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Abstract: Core-shell structures are the most common type of composite material nanostructures due
to their multifunctional properties. Silver nanoparticles show broad antimicrobial activity, but the
safety of their utilization still remains an issue to tackle. In many applications, the silver core is
coated with inorganic shell to reduce the metal toxicity. This article presents the synthesis of various
materials based on silver and silica nanoparticles, including SiO2@Ag, Ag@SiO2, and sandwich
nanostructures—Ag@SiO2@Ag—and the morphology of these nanomaterials based on transmission
electron microscopy (TEM), UV-Vis spectroscopy, and FT-IR spectroscopy. Moreover, we conducted
the angle measurements due to the strong relationship between the level of surface wettability and
cell adhesion efficiency. The main aim of the study was to determine the cytotoxicity of the obtained
materials against two types of human skin cells—keratinocytes (HaCaT) and fibroblasts (HDF).
We found that among all the obtained structures, SiO2@Ag and Ag@SiO2 showed the lowest cell
toxicity and very high half-maximal inhibitory concentration. Moreover, the measurements of the
contact angle showed that Ag@SiO2 nanostructures were different from other materials due to their
superhydrophilic nature. The novel approach presented here shows the promise of implementing
core-shell type nanomaterials in skin-applied cosmetic or medical products.

Keywords: silver nanoparticles; silica coatings; core-shell structures; nanostructures cytotoxicity

1. Introduction

In recent years, nanosilver (Ag NPs) has often been used in everyday products, includ-
ing dressings [1–3], cleaning agents [4], cosmetics [5,6], and controlled drug delivery [7]
due to its enhanced antibacterial or antifungal properties compared with macro-scale
silver. Moreover, silver nanoparticles have unique properties, such as optical properties
concerning the surface plasmon phenomenon [8]. Despite the many advantages of Ag NPs,
there are more scientific publications indicating its toxic properties, which are influenced
by many factors, including those that are most important, such as size [6], shape [9], or the
type of nanoparticle synthesis [10].

Due to the absolute safety requirements of the marketed products, materials that
combine the advantages of nanoparticles and low toxicity are highly required. The solution
to this problem is the modification of nanoparticles with inorganic compounds, e.g., silica
(SiO2) [11]. In addition, silica-based nanoparticles exhibit strong biological activities,
for example, promotion of osteoblasts, adhesion, proliferation, and stimulation of the
osteogenic differentiation in vivo [12–14].

The type of obtained nanostructures that are composed of two materials are called
core-shell nanostructures and can be divided into various categories according to their
physicochemical properties—for example, core-shell nanoparticles, core-shell magnetics,
core-shell silica nanoparticles, or core-shell polymer nanoparticles [15]. Taking into account
recent scientific reports, the interest of scientists is focused primarily on silica-covered metal
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structures, the most frequently studied of which are Ag@SiO2 [8,16,17], Au@SiO2 [18–20],
or TiO2@SiO2 [21–23]. It is worth mentioning that core-shell nanomaterials are not only
less cytotoxic but also show high dispersibility, biocompatibility, and improved thermal
and chemical stability [7]. Importantly, scientific reports show that silica-coated metals
do not lose their unique properties, such as the antimicrobial properties of Ag NPs in
Ag@SiO2 structures [24,25]. Moreover, the importance of the hydrophilicity of core-shell
nanostructures in biological applications is also well known [26].

The complex morphology of nanostructures can be examined using various methods.
The standard techniques are electron microscopy—including scanning (SEM) or trans-
mission (TEM), Fourier-transform infrared spectroscopy (FT-IR), or thermogravimetric
analysis (TG). In addition, all the methods are under constant development, which allows
accurate characterization of the nanoparticle surfaces, including the determination of active
groups number [27].

One of the nanoparticles’ description parameters is their potential toxicity, includ-
ing the determination of an exposure route. There are several routes of human ex-
posure to nanoparticles [28–30], including pulmonary [31–33], oral [34–37], and transder-
mal [6,38–40]. One of the most susceptible routes of nanoparticles action is the transdermal
route. This is not only due to the large number of cosmetic and medical products utilizing
nanostructures but also because of the small size of nanoparticles. We currently know that
penetration of nanoparticles by the percutaneous route can occur in two ways: through
the hair follicles and through the spaces between corneocytes [5]. Since the first barrier on
the skin that nanoparticles come into contact with is the stratum corneum, corneocytes
are the most susceptible to them. Moreover, some studies indicate that nanoparticles can
penetrate deeper, i.e., into the vicinity of fibroblasts, which in turn enables the penetration
of the blood vessels and distribution in the whole organism [6].

However, due to the relative novelty of core-shell structures and despite the insight in
surface and deep skin cells cytotoxicity, we lack studies on the safety of nanomolecules. In
the present work, we synthesized nanoparticles of silver, silica, and core-shell structures
with various silver and silica configurations—SiO2@Ag, Ag@SiO2, and Ag@SiO2@Ag.
Due to differences in potential penetration depth, the cytotoxicity of these structures was
determined on two human skin cell lines: keratinocytes (HaCaT) and fibroblasts (HDF).

2. Materials and Methods
2.1. Materials and Reagents

All chemicals were of analytical grade and were used without further purification.
Acetone, ammonia solutions (25%), cetyltrimethylammonium bromide (CTAB), ethanol,
hydrazine hydrate (N2H4·H2O), poly(vinylpolypyrrolidone) (PVP), silver nitrate, (AgNO3,
99.99%), sodium borohydride (NaBH4), tetraethyl orthosilicate (TEOS), and trisodium
citrate (Na-cit) were purchased from Sigma-Aldrich (Poznan, Poland). All the samples
were prepared using deionized water produced using a Hydrolab system installed in our
laboratory.

The human dermal fibroblasts (HDF) were purchased from Cell Applications, Inc.
(San Diego, CA, USA), and spontaneously immortalized human keratinocytes from histo-
logically normal skin (HaCaT) were a kind gift from Professor Michal Zmijewski (Medical
University of Gdansk, Poland). HDF and HaCaT cells were cultured in Dulbecco’s modified
Eagle’s medium (DMEM) with high glucose, supplemented with 10% fetal bovine serum
(FBS), 6 µg/mL penicillin-G, and 10 µg/mL streptomycin under controlled conditions
of 37 ◦C in a humidified atmosphere containing 5% CO2. When 80–90% confluency was
obtained, cells were enzymatically detached with trypsin-EDTA and transferred into new
T-75 cm2 tissue culture flasks.
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2.2. Synthesis
2.2.1. Synthesis of Silver Nanoparticles (Ag NPs)

There are many methods available for silver nanoparticles synthesis. Most of them are
based on a reduction in silver nitrate, with sodium borohydride as a reducing agent. In our
case, silver nanoparticles were prepared according to the method described previously by
Szczepańska et al. [6]. First, we prepared 60 mL of 0.002 M sodium borohydride and cooled
it in an ice bath for half an hour. Then, 20 mL of 0.001 M silver nitrate was slowly added
to the solution with stirring. The synthesis was continued until the color of the solution
changed to yellow.

2.2.2. Synthesis of Silica Nanoparticles (SiO2 NPs)

In order to obtain SiO2 NPs, the method presented by Sakthisabarimoorthi et al. was
modified [41]. To 80 mL of ethanol was added 2.5 mL of ammonia water and 5 mL of
water with vigorous stirring. The prepared solution was then combined with 5 mL of
TEOS. Reactions were carried out for 24 h at room temperature with constant stirring. The
solution was separated by centrifugation at 6000 rpm for 20 min and washed several times
with ethanol.

2.2.3. Synthesis of SiO2@Ag

SiO2@Ag was obtained according to the method described by Sakthisabarimoor-
thi et al. [41]. The dried SiO2 NPs (0.05 g) were dissolved in 20 mL of ethanol followed by
the addition of 15 mL of 0.02 M silver nitrate with 1 mL of ammonia solution. After 20 min,
10 mL of PVP was added and allowed to mix. Then, 5 mL of 0.02 M NaBH4 was injected
into the mixture, which was stirred for 0.5 h at room temperature. SiO2@Ag was collected
by centrifugation at 6000 rpm for 20 min and washed with ethanol and deionized water.

2.2.4. Synthesis of Ag@SiO2

Ag@SiO2 nanostructures were prepared according to the method described by
Synak et al. [8]. Initially, 40 mL of Ag NPs, 20 mL of ethanol, and 0.25 mL of sodium
citrate (0.3 M) were mixed. To adjust the pH to about 9, a small amount of ammonia water
was added. Subsequently, the solution was mixed with 10 mL of TEOS. The Ag@SiO2 struc-
tures were collected by centrifugation and washed with a mixture of water and ethanol.

2.2.5. Synthesis of Ag@SiO2@Ag

Ag@SiO2@Ag structures were obtained based on the modified method of Zhao et al. [16].
Amounts of 1.5 mL of hydrazine solution and 0.9 mmol of CTAB were added to 250 mL
of distilled water, with vigorous stirring for several minutes at room temperature. A silver
nitrate solution (1.5 mmol, 10 mL) was then prepared, which was added dropwise to the
solution obtained above. Then, 50 mL of ethanol, 2.5 mL of aqueous ammonia solution, and
0.5 mL of TEOS were added successively with stirring. The reaction was carried out for 8 h.
After this time, the resulting structures were separated by centrifugation and washed several
times with ethanol and water.

2.3. Methods

Transmission electron microscopy (TEM) images were made using a Tecnai G2 Spirit
BioTWIN by FEI. UV-Vis Spectroscopy spectra were obtained using a Perkin-Elmer Lambda
18 (wavelength accuracy ± 0.1 nm, resolution 0.1 nm, measurement range 300–700 nm).
FT-IR spectroscopy analysis was carried out using a Bruker IFS66 spectrometer.

The thermal analysis of the nanostructures was conducted using Jupiter STA 449 F3
thermogravimetry connected to a QMS 403 C quadrupole mass spectrometer (NETZSCH,
Germany). The measurements were carried out in an inert gas (nitrogen) atmosphere, from
room temperature to 1000 ◦C, with a heating rate of 10 ◦C/min.

The contact angle measurements were made using a Kruss (Hamburg, Germany)
DSA100 goniometer. Prior to measurement, a suspension of nanoparticles in ethanol
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(dispersed by ultrasound) was applied to a glass plate and allowed to evaporate at room
temperature. The thus formed nanoparticle surface was subjected to further tests. A
water drop of 2 µL volume was applied with a syringe to the surface made of the tested
nanoparticles. The contact angle on both sides of the droplet was measured by a CCD
camera, and after digital image analysis, the average contact angle was determined using
Young–Laplace method. Each measurement was repeated 20 times [42–45].

Before testing for cytotoxicity, all structures were subjected to multiple purification of
organic impurities, primarily through multiple washing of nanoparticles and drying. Cell
viability was determined using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide) assay. The cells were seeded into 96-well microplates with 12–14 × 103/100 µL
cells per well. The following day, fibroblast and keratinocyte cells were exposed to various
concentrations of silver and silica-based nanostructures prepared ex tempore in serum-free
cell culture medium and incubated for 24 h. Then, tetrazolium dye (MTT) was added to
each well. After 2 h, medium was removed and obtained formazan crystals were dissolved
in dimethylsulfoxide (DMSO). The absorbance was recorded at 492 nm. The data are
presented as a percentage of the control values (untreated cells), which was set as 100%.

The experimental data are presented as the mean ± SD for at least triplicate deter-
mination of three independent experiments. The obtained results were analyzed using
commercially available software (GraphPad Prism 5) based on one-way ANOVA and
Tukey’s post hoc test. p values < 0.05 were considered statistically significant. The IC50 was
determined by nonlinear regression analysis: log (inhibitor) vs. normalized response.

3. Results and Discussion

The design of new classes of materials, especially for medicine or cosmetology, con-
stantly challenges scientists working in the field of materials science. Silver and gold
nanoparticles have been studied for decades because of their optical [46], magnetic [47],
and antimicrobial properties [6]. Despite the numerous advantages, we know that silver
nanoparticles can be extremely dangerous to the body’s organs. Therefore, to overcome
this problem researchers and scientists focus their attention on the incorporation of silver
nanoparticles in a silica matrix. These structures, called core-shell, exhibit improved prop-
erties in relation to the same metallic nanoparticles, such as controlled size and additives
that prevent agglomeration.

Thus, the primary goal of the present study was to prepare and characterize new types
of core-shell nanomaterials for potential use as the components of cosmetic or medical
products applied onto the skin. Insights from studies of the proposed nanostructures will
contribute to the selection of those with the lowest cytotoxicity and the highest hydrophilicity.

3.1. Synthesis and Characterization of Nanocomposite

As illustrated in Scheme 1, the preparation of different types of core-shell nanostruc-
tures was achieved in two steps. In the case of SiO2@Ag nanostructures, the preparation
started from the synthesis of silica nanoparticles (SiO2 NPs). We used the Ströber method,
which involves the hydrolysis and then condensation of tetraethoxysilane (TEOS). This
reaction is possible due to the basic pH obtained by the addition of ammonia, water, and an
alcoholic solvent—in this case, ethanol. Under these conditions, the hydrolysis takes place,
leading to the attachment of hydroxyl groups. Next, SiO2 nanosparticles were centrifuged,
washed with ethanol, and dried. In the second step, Ag NPs were formed from the silver
nitrate in the presence of NaBH4 as a reductant. In addition, polyvinylpyrrolidone (PVP)
was added to prevent agglomeration, and ammonia was added to form Ag(NH3)2+ ions.
Finally, due to the electrostatic attraction of Si-O− anions formed on the surface of SiO2 NPs
and the Ag(NH3)2+ cation, the core-shell nanostructures were obtained (see Scheme 1-a).
In the case of Ag@SiO2 preparation and sandwich nanostructures of Ag@SiO2@Ag type,
the synthesis route was started from the reduction in silver nitrate in an aqueous solu-
tion. Sodium citrate (Na-cit) was used as a reducing agent for the synthesis of Ag@SiO2
nanostructures (Scheme 1-a). However, in the case of the Ag@SiO2@Ag nanostructures
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preparation, hydrazine was used as a reductant (Scheme 1-b). Additionally, in the case
of sandwich nanomaterials, we added cetrimonium bromide (CTAB) as a surfactant to
prevent the surface aggregation of Ag NPs. In the next step, the silver nanoparticles were
coated with silica using the previously mentioned Ströber method.
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Scheme 1. The synthesis routes of the presented nanostructures based on silver and silica. The numbers in the diagram
correspond to the synthesis of the respective structure—(1) SiO2@Ag, (2) (a) Ag@SiO2, (b) Ag@SiO2@Ag.

3.2. Transmission Electron Microscopy—Morphology Analysis

The morphology of the obtained structures was determined using transmission elec-
tron microscopy (TEM), and all nanostructures were spherical in shape (Figure 1). Figure 1a
shows silver nanoparticles (Ag NPs) with a diameter between 5 and 30 nm. The SiO2 NPs
are presented in Figure 1b, where their high agglomeration is visible, and the diameter of a
single particle is about 30 nm.

Figure 1c–e shows a typical micrograph of the studied core-shell nanocomposite. The
bright area depicts silica, and the dark area depicts nanosilver. As for SiO2@Ag (Figure 1c),
it is difficult to observe the size of the individual components of the material, but the
diameter of the entire structure can be determined, which is about 100 nm. Moreover,
in the case of SiO2@Ag, we observed that the silver nanoparticles agglomerating on the
surface form a uniform coating. Figure 1d shows the Ag@SiO2 core-shell, where the silver
core is 20 to 80 nm in diameter, while the shell measures about 20 nm. In the case of the
Ag@SiO2@Ag structure (Figure 1e), starting from the center of the structure, the diameter
of the metallic core is 70–90 nm, the silica shell is 15 nm, and the nanoparticles attached to
them are of small size, 10–15 nm.
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Figure 1. TEM photo of (a) Ag NPs, (b) SiO2 NPs, (c) SiO2@Ag, (d) Ag@SiO2, and (e) Ag@SiO2@Ag.

3.3. UV-Vis Spectroscopy

The UV-Vis spectroscopy method enables observation of the maximum absorption of
silver nanoparticles that is in the range of 350–450 nm. In the case of silica in the 300–700 nm
measurement range, no maximum absorption was observed [48].

The spectra of Ag NPs, SiO2@Ag, Ag@SiO2, and Ag@SiO2@Ag are presented in
Figure 2. Ag NPs were prepared in a solution, and we observed here a characteristic ab-
sorption maximum at about 400 nm. However, in the case of core-shell nanostructures, the
spectra were measured as a suspension in water. For SiO2@Ag, a maximum was observed
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at 420 nm, which corresponds to a coating of Ag NPs. The Ag@SiO2 nanostructures were
characterized by the lack of maximum absorption, which is probably due to the high
thickness of the SiO2 coating. In the case of Ag@SiO2@Ag structures, a low-intensity peak
at 430 nm was noticeable, which is also related to the presence of Ag NPs on the surface.
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3.4. FT-IR Spectroscopy Analysis

Additionally, we carried out FT-IR measurements to gain a deeper insight into the
chemical composition of the obtained materials. Previous studies show that the FT-IR
technique enables the detection of various groups on the surface of the obtained mate-
rials. Figure 3 shows the FT-IR spectra of Ag NPs, SiO2 NPs, SiO2@Ag, Ag@SiO2, and
Ag@SiO2@Ag. The spectrum of Ag NPs includes several bands that can come from ethanol.
The peak located at 3430 cm−1 is associated with the -OH stretching vibrations that come
from alcohol. Two bands located at 2920 and 2850 cm−1 correspond to C-H stretching
vibrations, both characteristic of ethanol. The weak band located at 1630 cm−1 can be
associated with the bending vibration of the hydrogen in the -OH group. In addition, the
peak placed at 1080 cm−1 is associated with the C-O stretching vibrations from ethanol [49].
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The FT-IR spectrum of SiO2 NPs contains several bands characteristic of silica. The
broad band in the 2900–3500 cm−1 with maximum placed at 3430 cm−1 and weak peak
located at 1630 cm−1 can be assigned to -OH stretching and bending vibration, respectively,
due to the presence of water molecules adsorbed onto the silica surface. The set of the bands
located at 1100, 800, and 470 cm−1 corresponds to the asymmetric stretching vibrations,
symmetric stretching vibrations, and bending vibration in Si-O-Si group, respectively. The
characteristic band at 960 cm−1 can be assigned to silanol (Si-OH) groups [50,51].

Characteristic bands appeared in the FTIR spectrum recorded for SiO2@Ag nanos-
tructure. The bands observed at 2920 and 2850 cm−1 can be assigned to the stretching
vibrations in the -CH2 groups due to the polyvinylpyrrolidone (PVP) utilization during the
synthesis [42]. Moreover, a low intensity peak at 550 cm−1 indicates the presence of Ag
NPs on the SiO2 surface and belongs to Ag-O stretching vibration [52–54].

In the case of Ag@SiO2 nanostructures, the peaks indicating the presence of silica
on the surface were presented above and are described in the details in our previous
paper [42].

Furthermore, the FT-IR spectrum of Ag@SiO2@Ag sandwich nanostructure presents
characteristic bands of this nanostructure. The bands placed at 2920 and 2850 cm−1 can be
attributed to the C−H stretching vibration of methyl and methylene groups, which comes
from CTAB [55]. In addition, the presence of silver in the outer shell exposes a peak placed
at 550 cm−1, indicating the stretching vibration of Ag-O bond.

3.5. Thermogravimetric Analysis

Thermogravimetric analysis (TGA) and derivative thermogravimetric analysis (DTG)
for SiO2@Ag, Ag@SiO2, and Ag@SiO2@Ag are presented in Figure 4.

The decomposition of SiO2@Ag nanomaterial in air atmosphere occurs in two stages.
The first weight loss is observed at the TG curve in the range of 65 and 290 ◦C. The weight
loss of 5.32% is attributed to water evaporation, which is physically adsorbed on the
material surface. In the temperature range between 290 and 360 ◦C, another significant
weight loss of 3.48% is observed and could be assigned to the reduction in hydroxyl groups
present on the surface of studied material. However, in the case of Ag@SiO2, a similar
weight loss is observed, as in the previous papers [11,56,57].
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The decomposition of Ag@SiO2@Ag nanomaterial occurs in three stages. The first
small signal that is seen in DTG curve is also the result of water and alcohol evapora-
tion. The weight loss of 25.11% observed in the region within 200 to 350 ◦C could be
assigned to hydrolysis and polycondensation reactions of the unreacted alkoxy and hy-
droxy groups [58]. The second peak observed in DTG curves centered at 460 ◦C with the
weight loss of 4.99% mainly corresponds to the composition of organic groups from TEOS
used in the synthesis [27].

3.6. Contact Angle Measurement

A series of measurements of the contact angle was performed to determine the hy-
drophilicity of the tested nanoparticles, as well as the influence of the core-shell system
type on these properties.

Generally, all the tested nanoparticles are hydrophilic and have a much lower contact
angle value than the control sample (glass plate—55◦) (Figure 5). Reference measurements
were made for Ag NPs and SiO2 NPs, for which the contact angle was 18.4◦ and 0◦,
respectively. The contact angle of about 5◦ is a characteristic of the superhydrophilic class
particles. Therefore, SiO2 NPs are superhydrophilic, while Ag@SiO2 are characterized
by the highest hydrophilicity among all silver- and silica-based nanostructures. The
present study shows that the presence of silver in the shell reduces the hydrophilicity of a
nanoparticle. We observe this both for SiO2@Ag and for doping the SiO2 shell with silver
for Ag@SiO2@Ag. Although wettability results from both the chemical nature and the
roughness of the surface [42], in this case the investigated nanoparticles (Ag@SiO2 and
SiO2@Ag) are similar in size; therefore, we may assume that the roughness is comparable.
Here, we assume that the differences are only due to the chemical properties of these
nanoparticles. Moreover, good wettability of Ag@SiO2 nanomaterial shows the promise of
its utilization as a drug carrier in medicine and cosmetology.
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3.7. Cytotoxic Effect of SiO2@Ag, Ag@SiO2, Ag@SiO2@Ag, and SiO2 Nanoparticles

The application of various nanostructures in cosmetic or medical products not only
improves their sterility and stability but also overcomes the barrier of the cuticle. Thus, the
nanostructures enable the cosmetic actives to enter the target site of the skin, perform the
sustained release function, and solve various skin problems or cure diseases.

Silver nanoparticles are used as antibacterial materials in medical and cosmetic prod-
ucts due to their excellent antibacterial activity. Previous studies show that silver nanopar-
ticles can destroy over 650 microorganisms compared with antibiotics. With the growing
number of medical and cosmetic products containing nanosilver, its biological safety be-
comes an urgent issue. Silver nanoparticles possess particular physicochemical properties
that determine the extent of their cytotoxicity in biological systems [59]. Unfortunately,
recent studies show the cytotoxicity of silver nanoparticles on various types of cells, includ-
ing human peripheral blood cells, rat liver cell, and mouse germ line cells [60]. Moreover,
results of the studies indicate that silver nanoparticles exhibit intense toxicity upon some
tissues and that after ingestion they can induce neurological problems, kidney damage,
stomach upset, and skin irritation [61]. In [62], the authors provide comprehensive infor-
mation about particle size and toxicity—that is, lower particle size is responsible for higher
toxicity. Aggregation and sedimentation lead to a decrease in the activity of biologically
active particles. Moreover, cytotoxicity not only depends on Ag NPs’ properties but also
the organism’s variation plays a vital role.

However, to overcome the challenges that come along with the utilization of silver
nanoparticles as a nanocarrier in medical or cosmetic products, we must consider their
incorporation into a silica shell to limit cytotoxicity.

In line with the research trend concerning the cytotoxicity of silver nanoparticles,
our recent studies showed that cytotoxicity depends on their physicochemical properties.
According to our results, the large Ag NPs (100 nm) at low concentration of 0.6–5 ppm
exhibited a higher cytotoxic effect on HaCaT and HDF cells, whereas the lower viability of
HEM cells was observed at a concentration range of 2.5–5 ppm, compared with the smaller
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Ag NPs (20 nm). The determined IC50 parameter for the larger Ag NPs for HaCaT cells
was 0.75 ppm and for HDF cells it was 0.92 ppm, while for the smaller Ag NPs for HaCaT
cells it was >15 ppm, and for HDF it was 8.44 ppm [6].

These studies cover silica and silver-based nanostructures—namely, SiO2@Ag,
Ag@SiO2, Ag@SiO2@Ag, and SiO2. We evaluated the influence of various nanostruc-
ture types on the viability of immortalized human keratinocytes—HaCaT (Figure 6) and
human dermal fibroblasts—HDF (Figure 7) using MTT assay in the 1 to 1000 ppm range.
The obtained results show that Ag@SiO2@Ag significantly decreased the cell viability at
low concentration in both tested cell lines (IC50 = 12.41 ppm for HaCaT, IC50 = 27.53 ppm
for HDF). It is supposed that the cytotoxicity of Ag@SiO2@Ag is caused by the small
size of Ag NPs on the surface, i.e., 10–15 nm. SiO2@Ag and Ag@SiO2 nanostructures
exhibited minimal toxic effect on cells and were characterized by very high half-maximal
inhibitory concentration (Tables 1 and 2). Unexpectedly, the low cytotoxicity of SiO2@Ag is
probably due to their larger diameter the higher proportion of silica core to silver shell and
agglomeration of silver nanoparticles on the silica surface. What is important is that the
silica used in the tested nanostructures did not cause any toxicity at used concentrations
(IC50 > 1000 ppm). The obtained results suggest that the silver nanoparticles modified
by silica have dramatically decreased toxicity. In addition, Yan Li et al. [63] showed that
genotoxicity was related to the size and coating materials of AgNPs.

Table 1. IC50 and logIC50 for HaCaT of Ag NPs (20 nm), Ag NPs (100 nm) reported in [6], and SiO2, SiO2@Ag, Ag@SiO2,
and Ag@SiO2@Ag for HaCaT cells.

HaCaT

Ag NPs
(20 nm)

Ag NPs
(100 nm) SiO2 NPs SiO2@Ag Ag@SiO2 Ag@SiO2@Ag

IC50 >15 ppm 0.75 ppm >1000 ppm 573.6 ppm 589.4 ppm 12.41 ppm

logIC50 - −6.135 ± 0.071 - 2.759 ± 0.063 2.770 ± 0.132 1.094 ± 0.097

Table 2. IC50 and log IC50 of Ag NPs (20 nm), Ag NPs (100 nm) reported in [6], and SiO2 NPs, SiO2@Ag, Ag@SiO2, and
Ag@SiO2@Ag for HDF cells.

HDF

Ag NPs
(20 nm)

Ag NPs
(100 nm) SiO2 NPs SiO2@Ag Ag@SiO2 Ag@SiO2@Ag

IC50 8.44 ppm 0.92 ppm >1000 ppm >1000 ppm >1000 ppm 27.53 ppm

logIC50 −5.074 ± 0.1040 −6.04 ± 0.052 - - - 1.044 ± 0.0418
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Figure 6. The viability of HaCaT keratinocytes cells after 24 h of exposure to (A) SiO2 NPs (diameter 30 nm), (B) SiO2@Ag, 
(C) Ag@SiO2, (D) Ag@SiO2@Ag evaluated using MTT test. Data are expressed as mean values ± SD from three separate 
experiments. ** p < 0.01; *** p < 0.001 versus control (left panel). The IC50 values were calculated using a nonlinear regression 

Figure 6. The viability of HaCaT keratinocytes cells after 24 h of exposure to (A) SiO2 NPs (diameter 30 nm), (B) SiO2@Ag,
(C) Ag@SiO2, (D) Ag@SiO2@Ag evaluated using MTT test. Data are expressed as mean values ± SD from three separate
experiments. ** p < 0.01; *** p < 0.001 versus control (left panel). The IC50 values were calculated using a nonlinear regression
analysis for HaCaT cells exposed to (B) SiO2@Ag, (C) Ag@SiO2, (D) Ag@SiO2@Ag. Data are expressed as means ± SD for
at least three replicates. R2—coefficient of determination (right panel).



Materials 2021, 14, 4987 13 of 16

Materials 2021, 14, 4987 13 of 17 
 

 

analysis for HaCaT cells exposed to (B) SiO2@Ag, (C) Ag@SiO2, (D) Ag@SiO2@Ag. Data are expressed as means ± SD for at 
least three replicates. R2 —coefficient of determination (right panel). 

 

Figure 7. The viability of the HDF fibroblasts cells after 24 h of exposure to (A) SiO2 NPs (diameter 30 nm), (B) SiO2@Ag,
(C) Ag@SiO2, (D) Ag@SiO2@Ag evaluated using MTT test. Data are expressed as mean values ± SD from three separate
experiments. * p < 0.05 ** p < 0.01; *** p < 0.001 versus control (left panel). The IC50 values were calculated using a nonlinear
regression analysis for HDF cells exposed to (D) Ag@SiO2@Ag. Data are expressed as means ± SD for at least three
replicates. R2—coefficient of determination (right panel).
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4. Conclusions

We successfully developed the preparation method of the structurally stable materials
based on silver and silica nanoparticles, including SiO2@Ag, Ag@SiO2, and sandwich
structures—Ag@SiO2@Ag. We confirmed the morphology of these structures using meth-
ods such as transmission electron microscopy (TEM), UV-Vis spectroscopy, and FT-IR
spectroscopy. Measurements of the contact angle showed that Ag@SiO2 is a superhy-
drophilic nanomaterial, which influences its potentially wide application.

The obtained results suggest that modification of silver nanoparticles by silica dramat-
ically decreases the toxicity of silver. Moreover, Ag@SiO2 showed the lowest cytotoxicity
against the two skin cell lines used in the study—keratinocytes (HaCaT) and fibroblasts
(HDF).

Therefore, the designed Ag@SiO2 nanostructures are promising candidates for a
potential use as a new nanocarrier drug-delivery system in the fields of medicine and
cosmetology.
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44. Dąbrowa, T.; Wcisło, A.; Majstrzyk, W.; Niedziałkowski, P.; Ossowski, T.; Więckiewicz, W.; Gotszalk, T. Adhesion as a Component
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46. Synak, A.; Grobelna, B.; Raut, S.; Bojarski, P.; Gryczyński, I.; Karczewski, J.; Shtoyko, T. Metal Enhanced Fluorescence of Flavin
Mononucleotide Using New Plasmonic Platform. Opt. Mater. 2016, 59, 136–140. [CrossRef]

47. Kulpa, A.; Ryl, J.; Skowierzak, G.; Koterwa, A.; Schroeder, G.; Ossowski, T.; Niedziałkowski, P. Comparison of Cadmium Cd2+

and Lead Pb2+ Binding by Fe2O3@SiO2-EDTA Nanoparticles–Binding Stability and Kinetic Studies. Electroanalysis 2020, 32,
588–597. [CrossRef]

48. Panwar, K.; Jassal, M.; Agrawal, A.K. In Situ Synthesis of Ag–SiO2 Janus Particles with Epoxy Functionality for Textile Applica-
tions. Particuology 2015, 19, 107–112. [CrossRef]

49. Ruíz-Baltazar, A.; Esparza, R.; Pérez, R.; Rosas, G. Spectroscopy Study of Silver Nanoparticles Produced by Chemical Reduction.
Mater. Sci. Forum 2013, 755, 15–20. [CrossRef]
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