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Classically activated M1 macrophages and alternatively activated M2 macrophages are
two polarized subsets of macrophages at the extreme ends of a constructed continuum.
In the field of cancer research, M2 macrophage reprogramming is defined as the
repolarization of pro-tumoral M2 to anti-tumoral M1 macrophages. It is known that
colony-stimulating factor 1 (CSF1)/CSF1 receptor (CSF1R) and CSF2/CSF2R signaling
play important roles in macrophage polarization. Targeting CSF1/CSF1R for M2
macrophage reprogramming has been widely performed in clinical trials for cancer
therapy. Other targets for M2 macrophage reprogramming include Toll-like receptor 7
(TLR7), TLR8, TLR9, CD40, histone deacetylase (HDAC), and PI3Kg. Although
macrophages are involved in innate and adaptive immune responses, M1
macrophages are less effective at phagocytosis and antigen presenting, which are
required properties for the activation of T cells and eradication of cancer cells. Similar to
T and dendritic cells, the “functionally exhausted” status might be attributed to the high
expression of programmed death-ligand 1 (PD-L1) or programmed cell death protein 1
(PD-1). PD-L1 is expressed on both M1 and M2 macrophages. Macrophage
reprogramming from M2 to M1 might increase the expression of PD-L1, which can be
transcriptionally activated by STAT3. Macrophage reprogramming or PD-L1/PD-1
blockade alone is less effective in the treatment of most cancers. Since PD-L1/PD-1
blockade could make up for the defect in macrophage reprogramming, the combination
of macrophage reprogramming and PD-L1/PD-1 blockade might be a novel treatment
strategy for cancer therapy.

Keywords: macrophage reprogramming, colony stimulating factors, programmed cell death ligand 1/programmed
cell death 1, functional exhaustion, combination therapy
org June 2021 | Volume 12 | Article 6908691

https://www.frontiersin.org/articles/10.3389/fimmu.2021.690869/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.690869/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.690869/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:gjynyd@126.com
https://doi.org/10.3389/fimmu.2021.690869
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.690869
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.690869&domain=pdf&date_stamp=2021-06-23


Cai et al. Macrophage Reprogramming Induces PD-L1 Expression
INTRODUCTION

Macrophages exhibit a high degree of plasticity when exposed to
various environmental stimuli. They are polarized to one of two
opposite types in vitro, classically activated M1 macrophages that
can be induced by lipopolysaccharide (LPS), interferon-g (IFN-
g), or colony-stimulating factor 2 (CSF2, also known as
granulocyte-macrophage colony-stimulating factor) or
alternatively activated M2 macrophages that can be induced by
interleukin 4 (IL4), IL13, or CSF1 (also known as macrophage
colony-stimulating factor) (1–3). M2 macrophages are further
categorized as M2a, M2b, M2c, and M2d cells upon stimulation
of different M2 drivers (4). Generally, M1 macrophages exert an
immune protective role via the secretion of pro-inflammatory
cytokines, whereas M2 macrophages are characterized by anti-
inflammatory properties, which contribute to tissue remodeling
and tumor progression (3). Multiple co-stimulatory and antigen-
presenting molecules are expressed on the cell membrane of
antigen-presenting cells (APCs), including macrophages. When
confronted by tumor antigens, macrophages engulf and present
them to T cells to boost the anti-tumor immune reaction by
acting synergistically with co-stimulatory molecules (1).
However, the function of macrophages is more complex in the
tumor microenvironment. Tumor-associated macrophages
(TAMs) are thought to exhibit an M2-like phenotype, lose
their antigen-presenting capacity as innate immune cells, and
play a pro-tumoral role in the tumor microenvironment in a
paracrine manner (5, 6). The phenotype of TAMs dynamically
changes with the development and progression of tumors. At an
early stage, macrophages harboring anti-tumor capacity are
recruited to the tumor microenvironment; however, with
tumor progression, these macrophages are “educated” by
tumor-secreted cytokines to acquire an M2 phenotype (1). It is
accepted that M1 and M2 are two extreme forms of polarization
in vitro, and TAMs usually exhibit a mixed M1–M2 phenotype,
and not a simple M1 or M2 only phenotype, in vivo (7–9).

Macrophage reprogramming, also called macrophage
repolarization, is defined as the repolarization of differentiated
macrophages from alternatively activated M2 phenotype to the
classically activated M1 phenotype, and vice versa. Several
methods have been developed to reprogram M2 macrophages,
including use of targeted antibodies, small molecular inhibitors,
and free or vector-delivering nucleic acids, among others.
Although M2 macrophage reprogramming has been adopted
in clinical trials, the treatment outcome remains uncertain. In
this review, we aim to shed light on the defects in M2
macrophage reprogramming and provide better treatment
strategies for cancer therapy.
Abbreviations: CSF1, colony-stimulating factor 1; CSF1R, CSF1 receptor; DCs,
dendritic cells; PD-1, programmed cell death protein 1; PD-L1, programmed cell
death-ligand 1; APCs, antigen-presenting cells; IFN-g, interferon-g; IL, interleukin;
LPS, lipopolysaccharide; TAMs, tumor-associated macrophages; HDAC, histone
deacetylase; TLR7, Toll-like receptor 7; MHC-II, major histocompatibility
complex-II.
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MACROPHAGE REPROGRAMMING
STRATEGIES

Molecular targets for M2 macrophage reprogramming include
Toll-like receptor 7 (TLR7), TLR8, TLR9, CD40, histone
deacetylase (HDAC), PI3Kg, CSF1, and CSF1 receptor (CSF1R)
(10). TLR agonists induce M1 polarization and exert an anti-
tumor effect via the increased release of pro-inflammatory
mediators. CD40 agonists increase the expression of co-
stimulatory and antigen-presenting molecules on macrophages
and the secretion of pro-inflammatory mediators, which
enhances the T cell–dependent anti-tumor effect (10). TLR
signaling and CD40 are known to be activated by IFN-g (11,
12), which is a driver of M1 polarization. Both HDAC and PI3Kg
are involved in the M2 polarization of macrophages, providing
intracellular targets for macrophage reprogramming. The
inhibition of HDAC or PI3Kg exerts an anti-tumor effect via
the downregulation of M2 and upregulation of M1 molecules
(10). As has been reported, PI3K is present downstream of
CSF1R and is epigenet ica l ly ac t ivated dur ing M2
polarization (13).

The CSF1/CSF1R axis is the most attractive target to
reprogram M2 macrophages, and multiple agents have been
developed for clinical practice, including small molecule
inhibitors (PLX3397, BLZ945, ARRY-382, etc.) and
neutralizing antibodies against CSF1 or CSF1R (10, 14). In the
tumor microenvironment, tumor cell-derived CSF1 is enriched
within peri-tumoral tissues and functions as a chemoattractant
to recruit circulating monocytes, subsequently resulting in
increased macrophage infi l tration (15). CSF1R is a
transmembrane receptor for CSF1 and IL34 with tyrosine
kinase activity. Binding of CSF1 or IL34 induces the
homodimerization of CSF1R and the activation of downstream
MEK, PI3K, and PLC-g2 signaling pathways, which are crucial
for the proliferation and differentiation of macrophages (13). It
was reported that CSF1/CSF1R blockade-based anti-tumor
therapy could result in loss of macrophages in the tumor either
by mitigating recruitment, TAMs survival and/or differentiation
from monocytes (3). Ao et al. reported that CSF1R inhibitor
PLX3397 suppressed tumor growth without depletion of TAMs
infiltration in a mouse model of liver cancer (16). These
discrepancies might be attributed to the heterogenicity of
different tumor species and different CSF1/CSF1R blockade
agents. It is accepted that activation of the CSF1R signaling
pathway induces the M2 polarization of macrophages (14). In
contrast with CSF1/CSF1R signaling that induces M2
polarization, the CSF2/CSF2R pathway induces M1
polarization of macrophages. CSF1R and CSF2R are
constitutively expressed on the cell membrane of macrophages.
Both CSF1/CSF1R and CSF2/CSF2R signaling pathways play
important roles in macrophage reprogramming. Infiltrating
macrophages are “educated” by tumor cell-derived CSF1 or
IL34 to acquire an M2 phenotype, characterized by the high
expression of CD163 or CD206 (17–19). After blockade of the
CSF1R signaling pathway, macrophages are repolarized instead
through the CSF2/CSF2R axis to acquire an M1 phenotype (16).
June 2021 | Volume 12 | Article 690869
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CSF2 enhances the antigen presentation capacity of
macrophages wi th increased express ion of major
histocompatibility complex-II (MHC-II) (20). In addition to
inducing M1 polarization, CSF2 is also responsible for the
development of dendritic cells (DCs) and granulocytes, which
are also APCs that exert a similar anti-tumor effect as M1
macrophages (21, 22).

However, it has been reported that traditionally defined M1
macrophages with “anti-tumor properties” could also facilitate
the metastasis of hepatocellular carcinoma in a paracrine manner
(23). IL-1b released by M1 macrophages induces the expression
of co-inhibitory molecules in tumor cells, which hampers the
direct anti-tumor effect of cytotoxic T cells (24). Although these
M1 macrophages are presented with high MHC-II expression,
the process of phagocytosis and antigen presentation does not
function as expected and needs further investigation. Therefore,
after macrophage reprogramming from M2 to M1, the
restoration of the phagocytic and antigen-presenting capacity
of macrophages as innate immune cells should be taken into
consideration to develop strategies for anti-tumor therapy.
INDEPENDENT ROLE OF THE PD-L1/PD-1
AXIS IN MACROPHAGES

Programmed cell death-ligand 1 (PD-L1) was reported to be
expressed on a variety of cells, including tumor cells and APCs
(mainly DCs and macrophages), and acts as a ligand for
programmed cell death protein 1 (PD-1), which is mainly
expressed on T cells. The binding of PD-L1 on macrophages to
PD-1 on T cells antagonizes the co-stimulating and antigen-
presenting effect of macrophages on T cells, leading to T-cell
anergy and tumor cell immune escape. In addition to being a
ligand for PD-1, PD-L1 inhibits the proliferation and activation
of macrophages by suppressing the mechanistic target of
rapamycin signaling pathway in macrophages. In addition, PD-
L1 induces an immunosuppressive phenotype and inhibits the
antigen-presenting capacity by reducing the expression of co-
stimulatory molecules in macrophages. PD-L1 blockade
increases the production of co-stimulatory molecules (CD86
and MHC-II) and pro-inflammatory cytokines (tumor necrosis
factor a [TNFa] and IL12), which comprises the phenotype and
expression profile of M1 macrophages (25). However,
transcriptomic analysis showed that in addition to increasing
the expression of pro-inflammatory genes, CCL2, a key driver of
macrophage recruitment and M2 polarization is also
upregulated. It was reported that PD-L1 blockade reinvigorates
T cells, which is accompanied by increased IFN-g production,
further driving the M1 polarization of macrophages (26).
However, the direct impact of PD-L1 on macrophage
polarization is uncertain. The correlation between PD-L1
expression and macrophage polarization is ambiguous.
Multiple factors involved in both M1 and M2 polarization
(IFN-g, TNFa, LPS, IL4, IL6, IL10, IL13, etc.) increase the
expression of PD-L1 on macrophages (27–31). Therefore, PD-
L1 is not an exclusive biomarker of M1 or M2 macrophages.
Frontiers in Immunology | www.frontiersin.org 3
Recently, PD-1 was also found to be expressed on TAMs but
not on circulating monocytes or spleen macrophages. The tumor
microenvironment might play a critical role in the expression of
PD-1 in macrophages. PD-1 inhibits the phagocytosis of TAMs,
which is an inherent attribute of APCs in innate immunity (32).
Peritoneal macrophages with high PD-1 expression are
dysfunctional with reduced bactericidal capacity (33). It has
been reported that macrophages with high PD-1 expression are
more likely to be the pro-tumoral M2 subtype with increased
CD206 expression and reduced MHC-II expression (32). Rao
et al. reported that anti-PD-1 therapy induces M1 polarization
in macrophages and exerts an anti-tumor effect in the absence
of CD8+ T cells (34). In this study, the authors concluded
that combining macrophage reprogramming with anti-
PD-1 therapy is unnecessary, because anti–PD-1 alone can
eliminate PD-1-expressing microglia, thus driving M2 to M1
repolarization. However, this result should be interpreted with
caution. Even after PD-1-expressing macrophages have been
eliminated, M1 polarization of the remaining macrophages
might not occur without extra stimulation or induction. Thus,
the role of CSF2 or IFN-g should be taken into consideration.

As reported, activation of the PD-L1/PD-1 axis represents a
state of “functional exhaustion” in T cells and DCs (35–37).
Exhausted T cells are initially functional when exposed to
antigen but gradually become silent after persistent
stimulation. The exhausted T cells are characterized by
increased expression of inhibitory molecules and decreased
secretion of effector cytokines, including IL2, IFN-g, and
TNFa. The inhibitory receptors expressed on exhausted T cells
include PD-1, cytotoxic T-lymphocyte-associated protein 4
(CTLA4), T-cell immunoreceptor with Ig and ITIM domains
(TIGIT), lymphocyte-activation gene 3 (LAG-3), B and T
lymphocyte attenuator (BTLA), T-cell immunoglobulin and
mucin-domain-containing protein 3 (TIM3), V domain Ig
suppressor of T-cell activation (VISTA), and CD96, among
others (38). Similarly, these macrophages with high PD-L1 or
PD-1 expression could also be called “functionally exhausted.”
PD-L1 or PD-1 expression hampers the anti-tumor effect of
macrophages as innate and adaptive immune cells, which could
be restored after PD-L1/PD-1 blockade.
M2 TO M1 REPROGRAMMING IS
ASSOCIATED WITH INCREASED
PD-L1 EXPRESSION

Analysis of Gene Expression Omnibus data sets (GSE95404,
71253, 66805, 95405, 69607) by comparing the transcriptional
differences of M1 (induced by CSF2 or LPS/IFN-g) and M2
(induced by CSF1 or IL4) macrophages revealed that PD-L1
expression is significantly higher in M1 macrophages than in M2
macrophages. Antonios et al. showed that the expression of PD-
L1 is also significantly higher in CD163− cells than in CD163+

cells (39). A recent study identified an immune suppressor
induced by CSF1, Siglec-15, which is negatively correlated with
PD-L1 expression (40). CSF1R blockade increases the expression
June 2021 | Volume 12 | Article 690869
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of PD-L1 in pancreatic ductal tumor cells and CD11b+Ly6Chigh

monocytes (41), but the underlying mechanism remains
unknown. CSF2 plays an important role in directing M1
polarization after blockade of the CSF1/CSR1R signaling
pathway, which is involved in M2 polarization. Shelby et al.
showed a positive correlation between PD-L1 and CSF2
concentrations in gingival crevicular fluid of patients diagnosed
with periodontitis (42). It has been reported that the expression
of PD-L1 on APCs is transactivated by STAT3 (43). Tumor-
derived CSF2 increases the expression of PD-L1 in granulocytes
by activating the JAK/STAT3 signaling pathway, which inhibits
the anti-tumor effect of T cells and contributes to the progression
of gastric cancer (44) and hepatocellular carcinoma (45). In liver
myeloid-derived suppressor cells, activation of the CSF2/JAK2/
STAT3 pathway increases the expression of PD-L1, which
facilitates the intrahepatic metastasis of liver neoplasm (46). It
was also reported that CSF2 increases the secretion of CXCL8 in
macrophages, which further induces the expression of PD-L1 on
TAMs in an autocrine manner and inhibits the anti-tumor effect
of CD8+ T cells (47). However, the underlying mechanism
through which CSF2 increases PD-L1 expression on
macrophages has not been fully elucidated.

PD-L1 expression is known to increase in M1 macrophages
when induced with CSF2, LPS, or IFN-g. An in vitro study showed
that phorbol-12-myristate 13-acetate-activated THP-1
macrophages exhibit higher PD-L1 expression after LPS
stimulation (48). IFN-g released by tumor-infiltrating T
lymphocytes increases PD-L1 expression in macrophages, which
in turn inhibits the anti-tumor effect of T cells, resulting in a state
of “adaptive immune tolerance” (49, 50). Both IFN-g- and LPS-
induced PD-L1 expression on tumor-infiltrating macrophages is
dependent on the activation of STAT3 (51, 52). Moreover,
activation of the TLR4/ERK axis is responsible for LPS-induced
Frontiers in Immunology | www.frontiersin.org 4
PD-L1 expression (53). In addition to CSF1/CSF1R blockade,
macrophage reprogramming using HDAC inhibitors or agonistic
anti-CD40 antibodies increases the expression of PD-L1 on
macrophages, which limits the anti-tumor effect of
reprogrammed TAMs (54, 55). Although the impact of
macrophage reprogramming targeting PI3Kg on PD-L1
expression is unknown, it has been reported that PI3Kg
inhibition increases the expression of PD-L1 on myeloid-
derived suppressor cells (56). This evidence shows that all of
these macrophage reprogramming strategies have the same side
effect of increased PD-L1 expression on macrophages (Figure 1).
Although PD-1 is also reportedly found on macrophages, the
impact of macrophage reprogramming on PD-1 expression has
not yet been reported.
MACROPHAGE REPROGRAMMING AND
PD-L1/PD-1 BLOCKADE IN CANCER
THERAPY

Shortcomings of Single-Agent Anti-Tumor
Strategies
In recent years, PD-L1/PD-1 monoclonal antibodies have gained
widespread attention for cancer treatment. They show a strong
anti-tumor effect in certain cancers such as Hodgkin’s disease
and desmoplastic melanoma, among others. However, in most
cancers , including non-smal l-ce l l lung carc inoma,
gastroesophageal cancer, urinary neoplasm, and hepatocellular
carcinoma, PD-L1/PD-1 blockade alone is only effective in a
small proportion of patients (with objective response rates
ranging from 15% to 25%) (57). Resistance to PD-L1/PD-1
blockade might be attributed to a lack of pre-existing T-cell
FIGURE 1 | Diagrammatic sketch of macrophage reprogramming increasing the expression of PD-L1. PD-L1, programmed death-ligand 1; PD-1, programmed cell
death protein 1; CSF1, colony-stimulating factor 1; CSF1R, CSF1 receptor; CSF2, colony-stimulating factor 2; CSF2R, CSF2 receptor; HDAC, histone deacetylase;
IFN-g, interferon-g; TLRs, toll-like receptors; MHC-II, major histocompatibility complex-II; mAb, monoclonal antibody; Mj, macrophages.
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infiltration in certain tumors. Another mechanism for ineffective
anti-PD-L1/PD-1 monotherapy is the increased macrophage
infiltration in the tumor microenvironment (58). Tumor-
derived CSF1 induces the expression of granulin in
macrophages, which impedes the infiltration of cytotoxic CD8+

T cells at the site of the tumor lesion, resulting in resistance to
immune checkpoint therapy (59, 60). Therefore, therapies
combining anti-PD-L1/PD-1 monoclonal antibodies have been
adopted as a priority for clinical practice for selected cancers. For
advanced hepatocellular carcinoma and clear cell renal cell
carcinoma, anti-PD-L1/PD-1 single-agent therapy is only
recommended as a second-line treatment option when first-
line treatment fails (61, 62).

Even though macrophage reprogramming using CSF1R
inhibitors or CSF1 antibodies has been achieved for anti-tumor
therapy, their effectiveness is still uncertain in most cancers. The
CSF1R inhibitor PLX3397 has shown significant anti-tumor
effects in animal models (63–67), but its treatment efficacy in
clinical settings remains unknown. PLX3397 is effective for
tenosynovial giant cell tumors (68, 69) with a 39% overall
response rate in a phase III clinical trial (69). However, the
treatment outcome was rather disappointing for glioma (70). A
poor objective response rate was reported for the CSF1R
inhibitor ARRY-382 and CSF1R monoclonal antibody
emactuzumab in treating solid tumors. Data on tumor control
are unavailable for the CSF1 monoclonal antibody lacnotuzumab
and CSF1R monoclonal antibodies cabiralizumab and
LY3022855 (14). Similar to CSF1/CSF1R blockade, CSF2
induces M1 polarization by activating the CSF2R signaling
pathway. Moreover, CSF2 is used to augment the recruitment
and maturation of DCs in clinical trials for cancer therapy.
However, CSF2 is typically not used as a single agent for
macrophage reprogramming in clinical settings. Except for
CSF1/CSF1R blockade and CSF2, other macrophage
reprogramming agents including CD40 agonists, TLR agonists,
HDAC inhibitors, and PI3Kg inhibitors have been approved in
clinical practice for the treatment of selected types of tumors
(71–74). All of these macrophage reprogramming strategies are
only effective in a small number of patients. As has been detailed
in this review, the side effect of increased PD-L1 expression
might explain the relatively poor anti-tumor effect of
macrophage reprogramming. The anti-tumor nature of
macrophages is inhibited by PD-L1, which could be rescued by
PD-L1/PD-1 blockade.

Macrophages play a critical role in the activation of T cells
(75). Activated CD8+ T cells mediate tumor cell killing directly,
whereas activated CD4+ T cells exert anti-tumor effects indirectly
by enhancing the cytotoxic effect of CD8+ T cells. The T cell–
dependent anti-tumor response requires not only the blockade of
co-inhibitory signals on T cells and APCs but also the restoration
of co-stimulatory and antigen-presenting molecules on APCs.
Macrophage reprogramming-induced PD-L1 expression
provides a therapeutic target for PD-L1/PD-1 monoclonal
antibodies. Moreover, PD-L1/PD-1 monoclonal antibodies
could make up for the defect in macrophage reprogramming,
thus improving the anti-tumor effectiveness of macrophage
Frontiers in Immunology | www.frontiersin.org 5
reprogramming. Roemer et al. reported that the expression of
both MHC-II and PD-L1 is associated with a favorable outcome
with PD-1 blockade (76). Bioinformatics analysis has
shown that M1 macrophages are required for the efficacy of
anti-PD-L1/PD-1 therapy (77), which implies better treatment
outcomes by combining macrophage reprogramming and anti-
PD-L1/PD-1 therapy compared to those of single-agent anti-
tumor strategies. In this review, CSF1/CSF1R and CSF2/CSF2R-
based macrophage reprogramming and its combination with
PD-L1/PD-1 blockade is emphasized. The completed and
ongoing clinical trials combining macrophage reprogramming
and PD-L1/PD-1 blockade in cancer therapy are summarized
in Table 1.

CSF1/CSF1R Blockade Combined With a
PD-L1/PD-1 Monoclonal Antibody
A preclinical study showed that PLX3397 combined with a PD-1
monoclonal antibody enhances the anti-tumor effect of a DC
vaccine in a mouse glioma model (39). Another CSF1R inhibitor,
BLZ945, was also reported to synergize with PD-1/
PD-L1–blocking antibodies for the treatment of murine
neuroblastoma (78). However, in clinical practice, a lack of
evidence on tumor control has limited the use of the
combination of CSF1/CSF1R blockade and PD-L1/PD-1
monoclonal antibody to treat solid tumors. A phase II clinical
trial using the combination of a CSF1R antibody (AMG820) and
pembrolizumab has revealed an acceptable safety profile.
However, the anti-tumor effect was insufficient for further
evaluation, which might be because most recruited patients
were resistant to the PD-1 antibody (79). Recently, mannose-
modified macrophage-derived microparticles loaded with
metformin have been developed to reprogram M2 to M1
macrophages, which can synergistically enhance anti-PD-1
therapy (80).

CSF2 Combined With a PD-L1/PD-1
Monoclonal Antibody
A preclinical animal study has shown that anti-PD-1 therapy
increases the anti-tumor effect of CSF2 (81). CSF2 is used as a
single agent for treating melanoma and was shown to provide no
survival benefits in a phase III clinical trial (82). Holi et al.
reported that treatment with immune checkpoint inhibitor
ipilimumab plus sargramostim (CSF2) showed longer survival
(1-year overall survival: 68.9% vs 52.9%) and lower toxicity
(grades 3–5 toxicity: 44.9% vs 58.3%) than ipilimumab alone in
treating metastatic melanoma (83). In most cases, CSF2 is usually
anchored to the tumor vaccine as an adjuvant. PD-L1/PD-1
blockade was shown to increase the anti-tumor effect of the
anchored-CSF2 tumor vaccine (84–86). Tian et al. constructed a
new type of tumor vaccine that produces both PD-1 antibody
and CSF2, which has shown a promising anti-tumor effect (87).
In gallbladder cancer, conventional chemotherapy supplemented
with CSF2 and PD-L1 blockade was shown to decrease local
cancer recurrence after surgery (88). Therefore, CSF2, in
combination with a PD-L1/PD-1 monoclonal antibody, is
superior to single-agent therapy.
June 2021 | Volume 12 | Article 690869

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


TABLE 1 | Completed and ongoing clinical trials combining macrophage reprogramming and PD-L1/PD-1 blockade in cancer therapy.

Cancer types Clinical
phase

Status/outcomes Clinical trial
identifier

tatic/advanced pancreatic or colorectal cancers I Completed (no results) NCT02777710
ctable intrahepatic cholangiocarcinoma II Recruiting NCT04301778
ced solid tumors Ib/II Completed (no results) NCT02880371
ced or metastatic sarcomas I Recruiting NCT04242238
ced solid tumors I/II Recruiting NCT02829723
eral T-cell lymphoma II Active (no results) NCT03927105
ced solid tumors I Completed (no results) NCT02718911
ancers I Completed (no results) NCT02323191
ced cancer Ib/II Recruiting NCT02554812
umors I/II Completed (no results) NCT02807844
cell carcinoma Ib/IIa Recruiting NCT03294083

umors Ib Completed (no results) NCT02304393
mall cell lung cancer or metastatic melanoma I/II Completed (no results) NCT03123783
ced non-small cell lung cancer Ib Completed (no results) NCT03326752

ma II Recruiting NCT04570332
ous cell carcinoma of the head and neck Ib Recruiting NCT03906526
positive solid tumors I Recruiting NCT04460456
ced cancer Ib/II Recruiting NCT02554812
usly treated unresectable or metastatic cholangiocarcinoma
ncreatic adenocarcinoma

II Active (no results) NCT03250273

cer II Recruiting NCT03812796
ysplastic syndrome I Active (no results) NCT02936752
ed/refractory solid tumors with expansions in mismatch-repair
ent (MSS) colorectal cancer

I/II Recruiting NCT03711058

r’s transformation or transformed indolent non-Hodgkin’s
oma

I Recruiting NCT03884998

C
aiet

al.
M
acrophage

R
eprogram

m
ing

Induces
P
D
-L1

Expression

Frontiers
in

Im
m
unology

|
w
w
w
.frontiersin.org

June
2021

|
Volum

e
12

|
A
rticle

690869
6

Macrophage reprogramming PD-L1/PD-1
blockade

CSF1R inhibitors PLX3397 Durvalumab Metas
SNDX-6352 Durvalumab Unrese
ARRY-382 Pembrolizumab Advan
DCC-3014 Avelumab Advan
BLZ945 PDR001 Advan

CSF1R mAb Cabiralizumab Nivolumab Periph
LY3022855 Durvalumab Advan
Emactuzumab Atezolizumab Solid c

CSF1 mAb PD-0360324 Avelumab Advan
lacnotuzumab PDR001 Solid t

CSF2 Pexa-Vec (Thymidine Kinase- Deactivated
Vaccinia Virus Plus GM-CSF)

Cemiplimab Renal

CD40 agonist Selicrelumab Atezolizumab Solid t
APX005M Nivolumab Non-s

TLRs agonist DV281 Approved anti-PD-
1 inhibitor

Advan

BO-112 Pembrolizumab Melano
VTX-2337 Nivolumab Squam
SBT6050 Pembrolizumab HER2-
CMP-001 Avelumab Advan

HDAC inhibitors Entinostat Nivolumab Previo
and pa

Domatinostat Avelumab GI can
Entinostat Pembrolizumab Myelod

PI3Kg inhibitors Copanlisib Nivolumab Relaps
profici

Copanlisib Nivolumab Richte
lymph
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CONCLUSION

Macrophage reprogramming has been adopted in clinical trials for
cancer therapy. Several reprogramming strategies have been
developed by targeting TLR7, TLR8, TLR9, CD40, histone
deacetylase (HDAC), PI3Kg, CSF1, and CSF1R. The CSF1/CSF1R
axis is the most attractive target to reprogram M2 macrophages in
clinical trials. However, traditionally defined M1 macrophages with
“anti-tumor properties” could also facilitate cancer progression,
even with high expression of co-stimulatory and antigen-presenting
molecules. The side effect of increased PD-L1 expression results in a
“functionally exhausted” status in macrophages, which limits the
anti-tumor effect of reprogrammed macrophages. PD-L1/PD-1
blockade could make up for the defect in macrophage
reprogramming, providing a potentially promising treatment
strategy by combining macrophage reprogramming with PD-L1/
PD-1 monoclonal antibodies.
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