,
such as GO:0060904, that describes the regulation of protein folding in
endoplasmic reticulum was identified as a potential distinguisher for
widely and rarely expressed genes. Given the correspondence of gene
expression and protein synthesis, such biological process is another
potential marker for gene expression in normal tissues. The next GO
term, GO:0072186, describes metanephric cap morphogenesis.
The genes that contribute to such biological process have been con-
firmed to have a quite high expression pattern in the normal tissue of
metanephric cap in early kidney development during the embryonic
phase [65].
Table 2
Performance of the optimum RNN and RF classifiers in detecting the widely and rarely
expressed genes of cancers.

Prediction
engine

Number of
features

SN SP ACC MCC Youden's
index

RNN 3640 0.947 0.693 0.899 0.660 0.639
RF 80 0.970 0.624 0.905 0.666 0.594
GO term GO:0007600, which describes the sensory perception, was
also identified as an optimal parameter for the distinction of genes
with a high or low expression pattern. Recent publications have indi-
cated that the expression level of sensory perception in normal tissues,
such as skin, has been confirmed to be relatively high (FPKM N1) com-
pared with other non-relevant genes [66]. For organs that have nothing
to dowith the senses, the expression pattern of genes enriched in such a
biological process may be quite low (FPKM b1). The next GO term,
GO:0044444, describes a specific cellular component (i.e., cytoplasmic
part). Given that the GO cellular component annotation of genes de-
scribes the subcellular distribution of certain gene or gene products,
such enrichment indicates that gene products located or not located at
the cytoplasmic part have a distinctive expression pattern in normal tis-
sues [67,68]. The majority of the gene products spread over the cyto-
plasmic part. Therefore, genes enriched in such a cellular component
may have a higher expression pattern than other genes. GO:0071880
describes the adenylate cyclase-activating adrenergic receptor signaling
pathway. Genes that contribute to or can be enriched in such biological
processes turn out to have a relatively high tissue specificity. In pineal, a
small endocrine gland in the center of the brain, the expression level of
functional genes enriched in such a GO term has been confirmed to be
higher than those in other tissues (FPKM N1) [69,70].

The following GO term, GO:0005882, describes a cellular compo-
nent. This GO term describes the intermediate filament, which is a func-
tional major component of mitosis. In terminative cell subtypes, the
expressed genes enriched in such a GO term have been confirmed to
be down-regulated [71]. Furthermore, in proliferative cell/tissue types,
genes enriched in such a biological process turns out to be up-
regulated [71,72]. Similarly, GO terms, such as GO:0050877 and
GO:0090095, were also identified to contribute to the recognition of



Fig. 5. IFS curves to show the trends of Youden's indexes that correspond to the number of features involved in constructing the random forest (RF) classifier for normal tissues. (A) IFS
curve with step 10. (B) IFS curve between 300 and 400 with step 1.
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differential gene expression pattern. The biological functions of each
detailed gene ontology andKEGGpathways cannot be analyzed in detail
due to the length limitation of thismanuscript. According to recent pub-
lications, GO:0050877 and GO:0090095 can be confirmed to describe
the differential expression pattern in normal cells [73].

4.2. Analysis of the GO Terms and KEGG Pathways that Can Distinguish the
Widely and Rarely Expressed Genes of Cancers

We also obtained a few important GO terms and KEGG pathways for
the distinction of the widely and rarely expressed genes of cancers in
terms of the mRMR feature list provided in Supplementary Material
S2. Moreover, we analyzed a few important ones.

GO:0010992, as the top GO term for cancers, describes ubiquitin
homeostasis. Recent publications [74–76] have indicated that the
homeostasis of ubiquitin is inhibited during tumorigenesis, while the
genes that contribute to its maintenance has been reported to be
down-regulated. These results indicated that a few low expressed
genes may be enriched in this GO term, but no highly expressed genes
can be enriched in such a biological process. Apart from GO:0010992,
another GO term (GO:0007600) was also identified to contribute to
the distinction of genes with a differential expression level in cancers.
Describing sensory perception, this GO term describes the biological
process required for an organism to receive and recognize a sensory
stimulus. For the distinctive role of such a biological process, consider-
ing cancer pain, which is related to sensory perception, turns out to be
one of the major challenge in cancer treatment [77,78]. A few specific
sensory perception associated genes are intentionally up- or down-
regulated in tumor [79], thereby inducing the functional enrichment
distinction of genes with a high or low expression level. The third GO
term, GO:0035925, describes a specific molecular function (3’ UTR AU-
rich region binding), which has also been confirmed to be functionally
related to tumorigenesis [80,81]. For the potential distinctive function
of this GO term, given that the binding capacity of genes (such as
SOD1, HuR, and EGR1) [81–83] in tumor on the 3’UTR AU-rich region
is directly associated with its transcriptional and translational levels,
such a molecular function can be identified as a potential parameter
for the distinction of genes with different expression levels.

The next GO termdescribes a quite significant biological process, the
regulation of metanephric cap mesenchymal cell proliferation
(GO:0090095). As a tissue specific biological process, the involvement
of this GO term in various tumor associated genes, such a cadherin fam-
ily, p38, and MYC, has been confirmed [84,85] In cancers, particularly
renal carcinoma, genes that contribute to GO:0090095 have been
reported to be up-regulated compared with other irrelevant genes
[86], thereby conforming to the expression profile clustering function
of such a GO term. GO:0004872, which describes the general receptor
activity, may have also been enriched by geneswith high or low expres-
sion patterns. Recent publications have indicated that the expression
level of the receptor biological function-associated genes during tumor-
igenesis is relatively different from that of other functional genes. In the
ER+ or HER2+ breast cancer, the expression level of the estrogen and
human epidermal growth factor receptors turn out to be quite higher
than that of other compared genes [87–90].



Fig. 6. IFS curves to show the trends of Youden's indexes that correspond to the number of features involved in constructing the random forest (RF) classifier for cancers. (A) IFS curvewith
step 10. (B) IFS curve between 1 and 150 with step 1.
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Apart from the GO terms, a specific KEGG pathway, neuroactive
ligand-receptor interaction (hsa04080), was identified to distinguish
genes with a high or low expression pattern in cancers. In early 2010,
Fig. 7. The distribution of optimum features used in the optimum recurrent neural network (R
process, CC cellular component and MF molecular function.
a specific clinical study on liver tissues (cancer and hepatitis) has
confirmed that genes that constitute theneuroactive ligand-receptor in-
teraction associated network may be up-regulated and have a high
NN) classifiers for classifying widely and rarely expressed genes. BP represents biological



Fig. 8. Trend of the Jaccard coefficients that correspond to sets containing the top features in themRMR feature lists of normal tissues and cancers. The Jaccard coefficients are between 0.3
and 0.5, thereby suggesting that the top features in the mRMR feature lists of normal tissues and cancers have common and different features.
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expression pattern (FPKM N1) in cancers [91]. Furthermore, another
optimal pathway, hsa04740 (olfactory transduction), was identified as
a specific expressed pathway that distinguishes the differential
expressed genes in cancers. Recent publications have indicated that
genes encoding olfactory receptors have been extensively reported to
have a specific expression pattern in multiple tumor subtypes, such as
melanoma [92] and lung cancer [93]. A specific gene, OR2C3,which con-
tributes to such a biological pathway, has been confirmed to have an
abnormally high expression pattern in melanoma [94], thereby
confirming the distinctive function of such a pathway in unique sub-
types of tumors.

4.3. Analysis of the KEGG and GO Terms that Are Differentially Enriched in
Cancer and Normal Tissues

We identified a few effective biological processes shared by normal
tissues and cancers and screened out tumor-specific expression pat-
terns described by the GO terms and KEGG pathways. To confirm this
result, we counted the Jaccard coefficients of the sets that contain the
top features in the mRMR feature list of normal tissues and cancers
(see Fig. 8). The Jaccard coefficients were between 0.3 and 0.5, thereby
indicating that the top features of the normal tissues and cancers have
common and different features.

Several GO terms and KEGG pathways were identified in normal tis-
sues and cancers. GO:0007600 (sensory perception) has been validated
to be capable of distinguishing genes with high or low expression pat-
terns in the tumor and normal tissues. Apart from such a biological pro-
cess, another GO term, GO:0090095 (metanephric cap mesenchymal
cell proliferation), was also inferred to contribute to gene expression
clustering in normal tissues and cancers. The preceding analysis indi-
cates that given such a biological process involves functional tumor as-
sociated genes, such as cadherin family, p38, and MYC, we can
reasonably speculate that the genes that participate in such a biological
process are highly expressed. Meanwhile, genes that participate in the
metanephric cap mesenchymal cell proliferation in normal tissues
may also be down-regulated with a specific expression pattern that
can be distinguished from those of other functional genes.

Apart from such shared GO terms, we also identified some unique
tumor specific enriched items, reflecting the unique gene expression
pattern in tumor tissues. A specific molecular function (GO:0035925)
was deemed to be unique in tumor tissues. GO:0035925 describes a
specific molecular function named 3’ UTR AU-rich region binding.
Given that 3’ UTR AU-rich has a unique expression pattern (FPKM N1)
in cancers but not in normal tissues, such an item can be regarded as a
potential tumor specific biomarker at the transcriptomic level [80,81].
Several top GO terms and KEGG pathways can be confirmed to dis-
tinguish widely expressed genes (FPKM N1) and rarely expressed
genes (FPKM b1). These identified GO terms and KEGG pathways in
tumor or normal tissues can reflect the tumor specific gene expression
pattern and its related biological processes. Recent publications have
indicated that extracted GO and KEGG terms are functionally related
to cell proliferation, abnormal energy metabolism, and transcriptomic
regulation, thereby revealing the potential relationship between tissue
specific gene expression profiling and biological functions. On the one
hand, the findings of this study can reveal the functional distinction of
genes with different expression levels. On the other hand, this research
contributes to the identification of the core-revealed functional distinc-
tion, thereby possibly distinguishing normal tissues and cancers further,
while revealing the specific gene expression distribution of tumor
tissues.
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