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Abstract: The accumulation of nitrogen in groundwater in the industrial plots, especially the high
ammonium, can result in a serious threat to the groundwater system in the urban area. This study
monitored the dissolved inorganic nitrogen (DIN) of the polluted groundwater four times in one
year in a retired nitrogenous fertilizer plant site with a production history of nearly 40 years, to
analyze the spatial-temporal characteristics of DIN species (NH4

+-N, NO3
−-N, and NO2

−-N) and
the effects of groundwater environment on their transfer and transformation. The results showed
that NH4

+-N (<0.025 to 1310 mg/L) was the main DIN species (61.38–76.80%) with low mobility,
whereas the concentration of NO3

−-N and NO2
−-N was 0.15–146 mg/L and <0.001–12.4 mg/L,

accounting for 22.34–36.07% and 0.53–2.83% of total DIN, respectively. The concentration and
proportion of NO3

−-N and NO2
−-N showed an upward trend with time, posing a threat to the

safety of surrounding groundwater, and their high spatial-temporal variation was related to the
morphological transformation and the transport. In the wet season, the pH and redox condition
benefited the nitrification, and NO3

−-N easily migrated from the deep soil solution to groundwater,
hence the NO3

−-N can be accumulated. Therefore, the analysis of species and behaviors of DIN in
shallow groundwater is indispensable for environmental risk assessment.

Keywords: inorganic nitrogen; environmental behavior; transformation and transport; water quality;
groundwater

1. Introduction

Nitrogen is an essential nutrient element in the biosphere, and nitrogen pollution
in aquatic ecosystems is becoming a worldwide issue [1]. Notably, nitrogen pollution
in soil and groundwater in the nonagricultural system can threaten groundwater safety
in urban areas [2]. The contamination of nitrogen can cause environmental risks via the
transport of nitrogen-polluted groundwater to surface water [3], and the transformation of
NH4

+-N into the cancer-causing NO3
−-N and NO2

−-N [4]. Another critical pathway is the
upward transfer of greenhouse gases (such as NH3 and N2O) into the unsaturated zone
and the atmosphere [5,6]. However, excessively high ammonia-nitrogen (NH4

+-N) levels
in the subsurface water have been less attracted attention, although its environmental
risk in the retired nitrogen fertilizer plant site cannot be ignored. As reported by the
previous study, in the retired nitrogenous fertilizer plant sites, the NH4

+-N concentration
in groundwater can be up to 3320 mg/L [7], which greatly exceeds the standard value
(1.5 mg/L) of the worst quality according to the Chinese “Quality Standard for Ground
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Water” (GB/T14848-2017) [8]. On the other hand, the adsorption of NH4
+-N into the soil

can be up to 15,000 mg/kg [7], hence soil can be a polluted source that slowly releases
NH4

+-N to groundwater in the long term. Therefore, NH4
+-N polluted groundwater in the

retired nitrogenous fertilizer plant land is becoming a significant environmental issue, of
which the monitoring and effective management should be raised greater concerns.

The NH4
+-N is one of the major pollution components of some contaminated ground-

waters, such as the landfill-leachate-contaminated groundwater [9], but its transport pro-
cesses and transformation mechanism through aquifers are complex [10]. In contaminated
groundwaters, movement of NH4

+-N is retardative and may be approximately 0.25 times
the average groundwater velocity [11], thus NH4

+-N polluted groundwater can be retained
underground and cannot be easily removed. Although denitrification is a dominated N
removal mechanism in the phreatic water-saturated zone, the activities of denitrification
are limited by a lack of organic-C or inorganic electron supplies [12]. It is widely recognized
that the dissimilatory nitrate reduction to ammonium (DNRA) is an important process
involving dissimilatory transformation of nitrate to ammonium [13]. For decades, it is
considered that anaerobic ammonium oxidation (anammox) has a great influence on the
nitrogen cycle and is an important process resulting in ammonium attenuation in the
subsurface biosphere [13,14]. In general, the morphological transformation of inorganic
nitrogen occurs throughout the microbial nitrogen cycle, and nitrate attenuation dominated
by denitrification is the main pathway of N loss in the phreatic water-saturated zone [15].

On the other hand, the environmental behaviors of nitrogen can be affected by the
groundwater environment. For instance, nitrogen is particularly sensitive to redox con-
ditions because of its multiple valence electrons and species [16]. Under the condition
of −381 mV < Eh < 193 mV and 6.84 < pH < 7.32, two types of nitrogen reduction can
occur, i.e., DNRA and denitrification, whereas the nitrification as an oxidation pathway can
be inhibited [17]. Moreover, the temporal variations of dissolved nitrogen concentration
in shallow groundwater can be affected by seasonal rainfalls [18]. The nitrate-nitrogen
(NO3

−-N) in the soil solute of the vadose zone can be leached and migrate into shallow
groundwater in the rainfall recharging process during the wet season. Furthermore, elec-
trical conductivity (EC) and dissolved oxygen (DO) can reflect or control the total N and
NO3

−-N concentrations in unconfined groundwater [19]. Understanding the spatial and
temporal variation of nitrogen pollution in groundwater and its controlling factors is imper-
ative to explore the pollution levels and present a scientific strategy for risk management
and control and pollution remediation.

Although many studies have explored the nitrogen levels and behaviors in the shallow
groundwater, it still lacks the related investigation carried out in the retired nitrogenous
fertilizer plant sites, which cannot be ignored for the sustainable development of cities.
The main objective of this study was to show the spatial-temporal variation of different
inorganic nitrogen in shallow groundwater and how it is controlled by the environmental
factors in a contaminated retired nitrogenous fertilizer plant site. The aims of this study
were to (1) obtain the spatial and temporal characteristics of DIN species and environment
indicators and assess the groundwater quality based on the government standard; (2) ana-
lyze the impacts of the critical environment indicators (such as pH, ORP, available C, and
rainfall) on the transformation among different DIN species. The findings in this study
ought to provide an important observation of the environmental behaviors of nitrogen in
the nonagricultural system and the indication of the potential for effective and sustainable
management of contaminated groundwater in the unconfined aquifer.

2. Materials and Methods
2.1. Overview of the Study Area

The retired nitrogenous fertilizer plant site (Figure 1) selected as the study area has
a production history of nearly 40 years. Its main products are ammonia, ammonium
bicarbonate, and methanol, and its by-products are sulfur. The whole area of this plant site is
about 73,000 m2, and the structures mainly included an ammonium bicarbonate workshop,
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synthetic ammonia workshop, methanol workshop, sewage treatment station, boiler room,
coal yard, and storage yard. According to previous studies on retired nitrogenous fertilizer
plant sites [7,20,21], the core production area, sewage treatment area, and storage yard may
be the main areas that were contaminated with ammonia-nitrogen in groundwater.
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Figure 1. Layout plan of the nitrogenous fertilizer plant area and the sampling sites. “MW” indicates
the monitoring well. The squares indicate the plant buildings. The circles indicate the other’s
structures, such as the gas tank and factory chimneys.

The study area locates in northwest Jiangsu Province, China, belonging to a warm
temperate semi-humid monsoon climate, with high temperatures and rainy in summer and
frequent cold waves in winter. The annual average precipitation is about 900 mm, of which
70–83% of precipitation occurs from June to October, and the annual average temperature
is about 15 ◦C. The landform of the study area belongs to the transition zone between the
low mountains and hills in the southern margin of Shandong Province and the Huanghuai
alluvial plain in the North China Plain and is about 300 m away from the Beijing-Hangzhou
Grand Canal. The bedrock type is dolomite rock, and the shallow groundwater is stored in
overlying Quaternary sediments. The terrain in the plot is relatively flat, roughly higher in
the east and west area, but lower in the middle area. The historical stable water level is
−1.85 to −3.69 m, with an average of −3.2 m and an annual variation of −1 to −2 m. The
Quaternary pore phreatic water in the site is mainly distributed from −2 to −9 m.

2.2. Sampling and Analysis

In this study, 23 monitoring wells were set up to cover the potential pollution area of
ammonia-nitrogen. According to the stratigraphic profile of the study area, the investigation
depth of groundwater was about 13 m, to reach the roof of the first aquiclude, and the
screening position of the sieve tube is set at −1.5 to −10 m. Groundwater samples were
collected from 23 monitoring wells in the study area during the dry season (December
2020, January 2021) and the wet season (June and September 2021), using a Low Flow
Pneumatic Groundwater Sampling Pump (Sample Pro, QED Environmental Systems Ltd.
Dexter, MI, USA). The samples were collected and then transported to the laboratory and
stored at approximately 4 ◦C. The groundwater quality parameters were measured on-site,
including water temperature (T), pH, DO, oxidation-reduction potential (ORP), EC, and
total dissolved solids (TDS). In the laboratory, inorganic nitrogen (NH4

+-N, NO3
−-N, and
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NO2
−-N) and sulfate were determined by Spectrophotometry. Chloride was titrated by

silver nitrate in a neutral condition. Heavy metals (Cu, Cr, Ni, Zn, and As) were analyzed
by inductively coupled plasma mass spectrometry (ICP-MS). The determination of total
organic carbon (TOC) in groundwater was using combustion oxidation nondispersive
infrared absorption method in September 2021.

In this study, Excel 2013 software (Microsoft Corporation, Redmond, WA, USA). is used
for statistical calculation of groundwater detection data, IBM SPSS statistics 20 software
(IBM Corporation, Armonk, NY, USA) is used for correlation analysis, Origin 2018 software
(OriginLab Corporation, Northampton, NC, USA) is used to draw relevant data maps, and
ArcGIS 10.5 software (Environmental Systems Research Institute, Inc., Redlands, CA, USA)
is used to draw spatial interpolation.

3. Results and Discussion
3.1. Concentration and Distribution of Dissolved Inorganic Nitrogen (DIN)
3.1.1. Concentration of DIN Species and Groundwater Quality Assessment

As shown in Figure 2a, the concentration of NH4
+-N was from <0.025 mg/L to

1310 mg/L. The average of NH4
+-N in a sampling period was 262.47 mg/L, 300.58 mg/L,

263.17 mg/L, and 247.93 mg/L, in December 2020, January, June, and September 2021,
respectively, with a median value of 110.0 mg/L, 102.0 mg/L, 22.0 mg/L, and 58.4 mg/L.
The average value of NH4

+-N concentration was much higher than that of the median
value in each group of data, which indicates that several data points of average NH4

+-N are
abnormally higher. Meanwhile, it can be found that the temporal distribution of average
NH4

+-N concentration is related to that of the maximum value. Considering the data of
NH4

+-N concentration does not conform to the normal distribution, the median value
is used to compare the temporal trend of NH4

+-N concentration. Obviously, NH4
+-N

concentration shows a higher value in the dry season, but a lower value in the wet season.
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Figure 2. The box diagram of ammonia-nitrogen (a), nitrate-nitrogen (b), and nitrite-nitrogen
(c) in groundwater.

The concentration of NO3
−-N and NO2

−-N was 0.15–146 mg/L and <0.001–12.4 mg/L
(Figure 2b,c), which was lower than that of NH4

+-N by about one and two orders of
magnitude, respectively. Similar to NH4

+-N, the data of NO3
−-N and NO2

−-N show a
non-normal distribution with a right deviation pattern. Comparing the temporal variation
of median value, NO3

−-N and NO2
−-N concentration display an increasing trend with

time, except for a declining variation of NO2
−-N in September 2021. The median value

of NO3
−-N concentration was 3.4 mg/L, 5.7 mg/L, 10.5 mg/L, and 18.0 mg/L, and that

of NO2
−-N concentration was 0.008 mg/L, 0.024 mg/L, 0.085 mg/L, and 0.023 mg/L, in

December 2020, January, June, and September 2021, respectively.
Compared with the standard value of categories V (the worst quality) according

to the “Quality Standard for Ground Water” (GB/T14848-2017) [8], for four sampling
periods, the contaminated proportion of NH4

+-N was 65.2%, 73.9%, 69.6%, and 69.6%,
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that of NO3
−-N was 26.1%, 17.4%, 30.4%, and 34.8%, and that of NO2

−-N was 0%, 4.3%,
0%, and 17.4%, respectively. Compared with the standard value of categories III, the
contaminated proportion of NH4

+-N was 82.6%, 87.0%, 87.0%, and 82.6%, that of NO3
−-N

was 34.8%, 26.1%, 43.5%, and 47.8%, and that of NO2
−-N was 4.3%, 8.7%, 13.0%, and 26.1%,

respectively. In these terms of contaminated proportion, NH4
+-N exceeds the standard

most seriously and changed little, but NO3
−-N and NO2

−-N show the highest pollution
level in September 2021.

To scientifically reflect the levels of potential pollutants (NH4
+-N, NO3

−-N, NO2
−-N,

Cl−, SO4
2−, Cu, Cr, Ni, Zn, and As) and comprehensive pollution, two methods were used

to assess groundwater quality, including the Grading method and the Nemerow index
method, of which the detail calculated steps were described in the reference [22]. The
groundwater quality for all samples was classified into I–V categories according to the
“Quality Standard for Ground Water” (GB/T14848-2017) [8], and the I–V categories was
assigned to the Fi value as 0, 1, 3, 6, and 10, respectively. The Fi value for ten pollutants
was used to calculate the FI value, the comprehensive score for all samples, and the FIregion
value was calculated using the FI value to obtain a comprehensive score for all potential
pollutants in the study area [22]. According to the FI value (0–10), the Grading method
rated the groundwater quality into five grades, which were “Excellent” (FI < 0.80), “Good”
(0.80 ≤ FI ≤ 2.50), “Moderate” (2.50 ≤ FI ≤ 4.25), “Bad” (4.25 ≤ FI ≤ 7.20), and “Very bad”
(FI > 7.20). The Nemerow index method was based on the single factor pollution index (Pi),
which value was the quotient of pollutant concentration divided by the limited standard
value of categories III. Next, the Pi value was used to calculate the PI and PIregion value, and
the formulations were as the description in the previous study [22].

The FI and PI values for ten pollutants are displayed in Figure 3. The order of the
average of FI value followed as: SO4

2− (9.27) > NH4
+-N (9.18) > TDS (9.16) > Cl− (7.96)

> NO3
−-N (7.68) > NO2

−-N (5.82) > As (4.26) > Ni (3.12) > Cu (0.74) > Zn (0.37). Expect
for Cu and Zn always locating in the “Very Good” grade, Ni ranging from “Good” to
“Bad”, and other pollutants indicate a groundwater quality rating “Bad” to “Very bad”. The
order of the average of PI value followed as: NH4

+-N (1666.70) > SO4
2− (5.84) > NO3

−-N
(4.71) > NO2

−-N (4.70) > TDS (3.91) > Cl− (2.09) > As (1.13) > Ni (0.55) > Zn (0.04) > Cu
(0.02). Similar to the FI value, the PI value reflects the enrichment of concerned pollutants,
excluding Cu, Zn, and Ni. For four sampling periods, the FIregion value was 7.75, 7.81, 7.86,
and 7.68, and the PIregion value was 1097.61, 1350.93, 1195.56, and 1094.20, respectively.
Interestingly, the comprehensive assessment of groundwater quality reflects the variation
of groundwater quality that is not getting worse, although the pollution level of NO3

−-N
and NO2

−-N seems to increase with time.
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3.1.2. The Spatial Distribution Characteristics of DIN

The inverse distance weighting method was used to illustrate the spatial distribution
of inorganic nitrogen in groundwater. It can be seen from Figure 4 that the spatial distribu-
tion of NH4

+-N changes little during the four sampling periods and is closely related to
the production function layout of the plant. The NH4

+-N > 300 mg/L in groundwater was
mainly located in the ammonium bicarbonate workshop, synthetic ammonia workshop,
sewage treatment station, and storage yard. The groundwater with a high NH4

+-N value
(>700 mg/L) was mainly located in the ammonium bicarbonate workshop, sewage treat-
ment station, and storage yard. As shown in Figure 5, the spatial distribution of NO3

−-N in
the dry season was similar to that of NH4

+-N, but it changed significantly in the wet season.
In the dry season, the groundwater level was low and groundwater flow was slow, thus the
migration and transformation of DIN were lower. NO2

−-N is an unstable component in
groundwater and is the intermediate product of the nitrification or denitrification process.
The temporal and spatial distribution of NO2

−-N in the study area changed greatly, but the
NO2

−-N concentration was relatively high in the northeast of the study area during the
all-sampling periods (Figure 6). The obvious accumulation of NO2

−-N in the wet season
may be related to a higher reduction rate of nitrate than that of nitrite [23].
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3.2. Indication of pH and ORP Condition

Nitrogen is essential for all living organisms, and ammonium and nitrate are two of
the bioavailable forms for most organisms to grow [24]. As the consequence of and the
constraint on oxidation-reduction reactions, the ORP reflects the habitats for microorgan-
isms [25]. The combination of pH and ORP is helpful to understand the stable product or
valence state of nitrogen in the groundwater system. According to the results of chemical
thermodynamics obtained under standard conditions (25 ◦C and 1 atm) [17], when the
ORP ranges from −500 mV to +300 mV at pH < 9.23, ammonium ion (NH4

+) is the most
abundant species of DIN in groundwater, whereas nitrate ion (NO3

−-N) is dominated
under oxidizing conditions (ORP > 400 mV). In this study, the groundwater temperature
varied from 12.5–23.2 ◦C, of which the impact on the transformation of DIN is usually in
reaction rates but not reaction direction, hence this ORP–pH relationship can be applied to
understand the behaviors of DIN in groundwater. In the study area, pH was from 6.31 to
9.66, and ORP was from −279 mV to 237 mV (Figure 7). According to the range of pH and
ORP, NH4

+ is the dominant species in according to the stability field of groundwater for
DIN [17].
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Figure 7. Variation of pH (a), ORP (b), and DO (c) of groundwater.

On the other hand, the change in pH and ORP may account for a variety of concentra-
tions of NH4

+-N and NO3
−-N. Among different species of inorganic nitrogen, NH4

+-N is
an electron donor in nitrification, and NO3

−-N is an electron acceptor in denitrification.
The preference for redox species in oxidation reactions is DO > nitrate > sulfate, which is
referred to as the terminal electron-accepting processes [9]. Under the high DO condition,
NH4

+-N is easily oxidated to NO2
−-N and NO3

−-N through nitrification, and the nitrifi-
cation can occur in a large range of DO, i.e., 0.3–4 mg/L [26]. On the other hand, lower
ORP conditions are favorable for denitrification to occur, being DO < 2 mg/L and ORP
< 100 mV reported in the previous study [27]. In this study, the range and distribution
of pH, ORP, and DO were very different each month, which indicates the occurrence of
DIN transformation in groundwater. Although the correlation between ORP and DO was
weak, their temporal variation was very similar, that was lower in the dry season and
higher in the wet season. In the dry season, ORP and DO for most groundwater samples
were low (<0 mV and <2 mg/L, respectively), which indicates that denitrification may
prevail instead of nitrification, and this condition is beneficial to the removal of NO3

−-N
from groundwater [27]. The higher ORP and DO condition in the wet season benefits the
nitrification that NH4

+-N easily transforms to NO2
−-N and NO3

−-N, hence the NO3
−-N

can be accumulated [28].
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3.3. Impact Factors of the Transfer and Transformation of DIN
3.3.1. The Transformation of DIN and Correlation Analysis

The concentration and proportion of different DIN species varied among four sampling
periods (Figures 2 and 8a). In general, NH4

+-N was the major species of inorganic nitrogen
in the groundwater of the study area, followed by NO3

−-N, and then NO2
−-N. In each

sampling period, the average proportion of NH4
+-N in inorganic nitrogen was 75.17%,

76.80%, 62.35%, and 61.38%, respectively, whereas that of NO3
−-N was 24.30%, 22.34%,

36.07%, and 35.79%, and that of NO2
−-N was 0.53%, 0.87%, 1.58%, and 2.83%. The

proportion of NH4
+-N makes decreasing in the wet season, whereas the proportion of

NO3
−-N shows an increase. The decreased NH4

+-N in the wet season may be related
to the recharging of rainwater that dilutes the NH4

+-N concentration in groundwater, as
well as the higher nitrification (see Section 3.2). Meanwhile, the total inorganic nitrogen
concentration in groundwater (TIN) was different in each sampling period. On average,
the TIN concentration was highest (318.17 ± 385.01 mg/L, average ± standard deviation)
in January 2021, whereas that was lowest (276.84 ± 325.29 mg/L) in September 2021.
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Figure 8. Temporal variation of DIN species and TIN concentration, and the Spearman correlation
between inorganic nitrogen and environmental indicators (physicochemical parameters, major anion,
and heavy metal). (a) The proportion of NH4

+-N, NO3
−-N, and NO2

−-N, and the red arrow
represents the direction of the change in the average proportion; the average TIN concentration,
and the error bars represent the standard deviation. (b) the Spearman correlation between NH4

+-N
and environmental indicators. (c) the Spearman correlation between NO3

−-N and environmental
indicators. (d) the Spearman correlation between NO2

−-N and environmental indicators. * p < 0.05,
** p < 0.01.
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Since the change in groundwater environment can influence the transformation of
DIN species, as well as the water-particle partition of DIN concentration, the Spearman cor-
relation between DIN and several indicators of groundwater environment were analyzed.
As shown in Figure 8b, NH4

+-N was shown to have a significant positive relationship with
TIN, EC, Cl−, SO4

2−, Ni, and As in each period. Except September 2021, NH4
+-N had a

significant positive relationship with pH and TDS, but a negative relationship with ORP.
The positive correlation between TIN and NH4

+-N is because that NH4
+-N was the major

species of TIN; hence, the correlation between TIN and other parameters was not presented
here. As the time increased, their correlation coefficients were decreasing, indicating that
the impact of other DIN species on TIN concentration will be stronger. The significant
positive correlation between NH4

+-N and EC suggests that ionic ammonia (i.e., NH4
+)

is the main form of NH4
+-N, instead of NH3·H2O. Furthermore, the positive correlation

between NH4
+-N and pH indicates that the proportion of NH3·H2O was rising with NH4

+-
N concentration. However, there was a negative correlation between NH4

+-N and pH
in September 2021, which may be caused by the heterogeneous mixing with rainwater.
In this sampling period, a large amount of rainfall recharged the groundwater. Due to
relatively low terrain in the middle part of the study area, in which NH4

+-N concentration
was higher, more rainwater recharging made pH lower. On the other hand, the significant
positive correlation between NH4

+-N and Cl−, as well as between NH4
+-N and SO4

2−,
indicates that NH4Cl and (NH4)2SO4 are two components of pollution sources.

Furthermore, as shown in Figure 8c, the correlation coefficients indicate that the spatial
distribution of NO3

−-N was related to NH4
+-N and NO2

−-N in December 2020, whereas
it appeared to become unaffected by them with time. The correlation in December 2020
may be related to the low flow of groundwater and the lacking exchange between surface
water/rainwater and groundwater in the dry season. In the wet season, the recharge of
rainwater disturbed groundwater, and then the NO3

−-N can migrate far from NH4
+-N

due to higher mobility. Furthermore, the input from the vadose zone may be an important
source of NO3

−-N in the wet season (see Section 3.3.2), and the different NO3
−-N inputs

can increase the difference between the distribution of NH4
+-N and NO3

−-N. For NO2
−-N,

there was a significant difference between the dry season and the wet season (Figure 8d).
No significant correlation between NO2

−-N and most parameters was found in the dry
season, except for a positive relationship with NO3

−-N and Cu, and a negative relationship
with Cl−. In the wet season, there was a significant negative correlation between NO2

−-N
and EC and Cr.

3.3.2. Effect of Rainfall on the Transfer of Nitrate-Nitrogen

From the results in Figure 8, no significant correlation was found between NH4
+-N

and NO3
−-N in the wet season. It is generally believed that NO3

−-N in groundwater is
unstable, whereas Cl− is stable and relatively conservative. Based on the mass conservation,
the proportion of rainfall recharging the groundwater can be calculated as [29]:

f 1 = (Iw - I2)/(I1 - I2) (1)

f 1 is the proportion of fresh rainwater, Iw is the Cl− concentration of groundwater
sample, I1 is the Cl− concentration of rainwater endmember, and I2 is the Cl− concentration
of pollution source. Here, the Cl− concentration of rainwater endmember used that of local
rainfall in June 2020 which was 0.03 mg/L, and the Cl− concentration of pollution source
used that of MW11 monitoring well in June 2021 was 691 mg/L.

∆i refers to the amount of variation for component i, due to the processes besides
the physical mixing [30]. When ∆i > 0, the component i was accumulated, whereas ∆i < 0
represents that the component i was consumed.

∆i = iw − [f 1 × i1 + (1 − f 1) × i2] (2)
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f 1 is the proportion of fresh rainwater, i1 is the i concentration of rainwater endmember,
and i2 is the i concentration of pollution source.

To calculate ∆NO3
−-N in the wet season, the NO3

−-N concentration of rainwater
endmember used that of local rainfall in June 2020 which was 0.05 mg/L, and the Cl−

concentration of pollution source used that of MW11 monitoring well in June 2021 that was
111 mg/L. Meanwhile, the molar ratios of C/NO3

−-N in September 2021 were calculated.
The TOC in groundwater was used to calculate the C/NO3

−-N ratio. The results of
∆NO3

−-N and C/NO3
−-N ratio were shown in Figure 9.
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Figure 9. The ∆NO3
−-N and C/N ratio of groundwater.

It can be seen that ∆NO3
−-N for most groundwater samples in the wet season is lower

than zero, especially in the middle part of study area, where the NH4
+-N concentration

is relatively higher. In other words, the accumulation of NO3
−-N in groundwater is

significant in the area that has low NH4
+-N and relatively higher terrain. The contribution of

atmospheric NO3
−-N to groundwater in the study area was low and can be ignored because

the NO3
−-N concentration in rainfall was about 0.02–0.1 mg/L which is far less than that in

groundwater. However, precipitation in the wet season had a great impact on the migration
of NO3

−-N. Previous studies have proved that NO3
−-N can be accumulated in the deep

soil solution of the vadose zone, which greatly affects the groundwater quality [31,32]. In
this study area, the high concentration of nitrogen in groundwater most likely originated
from the production activities of nitrogen fertilizer plants. When the nitrogen (in the form of
NO3

−-N, NH4
+-N, and so on) transfers from the surface to the subsurface, NO3

−-N can be
accumulated in the deep soil solution of the vadose zone. Moreover, the groundwater depth
can notably affect nitrogen concentrations in the shallow groundwater [18]. Therefore,
NO3

−-N can be leached from soil solute in the rainfall recharging process, as well as the
rising groundwater level in the wet season, may lead to the migration of NO3

−-N in the
vadose zone to groundwater, thus increasing the concentration of NO3

−-N in groundwater.
On the one hand, there may be microbial-mediated NO3

−-N consumption in ground-
water, including denitrification and dissimilatory reduction [33]. Denitrifying bacteria
are essentially ubiquitous in the subsurface [34], and the occurrence of denitrification
can be found in a large range of DO (0.2–4 mg/L, more favorable in DO < 2 mg/L)
and pH (5.5–8) [35]. Additionally, the DNRA may be an important pathway for the re-
moval of NO3

−-N, which can account for 40–63% of the total biochemical consumption
of NO3

−-N [36], and C/NO3
−-N ratio is an important index to estimate the occurrence of

DNRA. The available carbon and the reducing conditions benefit the occurrence of DNRA,
which is more favorable than denitrification when C/NO3

−-N > 12 [37]. In this study, the
C/NO3

−-N ratios for most samples in September were lower than 12. In two monitoring
wells (MW9 and MW16), C/NO3

−-N > 12 in groundwater indicated that the DNRA may
contribute to the consumption of NO3

−-N. However, the DNRA is not conducive to the
removal of N from groundwater due to the retaining of N as the form of NH4

+-N. There-
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fore, denitrification is the potential important pathway for the removal of NO3
−-N from

groundwater in the study area.

3.4. The Temporal Tend of DIN in the Monitoring Wells

The spatial distribution of DIN species showed very differently due to seasons. The
linear regression has been developed to estimate trends in every single well within a year.
The concentration of NO3

−-N, NH4
+-N, and TIN has been processed with a logarithm.

The slope coefficients of these linear regressions were variable and reflect the degree and
direction of the transformation of DIN species [38]. As shown in Figure 10, the slope
coefficients varied spatially and can be divided into four-zone A–D. In zone A and zone D,
the NO3

−-N, NH4
+-N, and TIN concentrations had been rising obviously. On the contrary,

the DIN concentration declined in zone B. Zone C was a transitional zone and mainly
characterized by the increased NO3

−-N and the decreased NH4
+-N. Both upward and

downward trends are shown for different DIN species in each well, and this phenomenon
is also shown in the previous study [39]. Although it is difficult to evaluate the general
trend in the whole study area, the temporal tends of DIN in the monitoring wells display
an obvious spatial distribution.
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Figure 10. Map showing the temporal trends of DIN species in the monitoring wells. The triangle,
square, and circle represent the estimated slopes of log10 NO3

−-N, NH4
+-N, and TIN, respectively.

Green color indicates a negative slope, whereas red color indicates a positive slope.

4. Conclusions

In this study, three species of dissolved inorganic nitrogen (NH4
+-N, NO3

−-N, and
NO2

−-N) were analyzed in groundwater that was collected from 23 monitoring wells in a
retired nitrogenous fertilizer plant site. The sampling periods were four times in one year,
and the spatial and temporal distribution of DIN species and their impact factors were
discussed. The concentration of NH4

+-N was from <0.025 mg/L to 1310 mg/L, and that
of NO3

−-N and NO2
−-N was 0.15–146 mg/L and <0.001–12.4 mg/L, respectively. The

spatial distribution of NH4
+-N changes little, and the groundwater with a high NH4

+-N
value (>700 mg/L) was mainly located in the ammonium bicarbonate workshop, sewage
treatment station, and storage yard. The spatial distribution of NO3

−-N was similar to
that of NH4

+-N in the dry season but changed significantly in the wet season due to
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relatively higher groundwater level and flow rate. Although the distribution of NO2
−-N

changed significantly, the NO2
−-N concentration was kept at a high value in the northeast

of the study area. The results of the groundwater quality assessment suggested that NH4
+-

N, NO3
−-N, NO2

−-N, TDS, Cl−, SO4
2−, and As were the main pollutants in the study,

and the groundwater quality was not getting worse with time. NH4
+-N is the major

species of dissolved inorganic nitrogen and accounted for 61.38–76.80% of TIN on average,
and NO3

−-N accounted for 22.34–36.07% of TIN. The DIN species prevailed by NH4
+-N

were related to the ORP and pH of groundwater, which was from −279 to 237 mV for
ORP and was 6.31–9.66 for pH. In the wet season, the higher ORP and DO benefit the
nitrification, as well as the migration from the deep soil solution in the vadose zone to
groundwater, hence the NO3

−-N was accumulated. The groundwater environment (pH,
ORP, and C/NO3

−) indicated that denitrification was the potential important pathway
for the removal of NO3

−-N, instead of DNRA. The temporal trend of NO3
−-N, NH4

+-N,
and TIN concentrations in each well can be divided into four-zone, indicating the spatial
variation of DIN transformation.

The results in this study highlight the environmental risk of groundwater in retired
nitrogenous fertilizer plant sites and demonstrated the morphological transformation of
DIN that is affected by the groundwater environment. In a word, the spatial-temporal
variation of DIN indicates that not only NH4

+-N is the important pollutant in the ground-
water in retired nitrogenous fertilizer plant sites, but also the NO3

−-N and NO2
−-N can be

accumulated, transferred, and cause environmental risks. The groundwater environment
(pH, ORP, and C/NO3

−) is favorable for the removal of NO3
−-N via the denitrification,

indicating that the Monitored Natural Attenuation (MNA) may be practicable. However,
the different patterns of DIN transformation, i.e., four-zone in Figure 10, suggest that more
attention should be paid to the monitoring of DIN around the retired nitrogenous fertilizer
plant sites, although it may not show the pollution at present. Further research is needed to
quantify the transformation by combining the isotopes and microbiological methods.
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