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Despite resistance of most gliomas to chemotherapy, approximately 2/3 of oligodendrogliomas show sensitivity to such agents.
This sensitivity has been associated with deletions on chromosome 1p alone or in combination with 19q. Higher expression of the
enzyme glyoxalase I has been found in oligodendrogliomas with chromosome 1p intact compared to those with a deletion. Higher
expression of this enzyme is also associated with tumor chemoresistance in other cancers. The present study tested whether the
drug troglitazone would make a glioma cell line more sensitive to chemotherapeutic agents. This drug was chosen because it has
been shown to decrease glyoxalase I enzyme activity in cells. Treatment with troglitazone decreased expression of glyoxalase I, and
potentiated cell death when used in combination with chemotherapeutic agents. This decrease in glyoxalase I protein may be one
mechanism by which this potentiation occurs, and troglitazone may be a candidate for use in glioma therapy.

1. Introduction

Gliomas are the most common primary CNS malignancy,
with more than 12,500 diagnosed annually in the U.S.
These tumors carry a dismal prognosis despite all treatment
efforts, with a median survival of 9–15 months for the
most common and highest grade, glioblastoma multiforme
(GBM), and even low-grade tumors usually resulting in a
fatal outcome. Although a meager survival benefit has been
shown with chemotherapy, as a whole these malignancies
are very resistant to such treatments. An exception is
found in oligodendrogliomas, approximately 15% of all
gliomas diagnosed, in which about 2/3 of cases show
dramatic responses to chemotherapeutic agents [1]. These
enhanced responses have been associated with allelic losses
on chromosomes 1p either alone or in combination with
19q. Patients with tumors harboring such deletions fare
dramatically better than those with tumors that have the
chromosomes intact [2]. As of present, however, the precise
mechanisms responsible for this susceptibility have not been
identified [1].

We previously demonstrated significantly higher expres-
sion of the enzyme glyoxalase I (GLO-1) in human
oligodendroglioma tumor specimens with chromosome 1p
intact compared to those with 1p losses [3]. GLO-1 is a
cytosolic protein that functions as the major detoxifier of α-
oxoaldehydes in cells, predominantly methylglyoxal. Methyl-
glyoxal is an obligatory byproduct of glycolysis, and may
be produced in greater quantities with activation of DNA
repair processes, induced by chemotherapeutic agents in
response to their mutagenic effects. Methylglyoxal and other
α-oxoaldehydes glycate DNA, RNA, and proteins, forming
advanced glycation end products (AGEs) [4]. These covalent
modifications of DNA lead to mutations, and glycated pro-
teins are degraded [5]. Probably through these mechanisms,
methylglyoxal is capable of inducing apoptosis in tumor cells
[4].

This enzyme has been shown to contribute to the
resistance of tumors to chemotherapeutic agents. Over-
expressing GLO-1 in leukemia cells conferred resistance
to chemotherapeutic drugs, whereas decreasing expression
in lung cancer cells expressing high levels of the enzyme
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induced chemosensitivity [6, 7]. A synthetic inhibitor
of GLO-1 sensitized chemoresistant leukemia cells over-
expressing the enzyme to chemotherapy, and this compound
has shown significant antiproliferative effects when used on
tissue xenografts in small animals [4]. Because of the associa-
tion of lower GLO-1 expression in oligodendrogliomas with
chromosome 1p losses, and the notable role of this enzyme
in cancer chemoresistance, decreasing expression of GLO-1
in gliomas expressing it at high levels may make them more
susceptible to chemotherapy. Interestingly, GLO-1 is located
on chromosome 6, so the 1p loss in these chemosensitive
oligodendrogliomas does not directly disrupt the GLO-1
gene. We speculate that one or more genes disrupted
on chromosome 1p positively regulate GLO-1 expression
through an as yet unknown mechanism [3].

Troglitazone (TRG) is an insulin-sensitizing agent that
has been used for the treatment of type II diabetes, and
is in the thiazolidinedione class of drugs that exert their
therapeutic effects through agonism of the peroxisome
proliferator-activated receptor-γ (PPARγ), a nuclear receptor
which regulates the transcription of a variety of downstream
gene targets. In addition to its insulin sensitizing actions,
TRG and another compound in its class, ciglitazone, are
unique among the thiazolidinediones in having the ability to
exert antiproliferative effects against many cancer cell lines.
Although the mechanisms remain elusive, these agents have
been shown to induce apoptosis in malignant cells, and
data support that this effect is independent of the PPARγ
agonism responsible for the insulin-sensitizing properties
of these drugs [8]. TRG has been found to decrease the
enzymatic activity of GLO-1 and transcription of its mRNA
in both normal and malignant cells. This effect is also most
likely PPARγ independent because another PPARγ agonist,
rosiglitazone, did not influence GLO-1 expression [9]. When
used in conjunction with doxorubicin (DOX), troglitazone
was shown to cause synergistic cell death in a resistant
leukemia cell line that expressed high levels of GLO-1
[10].

In order to investigate the anticancer properties of TRG
in glioma, we used the astrocytoma cell line U-373 as an in
vitro model of this malignancy. We examined the impact of
TRG on GLO-1 expression in these cells, and the tumoricidal
effects of combining this drug with chemotherapeutic agents.
Our findings have potential clinical implications for treating
these malignancies.

2. Materials and Methods

2.1. Drug Treatments. Previously established U-373, U-87,
A-172, and U-251 human glioma cells were obtained from
ATCC (Manassas, VA) and grown in Dulbecco’s Modified
Eagle Medium supplemented with 10% FCS. TRG, DOX,
and carmustine (BCNU) were obtained from Sigma-Aldrich
Co. (St. Louis, MO). TRG was dissolved in DMSO, DOX in
molecular-grade water, and BCNU in 100% ethanol. Drug
treatments were performed one time at the beginning of
the course of observation. U-373 cells were treated with
varying concentrations of TRG: 1, 5, 10, 25, 50, and 100 μM.
The final doses of chemotherapeutic drugs for combination
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Figure 1: Western blot demonstrating GLO-1 protein expression in
four commercial glioma cell lines.

treatments with TRG were optimized according to applicable
clinical dosages so as to achieve only moderate cytotoxicity.
Concentrations of 50, 100, 150, 200, and 500 nM for DOX
and 100, 200, 300, 400, 500, and 1000 μM concentrations
for BCNU were investigated. The optimized concentrations
for DOX and BCNU were determined to be 100 nM and
300 μM, respectively. Cells receiving control treatments had
equivalent volumes of the vehicles used for dissolving these
drugs added to their media.

2.2. Western Blotting. Cells were treated with TRG 24-hours
after seeding and harvested in 24 hours time intervals up
to the 96-hour time point or when cells were no longer
viable. Triplicate experiments were run for each treatment
condition. Cell pellets were resuspended in Tissue Protein
Extraction Reagent (Pierce, Rockford, IL) and sonicated.
Equivalent protein quantities were loaded into Novex 4%–
20% Tris-Glycine Gels (Invitrogen, Carlsbad, CA) and
separated by electrophoresis. Proteins were then transferred
onto nitrocellulose membranes (Millipore Corp., Milford,
MA) and incubated with polyclonal antiglyoxalase I (1 : 500;
Santa Cruz Biotechnology, Santa Cruz, CA) and poly-
clonal anti-β-actin (1 : 500; Santa Cruz Biotechnology, Santa
Cruz, CA) antibodies. Immunosignal was visualized with
SuperSignal West Pico Chemiluminescent Substrate (Pierce,
Rockford, IL). Densitometry analyses were performed using
the program ImageJ, and statistical analysis using Microsoft
Excel 2003. GLO-1 protein expression for each sample was
normalized to β-actin levels for all densitometry analyses.

2.3. Semiquantitative Reverse Transcription PCR. Cells were
treated with 50 μM TRG 24 hours after seeding and harvested
after 24, 48, and 72 hours. Experiments were run in triplicate
for each time point. Total RNA was extracted using TRIZOL
Reagent (Invitrogen, Carlsbad, CA). Reverse transcription
was performed using a SuperScript III First Strand Kit
(Invitrogen, Carlsbad, CA) with 1 μg RNA. PCR was done
using Platinum PCR SuperMIX High Fidelity (Invitrogen,
Carlsbad, CA). GLO-1 primers were obtained from Invit-
rogen (Carlsbad, CA): 5′-CACTCTACTTCTTGGCTTAT-3′

and 5′-TGTATACATCAGGAACAGCA-3′. The β-actin gene
was amplified using the following primers: 5′-CCACGA-
AACTACCTTCAACTCC-3′ and 5′-TCATACTCCTGC-
TTGCTGATCC-3′. Twenty-seven rounds of a 94◦C/30 sec-
56◦C/30 sec-70◦C/30 sec amplification cycle were used in
both PCR reactions.

2.4. MTT (3-(4, 5-Dimethylthiazolyl-2)-2, 5-Diphenyltetra-
zolium Bromide) Cell Proliferation Assay. 96-well plates were
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Figure 2: (a) Representative Western blots showing GLO-1 protein expression after treatment of U-373 cells with 10, 25, 50, and 100 μM
troglitazone (TRG) for various time periods. Note loss of β-actin control at 72 hrs for 100 μM TRG concentration, reflecting loss of cell
viability at this time point. (b) A representative gel showing semiquantitative reverse transcription PCR of GLO-1 following treatment of
U-373 cells with 50 μM TRG. (c) Densitometry analysis of Western blots showing GLO-1 expression after U-373 cells were treated with
concentrations of TRG. Asterisks demark time points with a significance of P < .01 compared to control based on Student’s two-tailed t-test.
Each data point is the mean and SEM of three separate experiments performed at the specified condition.

seeded with 1.5 × 104 U-373 cells per well and treated
24-hours after plating. Cells were treated with TRG alone
or in combination with DOX or BCNU. Cell viability
was measured using the MTT Cell Proliferation Assay
(ATCC, Manassas, VA) in 24 hour intervals out to 96 hours
following treatment. Colorimetric change was assayed with
an absorbance microplate reader at 570 nm. All experiments
were run in triplicate with 7-well treatments per group and a
two-tailed Student’s t-test was used for statistical analysis.

2.5. Drug Evaluation. Combination drug cytotoxicities as
measured by MTT were dubbed as potentiating, additive,
or antagonistic. The term potentiation is used to describe
a greater than additive effect with combined treatment
compared to using either drug alone. In the case of cell
cytotoxicity, an additive effect is considered to be the product
of the percent cell viabilities when cells are treated with
each of the two drugs individually. Therefore, an observed
value for combined treatment which is less than additive
in a statistically significant fashion (P < .05) is considered
potentiation. A value which is greater than additive is
antagonistic [11].

3. Results

3.1. GLO-1 Expression in Commercial Glioma Cell Lines.
Comparison of GLO-1 expression in the commercially

available glioma cell lines U-87, A-172, U-251, and U-373
was assayed by Western blot, yielding a band corresponding
to the expected size of 23 kD (Figure 1). Highest GLO-1
expression was detected in U-251 and U-373 cells, with
relatively less expression in A-172 and U-87 cells.

3.2. TRG Decreases GLO-1 Expression in U-373 Cells. Treat-
ment of U-373 astrocytoma cells with 25, 50, and 100 μM
TRG evoked a substantial decrease in the GLO-1 enzyme
at the last 24-hour time point before cells were no longer
viable for harvesting (Figures 2(a) and 2(c)). This maximal
reduction was observed at 48 hours for 100 μM (25.6 ± 1.9%
SEM), at 72 hours for 50 μM (32.7 ± 13.6% SEM), and at 96
hours for 25 μM TRG (19.5 ± 12.4% SEM). This decline was
not observed even after 96 hours of treatment with 10 μM
TRG (102.7 ± 7.7% SEM), the last time point measured.
A 204 bp mRNA fragment of GLO-1 mRNA was amplified
using RT-PCR, yielding a band of the expected size. Even
after 24 hours of treatment with 50 μM TRG, a decline in
mRNA expression was observed (Figure 2(b)). There was a
further, incremental reduction in mRNA expression seen up
to 72 hours after treatment.

3.3. Combined Drug Treatment of TRG with DOX or BCNU
Potentiates Cell Death. Combination treatment with TRG
and 100 nM DOX was found to potentiate cell death as
measured by the MTT assay when compared to treatments
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Figure 3: A representative experiment demonstrating U-373 cell viability after 72 (a) and 96 hours (b) of treatment with TRG, 100 nM DOX,
and TRG/100 nM DOX together at the specified concentration of TRG. (c) Time course of treatment of U-373 cells with 25 μM troglitazone
(TRG), 100 nM doxorubicin (DOX), and TRG/100 nM DOX together. Combination treatments found to potentiate cytotoxicity are marked
with an asterisk; other concentrations were found to be additive. Each data point is the mean and SEM of seven wells treated at the specified
condition.

with each drug alone. This phenomenon was observed after
three and four days of treatment, occurred at concentrations
as low as 5 μM TRG, was greatest at 25 μM, and became
progressively less pronounced with higher doses (Figures
3(a) and 3(b)). The latter is probably attributable to TRG
treatment alone having a significant tumoricidal effect at
these higher concentrations. Cell viability at all time points
gathered for 25 μM TRG, where most potentiation was
found, is shown (Figure 3(c)). Potentiation was only seen
at 72 and 96 hours, not earlier, and this was true for all
other concentrations of TRG where potentiation occurred.
Greatest potentiation was observed at 96 hours, where
combination treatment showed a viability of only 8.0% of
control.

BCNU was also found to potentiate cell death when
combined with TRG, but the time points at which this was
observed were earlier, and the doses of TRG required for
substantial potentiation greater. Though mild potentiation
was observed at 25 μM TRG at 24 and 48 hours, the
cell viability at 48 hours for combination treatment was
only 78.2% of control (Figure 4(a)). For both 50 and
100 μM concentrations of TRG, combination treatment
potentiated cell death up to 72 hours, with the most
substantial result observed at 100 μM (Figures 4(b) and
4(c)). Though combination treatment had a substantial
tumoricidal effect at 96 hours, achieving just 4.8% viability
at 100 μM TRG, statistically significant potentiation was not
found.
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Figure 4: A representative experiment showing cell viability time
course with treatment of U-373 cells with TRG, 300 μM BCNU,
and TRG/300 μM BCNU together at 25 (a), 50 (b), and 100
(c) μM concentrations of TRG. Combination treatments found
to potentiate cytotoxicity are marked with an asterisk; other
concentrations were found to be additive. Each data point is the
mean and SEM of seven wells treated at the specified condition.

4. Discussion

Higher levels of GLO-1 have been found in a broad array of
tumors when compared to their normal tissue counterparts
including prostate, colon, and renal cancers [12]. This may
reflect the increased reliance of tumor cells on anaerobic
glycolysis, as well as their intrinsically high metabolic rate;
both result in an increased production of methylglyoxal
and consequent demand for its detoxification [13]. This
suggests that GLO-1 could be a therapeutic target in these
more aggressive malignancies, particularly because tumors
with higher endogenous activity of this enzyme have been
documented to be more susceptible to the cytotoxic effects
of its inhibition [12].

To test this idea, we assayed GLO-1 protein levels in
four select glioma cell lines in order to find one that
demonstrated robust expression. Of note, the two cell lines
found to express highest levels of GLO-1, U-373, and U-251,
have an intact chromosome 1p, whereas U-87 and A-172
have it disrupted [14]. This is consistent with our findings
in oligodendrogliomas that GLO-1 expression is higher in
malignancies with chromosome 1p intact [3]. However, this
relationship has not been studied in other types of glioma
and we cannot draw any significant conclusions based on the
few cell lines analyzed here.

We employed the U-373 astrocytoma cell line for all
subsequent work. The finding that exposure of these cells
to TRG conferred a substantial reduction in GLO-1 is
consistent with results obtained elsewhere in other cell
types [9]. However, this is the first finding of a decrease
in protein expression following treatment with this drug,
as GLO-1 enzyme activity was previously assayed instead
of amount of protein. Also consistent with these previous
findings, concentrations of TRG required to decrease GLO-1
expression were substantially higher than that required to
induce full PPARγ agonism, which is around 1 μM [15]. The
cytotoxic effects of TRG we observed are therefore unlikely to
be PPARγ dependent.

The reduction in GLO-1 mRNA expression after TRG
exposure was observed well before protein expression
decreased by Western blot. This suggests that the decrease
seen in this enzyme is at least partially mediated by a
transcriptional mechanism, also found in other studies
employing different cell lines [9, 10].

To see whether potentiation of cytotoxicity would occur
when TRG was used in combination with chemotherapeutic
agents, we first employed the topoisomerase II inhibitor
DOX. This drug offers the advantage of being stable in
aqueous solution, unlike the alkylating agents employed for
glioma therapy, and would be present in the cell culture
medium during the period necessary for TRG to exert
its drug effect [16, 17]. However, DOX is not generally
used for glioma treatment due to poor blood brain barrier
penetration, though novel approaches to its administration
that circumvent this problem have shown clinical efficacy
[18]. A concentration of 100 nM was selected because
it conferred moderate cytotoxicity, but is a low clinical
dose [19]. In order to examine a more clinically relevant
chemotherapeutic drug, we also studied the alkylating agent
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BCNU, which has been employed as a chemotherapeutic
agent against glioma for years. Furthermore, as BCNU
works by a similar mechanism of action as temozolomide,
the standard chemotherapeutic treatment for glioblastoma,
potentiation of the cytotoxic effects of BCNU by TRG
suggests that TRG could be similarly efficacious when
combined with temozolomide [1]. The concentration of
300 μM BCNU used in these experiments corresponds to a
high clinical dose of this drug [20].

Significant potentiation of the effect of DOX on cell death
was seen at concentrations of TRG as low as 5 μM, which is
within clinically achievable concentrations in plasma [21].
This is important, as a major limitation of the tumoricidal
thiazolidinediones as anticancer agents has been the inability
to demonstrate antiproliferative effects at concentrations
which are clinically relevant [8]. Although potentiation of
cytotoxicity for BCNU occurred at substantially higher doses
of TRG, this finding is notable in light of the lack of
efficacious treatments for malignant glioma and the dismal
prognosis of this disease.

The time course and doses required for potentiation of
cytotoxicity with TRG and both chemotherapeutic agents are
not entirely consistent with observed decreases in GLO-1.
However, this enzyme is only one of many proteins impli-
cated in contributing to the antiproliferative effects of this
drug. Although a decrease in GLO-1 is likely contributing to
the observed cytotoxicity with combination treatment, other
mechanisms are probably involved. The chemotherapeutic
agents used could also have facilitated a fall in GLO-1 enzyme
activity that was not observed by Western blot of cells treated
with TRG alone. This is particularly relevant because both
DOX and BCNU decrease reduced glutathione (GSH) in the
cell, a critical cofactor for the functionality of GLO-1 [22].

Our data demonstrates that TRG may have future clinical
potential in enhancing the effects of chemotherapeutic
agents against glioma, and one probable mechanism by
which this occurs is through decreasing GLO-1 expression.
The results of our experiments suggest that TRG, in addition
to other drugs which inhibit the activity of GLO-1, should be
looked at further for use in glioma therapy. Through this it
may be possible to develop another treatment in the limited
armamentarium of drugs against this disease.
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