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Abstract

Previous statistical analyses have shown that amino acid sites in a protein evolve in a correlated way instead of
independently. Even though located distantly in the linear sequence, the coevolved amino acids could be spatially adjacent
in the tertiary structure, and constitute specific protein sectors. Moreover, these protein sectors are independent of one
another in structure, function, and even evolution. Thus, systematic studies on protein sectors inside a protein will
contribute to the clarification of protein function. In this paper, we propose a new algorithm BIFANR (Bi-factor Analysis
Based on Noise-reduction) for detecting protein sectors in amino acid sequences. After applying BIFANR on S1A family and
PDZ family, we carried out internal correlation test, statistical independence test, evolutionary rate analysis, evolutionary
independence analysis, and function analysis to assess the prediction. The results showed that the amino acids in certain
predicted protein sector are closely correlated in structure, function, and evolution, while protein sectors are nearly
statistically independent. The results also indicated that the protein sectors have distinct evolutionary directions. In addition,
compared with other algorithms, BIFANR has higher accuracy and robustness under the influence of noise sites.
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Introduction

The amino acids coevolution is very common in various protein

families [1,2,3]. Highly conserved amino acid sites are often

located in the core or on the functional surface of protein tertiary

structure [4,5,6]. These sites usually are under strong evolutionary

constraint, thus are critical for maintaining the protein’s function.

The amino acid sites that are highly correlated in evolution often

form protein sectors [7,8]. Protein sectors decompose proteins into

quasi-independent groups, which are distinct from the traditional

hierarchy of protein structure. The statistical characteristic analysis

of the cooperative action of conserved amino acids could

contribute to the inference of protein function and evolution [1,9].

Since functionally important amino acid regions in a protein are

usually conserved in evolution, researchers have been identifying

these regions by performing directed mutagenesis experiments

[10,11,12,13]. However, such experimental approaches are time

and labor intensive. In order to overcome this problem,

researchers have developed statistical methods to detect function-

ally dependent (or correlated) amino acids in proteins using

coevolution analysis [14,15]. For example, some parametric and

non-parametric methods were employed to detect important

amino acid sites [16,17,18,19,20,21,22], which usually focus on

amino acids important for maintaining the protein structure and

function. These methods rely on multiple sequence alignment

(MSA), so the quality and size of MSA and the background

coevolution noise became the main obstacles [15,18,23]. In

addition, some other typical probabilistic models have also been

implemented, e. g. Maximum likelihood approximation

[24,25,26], Bayesian probabilities [27], phylogenetic approaches

[28] and sequence divergence based approximation [15,29].

Lastly, several new ideas were introduced to reduce the influence

of noise [7,8]. However, these methods can only reach high

accuracy in some specific protein families, thus cannot be widely

used. Therefore, there is a need of more effective method to be

developed.

In this paper, we propose a new algorithm, named BIFANR (Bi-

factor analysis based on noise-reduction), to reveal the coevolving

pattern of amino acid sites. The algorithm originates from the

Factor Analysis in psychological researches [30], which is widely

used to analyze psychological factors, such as human personality

and sensibility. Like previous studies, our algorithm follows the

following principals: 1) the coevolved amino acid sites in a protein

constitute a protein sector, which are closely combined in the

tertiary structure to account for certain biological characteristics;

2) different protein sectors are independent of each other in terms

of the tertiary structure and function. However, different from

other methods, BIFANR first conducts noise reduction before

factor analysis, which improves efficiency and accuracy. After that,

a bi-factor analysis is employed to determine the corresponding
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eigenvectors of non-random eigenvalues with a stochastic simu-

lation and then to extract protein sectors. In linear combination of

eigenvectors, this algorithm employs varimax orthogonal rotation

to ensure independence between protein sectors. Furthermore, we

applied BIFANR to a PDB structure 3TGI of the S1A serine

protease family and 1BE9 of the PSD95/Dig1/ZO1 (PDZ) family.

As a result, we found 3 protein sectors in 3TGI and 2 in 1BE9.

Further analysis showed that BIFANR has higher accuracy and

robustness compared with other algorithms. The flowchart of the

complete analyses is presented in Figure 1. The source code of the

BIFANR program is available in the file Program S1.

Results

1. The Algorithm Design of BIFANR
The BIFANR algorithm consists of two major components,

detailed as follows:

1.1 Correlation coefficient matrix and noise

reduction. This algorithm applies the idea of Factor Analysis

to amino acid site analysis to extract protein sectors. Specifically,

starting from a given MSA, we first calculated the correlation

coefficients between amino acid sites and constructed a covariance

matrix (non-weighted correlation coefficient matrix, see Meth-
ods). Considering the biological significance, we then gave weights

to the covariance matrix like previous studies [7,31]. Finally, we

calculated the weighted correlation coefficient matrix based on the

background frequency of the 20 amino acids and the conservation

of amino acid sites. As a result, we have measured the pair-wise

correlation of amino acid sites with this matrix, based on which we

further conducted noise reduction.

The noise sites are amino acid sites that are weakly correlated

with almost all the other sites. These noise sites usually reduce the

efficiency and accuracy of the algorithm to identify protein sectors.

This is the main reason causing the failure of some covariance

amino acid sites detecting methods [32]. In order to overcome this

problem, we developed a noise reduction method in the pre-

processing step. Specifically, the amino acid sites with high

randomness in evolution are removed before the detection step.

Taking S1A family and PDZ family as examples: in the S1A

family, there were 223 sites in the multiple sequence alignment

(MSA) of 3TGI [33] and its homologous protein sequences and

104 sites were removed by the noise reduction step; in the PDZ

family, 49 sites of the total 94 sites were removed after the noise

reduction step. These removed sites are weakly correlated with

other sites, and have higher evolutionary rates than the remaining

sites. Calculated by Rate4Site, in S1A family [34], the average

evolutionary rates of removed and remained sites are 0.7692 and

20.6723 respectively. In PDZ family they are 0.6717 and

20.7314 respectively.

1.2 Bi-factor analysis. In the bi-factor analysis, we obtained

protein sectors according to the eigenvectors of the weighted

correlation coefficient matrix. In order to guarantee the non-

randomness of the predicted protein sectors, we simulated the data

by randomly shuffling the multiple sequence alignment for 100

times, and then chose the non-random eigenvectors of the

correlation coefficient matrix based on the stochastic simulation

result. Using this method, we can find the non-random protein

sectors hidden in the protein sequence. The original factor

coefficient for each amino acid site can be considered as the

correlation between the site and the factor (i.e. selected eigenvec-

tors of the correlation coefficient matrix, see Methods). BIFANR

assigns amino acid sites to factors according to the correlation.

However, we cannot obtain protein sectors based on the original

factor coefficients directly because one site may have similar

coefficients with different factors. Thus we have further conducted

varimax orthogonal rotation for these factors. Our ideal expecta-

tion is that each site will have a large coefficient value with just one

factor, which could be sufficient to distinguish this factor from the

remaining factors. Consequently, the protein sectors detected by

BIFANR will have significant statistical independence.

Figure 1. Methods flowchart.
doi:10.1371/journal.pone.0079764.g001

Bi-Factor Analysis Based on Noise-Reduction
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After varimax orthogonal rotation, amino acid sites were

assigned to factors according to the factor coefficients calculated

above. As the coefficient is within the range [21, 1], there are both

positive and negative correlation and the larger the absolute value

is, the more significant the correlation is. Those sites might also

form a protein sector, if they have significant negative correlation

with one factor. Therefore, BIFANR conducted bidirectional

selection of factor coefficients on the basis of factor analysis, which

could prevent the loss of protein sectors due to solely selection of

positive factor coefficients. However, bidirectional selection may

cause the occurrence of two overlapping protein sectors. In order

to merge overlapping protein sectors, we retain the overlap and

then add those sites having higher correlation with current sites.

2. Statistical and Biological Tests for Protein Sectors
BIFANR detected three protein sectors in S1A family and two

protein sectors in PDZ family. To verify these protein sectors and

evaluate the performance of our algorithm, we conducted

statistical tests and did biological analysis with these protein

sectors. The statistical tests include internal correlation test and

statistical independence test. Besides, we conducted evolutionary

rate test.

To demonstrate the correlation between the amino acid sites

within a protein sector, we took all of the amino acid sites in each

protein sector and calculated the mean correlation coefficients

between each pair of the amino acid sites. In addition, we

randomly simulated the data set with the same number of sites for

1000 times and similarly calculated the mean correlation

coefficients to be the random expectation. The results showed

that in each protein sector, the average of correlation coefficients is

much higher than the random expectation (Figure 2).

To illustrate the statistical independence between protein

sectors, we calculated the MDI entropy of S1A family and PDZ

family, respectively. The MDI entropy was originally used to

quantify the degree to which a selected group of amino acid sites

are statistically coupled to each other in an MSA. If two protein

sectors are independent, the MDI entropy of them taken together

should be equal to the sum of their MDI entropies taken

individually in theory. The results supported this conjecture by

showing that the MDI entropy of each two predicted protein

sectors was much higher than the random expectation, which

means that the protein sectors are statistically independent of each

other (Figure 3).

To study the evolutionary feature of amino acid sites within a

protein sector, we calculated the average evolutionary rates of the

Figure 2. Average correlation coefficients of protein sectors. A: Average correlation coefficient of each protein sector in S1A family. B:
Average correlation coefficient of each protein sector in PDZ family. Red column represents average correlation coefficient of protein sector 1. Blue
column represents average correlation coefficient of protein sector 2. Green column represents average correlation coefficient of protein sector 3.
Black column represents stochastic expected average correlation coefficient of each protein sector.
doi:10.1371/journal.pone.0079764.g002

Bi-Factor Analysis Based on Noise-Reduction
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amino acid sites in the entire protein and the amino acid sites in

the protein sectors, respectively. The results showed that the latter

was much lower than the former (Table 1). Figure 4 shows the

result for both the S1A family and the PDZ family, where for both

families, the evolutionary rates of over 90% sites in protein sectors

are negative, suggesting that these sites have lower evolutionary

rates and thus are selectively constrained to maintain the protein

structure and function.

3. Comparison to Buck’s Method
In order to evaluate the performance of BIFANR, we compared

our method with Buck’s method [8]. In comparison, we chose

3TGI of the S1A family and 1BE9 [35] of the PDZ family as

template sequences, since protein sectors in these two template

sequences have been experimentally verified [7]. Then we

evaluated the predicted results of the two methods by comparing

experimentally confirmed sectors with our predicted sectors (i.e.

factors in [8] ). If all or most sites of an experimentally confirmed

sector are found in just one predicted sector, it means that the

prediction is reliable. Otherwise, if sites are found in several

predicted sectors, it indicates that the prediction is unreliable. We

then calculated the percentage of experimentally confirmed sectors

that are found in our predicted sectors, i.e. sensitivity and the

percentage of our predicted sectors to be true positives (i.e.

experimentally confirmed sectors), i.e. positive predictive value

(PPV).

For the result of Buck’s method, the sites in experimentally

confirmed sectors distributed almost uniformly in different

predicted sectors. But for our result, the sites in any experimentally

confirmed sector distributed on just one predicted sector (Figure 5,

6). The results show that the sensitivities of Buck’s method in S1A

family and PDZ family were 85.07% and 82.35%, respectively,

while those of our method were 91.04% and 94.11%. In addition,

the PPVs of Buck’s method in S1A family and PDZ family were

43.84% and 29.16%, respectively, while those of our method were

90.77% and 94.11%. The results clearly demonstrate that

BIFANR performs much better than Buck’s method.

4. Function Analysis of Protein Structure
BIFANR detected three and two protein sectors in S1A family

and PDZ family respectively (see Table S1 for the amino acids in

each protein sector). Strikingly, the amino acid sites in the three

protein sectors of S1A family are not linearly close to each other in

Figure 3. Statistical independence of protein sectors. A: Statistical independence of protein sectors in S1A family. B: Statistical independence
of protein sectors in PDZ family. (Red column represents MDI entropy of protein sector 1. Blue column represents MDI entropy of protein sector 2.
Green column represents MDI entropy of protein sector 3. Black column represents MDI entropy of two protein sectors as a whole. Yellow column
represents stochastic expected MDI entropy after disrupting the amino acid sites within two protein sectors 100 times.).
doi:10.1371/journal.pone.0079764.g003

Table 1. Average evolutionary rate of each protein sector
and average evolutionary rate of all sites in S1A and PDZ.

sector 1 sector 2 sector 3 all sites

S1A 20.7288 20.4520 21.2143 0

PDZ 20.8683 20.9163 – 0

doi:10.1371/journal.pone.0079764.t001

Bi-Factor Analysis Based on Noise-Reduction
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the sequence, but apparently are correlated in the tertiary

structure (Figure 7A–C). In addition, protein sectors tend to

independent of each other in protein function.

In S1A family, protein sector 1 mainly contains amino acids

surrounding the pocket of S1 enzyme. Amino acid mutations

within this sector may affect the substrate specificity of some

enzymes in the family as residues in this sector is involved in

transferring chymotryptic specificity into trypsin [36,37,38,39,40].

Protein sector 2 mainly contains amino acids of the two b-sheets in

the protein core. The double alanine mutation in this sector could

affect the thermal stability of the enzyme, but hardly affect the

catalytic ability. Moreover, the mutations in this sector are

synergistic. The effect of sector 1 to substrate specificity is

independent on that of sector 2 to structure stability [7,41,42].

Protein sector 3, which is mainly responsible for catalytic ability,

contains the catalytic triad (57H, 102D and 195S) and neighboring

amino acids that are related to catalytic ability or accounting for

allosteric regulation [36,43,44,45]. This sector also includes one

disulfide bond pair (42C–58C) and the substitution of this bond

would cooperatively interact with mutation of S195. In addition,

triple mutation of C42A, C58A/V, and S195T will convert trypsin

from a serine protease to a threonine protease. So, this sector

represents the catalytic core of this protease family.

In PSD95/Dig1/ZO1 (PDZ) protein domain family, protein

sector 1 contains amino acids in a2–b2 groove and a1-helix, which

affect the substrate binding affinity [31,46] and the regulation of

a2–b2 groove affinity [47]. The sites in this sector are either in

relation to each other directly or are connected through

interactions with the substrate peptides. In protein sector 2,

residues 36 and 75 co-mutate to cysteine may be responsible for

the redox-dependent equilibrium [48,49] between two conforma-

tions in INAD PDZ5 [50] (Figure 8).

To further investigate the function and independent evolution

of protein sectors, we analyzed the evolutionary independence of

the three protein sectors in S1A family. Evolutionary indepen-

dence test is to construct a similarity matrix M with the sequence

similarities of amino acid sites in a protein sector and then conduct

principal component analysis. In principal component analysis,

only one principal component was selected and all sequences were

separated into two parts according to factor coefficients. Taking

S1A family as an example, the results of the principal component

analysis of protein sectors 1, 2 and 3 were displayed in Figure 9A,

9B and 9C, respectively. According to the sequence similarity of

sites in each protein sector, casein (red, top) and chymotrypsin

(blue, below) proteins are separated by protein sector 1 (Figure 9A);

vertebrates and non-vertebrates are separated by protein sector 2

(Figure 9B); and enzymes and non-enzymes are separated by

protein sector 3 (Figure 9C). These results indicate that protein

sector 1 may be responsible for the specificity of substrate

recognition in the catalytic process; protein sector 2 may be

involved in the protein backbone evolution, while protein sector 3

may account for the protein catalytic activity.

Figure 4. Distribution of amino acid site evolutionary rates. A: Distribution of amino acid site evolutionary rates in S1A family (rat trypsin:
3TGI). B: Distribution of amino acid site evolutionary rates in PDZ family (rat PSD-95:1BE9). Red column represents the evolutionary rate distribution of
amino acid sites in protein sectors.
doi:10.1371/journal.pone.0079764.g004

Bi-Factor Analysis Based on Noise-Reduction
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5. Application to Hsp70/110 Family and G Protein Family
To demonstrate the generality of the algorithm BIFANR, we

carried out protein sector prediction for another 2 protein families:

Hsp70/110 family and G protein family. For the Hsp70/110

family, the MSA consists of 926 sequences and 605 positions, and

for the G protein family the MSA consists of 678 sequences and

160 positions. BIFANR detected 2 significant protein sectors for

each of the two families (see Figure 10 and Table S2 ). The

internal correlation test and the statistical independence test for

both datasets showed that the conclusions drawn from the

experiments on Hsp70/110 family and G protein family were

also well supported (Fig S1 and S2).

Discussion

Exploring the coevolved protein sectors among homologous

proteins is currently a hot issue, especially for the studies of the

biological features and evolutionary direction of proteins. There

have been a few methods developed for detecting coevolved sites

in a protein family but they all suffer from low accuracy and low

robustness. In this paper, we proposed a new algorithm BIFANR

aiming to address these issues.

BIFANR is unique in the following aspects. First, BIFANR has

a noise reduction step for the sites in MSA. This step can reduce

the complexity of the calculation and improve the accuracy.

Second, motivated by factor analysis, a stochastic simulation step is

adopted to choose non-random eigenvectors. This step ensures

that the protein sectors detected are non-random and thus of high

credibility. Third, BIFANR uses varimax orthogonal rotation to

calculate the linear combination of selected eigenvectors, which

leads to the significant statistical independence between protein

sectors. Fourth, the algorithm avoids manual curation, such as

visual inspecting and screening, thus is more practical to use for

high throughput analysis.

Besides, BIFANR is robust for various data scales. When the

data is randomly reduced to half in size, the result remains almost

the same. We did this on both S1A and PDZ family and compared

the new results with the old ones. As shown in Table 2 and Table 3,

the accuracy remained high especially for PDZ family, which

indicates that BIFANR is robust for data scales.

In the future, we will consider using the common amino acid

substitution matrix (e.g. PAM or BLOSUM) to incorporate the

relationships among amino acids, as currently BIFANR assumes

that all the 20 amino acids are independent. In addition, we will

work with biologists to use our predicted sectors to guide site-

specific mutagenesis experiments on some selected genes of

interests.

Materials and Methods

1. Obtaining Materials
In this study, we chose the classic S1A serine protease family

and PDZ family for protein sector analysis (see Data S1.zip) as R.

Ranganathan did in previous study [7]. The members of S1A

family have the same peptide bond hydrolysis mechanism and

possess broad substrate spectrum. PDZ family is a common

Figure 5. Comparison between BIFANR and Buck’s in S1A family. A: S1,S2, and S3 represent 3 experimental confirmed protein sectors in S1A
family and the height of color bar represents the number of sites in corresponding predicted protein sector by Buck’s method. B: S1,S2, and S3
represent 3 protein sectors in S1A family and the height of each color bar represents the number of sites in corresponding predicted sector by
BIFANR. And the height of the brown bar represents the number of lost sites by algorithms in each experimental confirmed protein sector.
doi:10.1371/journal.pone.0079764.g005

Bi-Factor Analysis Based on Noise-Reduction
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domain in signal protein, widely existing in bacteria, fungi, plant,

animal, and virus [51,52,53,54], which mediates the protein-

protein interaction between a2–b2 groove and the C-terminal

ligand of target protein. The dataset was obtained through PSI-

BLAST [55] from NCBI (release 2.2.14, May-07-2006) non-

redundant database with 3TGI and 1BE9 as the template

sequences, and the multiple sequence alignment was provided

by Clustal X [7,56].

2. Construction of Weighted Covariance Matrix and
Reduction of Noise Sites

2.1 Construction of covariance matrix. Proteins consist of

20 common amino acids. For the purpose of calculation, we

replace 20 common amino acids with number 1–20 and gap with

0.

BIFANR constructs the covariance matrix by the formula:

Cij
(ab)~fij

(ab){fi
(a)fj

(b) ð1Þ

Figure 6. Comparison between BIFANR and Buck’s in PDZ family. A: S1 and S2 represent 2 experimental confirmed protein sectors in PDZ
family and the height of each color bar represents the number of sites in corresponding predicted protein sector by Buck’s method. B: S1 and S2
represent 2 protein sectors in PDZ family and the height of each color bar represents the number of sites in corresponding predicted sector by
BIFANR. And the height of the brown bar represents the number of lost sites by algorithms in each experimental confirmed protein sector.
doi:10.1371/journal.pone.0079764.g006

Figure 7. Protein sectors of S1A family (Rat trypsin PDB: 3TGI). A: Red balls represent protein sector 1, which mainly comprises residues
located near the catalytic cleave. B: Blue balls represent protein sector 2, which comprises residues within the core of the two b barrels. C: Green balls
represent protein sector 3, comprising residues within the catalytic cleave. Residues comprising protein sectors are displayed in space filling
representation with a van der Waals surface.
doi:10.1371/journal.pone.0079764.g007

Bi-Factor Analysis Based on Noise-Reduction
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in which fi
(a) is the observed frequency of the amino acid a at

position i and fij
(ab) represents the joint frequency of having a at

position i and b at position j.

BIFANR constructs the weighted covariance matrix �CC by the

formula:.

Cij
(ab)

~wi
(a)wj

(b)Cij
(ab),wi

(a)~ ln½fi
(a)(1{q(a))

(1{fi
(a))q(a)

� ð2Þ

Cij~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
a,b

(Cij
(ab)

)2

s
ð3Þ

where q(a) represents the background frequency of amino acid a. �CC
is the weighted covariance matrix. The more relevant between

sites i and j, the higher probability of synergistic reaction and the

larger correlation coefficient; On the contrary, the correlation

coefficient is small.

2.2 Reduction of noise sites. In this study, we consider that

every two sites in one protein sector have significant correlation,

thus have large correlation coefficient. For each site i, we take top

5% sites that have the largest correlation coefficients with i. And

we calculate the average of them and represent this average with

Rmax(i),. Then, we sum Rmax(i) for all sites i and calculate its

average, represented with plus. If site i belongs to one protein

sector, its Rmax(i) should be larger than 0.8plus. Thus, the site with

Rmax no larger than 0.8plus is considered as noise site. Finally, we

remove the rows and columns of noise sites in �CC and represent the

new matrix with ~CC.

3. Bi-factor Analysis
3.1. Selection of eigenvectors. In this study, we selected

eigenvectors by the following steps. (1) Calculate eigenvalues

L~fl1,l2,:::,lng of the matrix �CC in descending order, where n is

the number of amino acid sites. (2) Scramble each column of the

original alignment randomly and independently, and represent the

new random alignment with Al. Then we calculate the eigenvalues

of Al. After randomly combining for 100 times, we obtain 100n

eigenvalues and put them into set E. (3) Count the number of

eigenvalues in E which are bigger than li in L and represent this

number with N(i), Obviously, N(i) is in increasing order for i = 1,

…, n. (4) Let N(t) be the last one less than 100 in {N(i); i = 1, …, n }

and take the corresponding eigenvectors of l1,:::,lt.

3.2 Rotation, the linear combination of

eigenvectors. We conduct varimax orthogonal rotation which

can maximum [57]:

Figure 8. Protein sectors of PDZ family (Rat PSD-95 DPB: 1BE9). A: Red balls represent residues within protein sector 1. B: Blue balls represent
residues within protein sector 2. Residues comprising protein sectors are displayed in space filling representation with a van der Waals surface.
doi:10.1371/journal.pone.0079764.g008

Figure 9. Evolutionary independence of protein sectors in S1A family. A: Evolutionary independence of protein sector 1. B: Evolutionary
independence of protein sector 2. C: Evolutionary independence of protein sector 3.
doi:10.1371/journal.pone.0079764.g009

Bi-Factor Analysis Based on Noise-Reduction
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Vk~½
Xn

i~1

(n(pik
2)2{

Xn

j~1

(pjk
2))2�=n2,k~1,:::,t ð4Þ

where is pik the i-th element of the k-th eigenvector after rotation.

3.3 Bidirectional selection of protein sectors. We con-

struct protein sectors for each factor (eigenvector after rotation) as

following. (1) Put factor coefficients of this factor in descending

order, select top 50% and calculate the average of them,

represented with w. Then we calculate the ratio r(i)~
p(i)

w
, where

p(i) is the coefficient between the factor and amino acid site i, i.e.

the i-th sector of the factor. (2) If the ratio r(i) is not smaller than

the given threshold c and p(i) is bigger than the given threshold d,

amino acid site i belongs to the protein sector. (3) Besides, if p(i) is

large enough, say no smaller than the given threshold h, then this

amino acid belongs to the protein sector, too.

3.4 Merging of protein sectors. Bidirectional selection of

protein sectors may lead to the occurrence of overlap protein

sectors and we merge them into one as following. (1) For two

overlap protein sectors, we use a vector named Ssame to record the

overlap sites and another vector Sdiff to record the symmetric set

difference. (2) Select such site from Sdiff satisfying that the sum of

the correlation coefficients between the site and sites in Ssame is the

biggest, and put it into Ssame. (3) Repeat step (2) until Ssame reaches

Figure 10. Protein sectors of G protein family (A and B) and Hsp70/110 family (C and D). Red balls and Green balls represent different
protein sectors in protein 3D structure. Residues comprising protein sectors are displayed in space filling representation with a van der Waals surface.
doi:10.1371/journal.pone.0079764.g010

Table 2. The performance of BIFANR on original data and half
data in S1A family.

Original data Half data

sector1 95% 90%

sector2 92% 88%

sector3 90.91% 90.91%

doi:10.1371/journal.pone.0079764.t002

Table 3. The performance of BIFANR on original data and half
data in PDZ family.

Original data Half data

sector1 100% 100%

sector2 90.91% 90.91%

doi:10.1371/journal.pone.0079764.t003

Bi-Factor Analysis Based on Noise-Reduction

PLOS ONE | www.plosone.org 9 November 2013 | Volume 8 | Issue 11 | e79764



the size of the smaller protein sector before merging. Then we

output Ssame as protein sector.

4. Examination of Protein Sectors
4.1 Correlations between amino acids in a protein

sector. We calculate the average correlation coefficients and

random average correlation coefficients of each protein sector. We

use these two parameters to measure the significant correlation

between amino acids in a protein sector.
4.2 Statistical independence. We use MDI entropy to

measure the degree to which a selected group of residues are

statistically coupled to each other in the multiple sequence

alignment. In this study, the definition of statistical independence

is that, if two protein sectors are independent, then the MDI

entropy of two taken together must be the sum of their MDI

entropies taken individually [7,58]. We adapt generalized iterative

scaling algorithm to calculate MDI entropy [59].
4.3 Calculation of the evolutionary rate. In this study, the

evolutionary rate is estimated by Rate4site. Rate4Site adapts

maximum likelihood criterion to estimate the normalized rate of

evolution at each site, taking into consideration the topology and

branch lengths of the phylogenetic tree. The sites with positive

values evolve faster than average, and sites with negative values

evolve slower than average for that protein.
4.4 Evolutionary independence. To evaluate the evolution-

ary independence of protein sectors, we use Principle Component

Analysis to separate proteins based on the sequence similarities of

sites in protein sector.

Programs of algorithm BIFANR can be obtained from Program

S1 i.

Supporting Information

Figure S1 Average correlation coefficients of protein
sectors. A: Average correlation coefficient of each protein sector

in G protein family. B: Average correlation coefficient of each

protein sector in Hsp70/110 family. Blue and green columns

represent average correlation coefficient of protein sector 1 and

protein sector 2 in G protein family. Red and green columns

represent average correlation coefficient of protein sector 1 and

protein sector 2 in Hsp70/110 family. Black column represents

stochastic expected average correlation coefficient.

(TIF)

Figure S2 Statistical independence of protein sectors. A:

Statistical independence of protein sectors in G protein family. B:

Statistical independence of protein sectors in Hsp70/110 family.

Red column represents MDI entropy of protein sector 1. Blue

column represents MDI entropy of protein sector 2. Black column

represents MDI entropy of two protein sectors as a whole. Yellow

column represents stochastic expected MDI entropy after

disrupting the amino acid sites within two protein sectors 100

times.

(TIF)

Table S1 The amino acid sites in each protein sector of
the two protein families S1A and PDZ.

(DOC)

Table S2 The amino acid sites in each protein sector of
G protein family and Hsp70/110 family.

(DOC)

Program S1 Programs of algorithm BIFANR.

(ZIP)

Data S1 Data of S1A serine protease family, PDZ
family, HSP family and G family.

(ZIP)
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