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Data often have a nested, multilevel structure, for example when data are collected

from children in classrooms. This kind of data complicate the evaluation of reliability

and measurement invariance, because several properties can be evaluated at both the

individual level and the cluster level, as well as across levels. For example, cross-level

invariance implies equal factor loadings across levels, which is needed to give latent

variables at the two levels a similar interpretation. Reliability at a specific level refers

to the ratio of true score variance over total variance at that level. This paper aims to

shine light on the relation between reliability, cross-level invariance, and strong factorial

invariance across clusters in multilevel data. Specifically, we will illustrate how strong

factorial invariance across clusters implies cross-level invariance and perfect reliability at

the between level in multilevel factor models.

Keywords: measurement invariance, multilevel structural equation modeling, multilevel confirmatory factor

analysis, cross-level invariance, multilevel reliability

INTRODUCTION

Multilevel data are data with a clustered structure, for instance data of children clustered in
classrooms, or data of employees clustered in teams. Taking data of children in classes as an
example, we can distinguish two levels in the data: we denote the child level the “within level”,
and the class level the “between level”. Children in the same class share class-level characteristics,
such as the teacher, classroom composition, and class size. Such class-level characteristics may
affect child-level variables, leading to structural differences between the responses of children from
different classes. With multilevel structural equation modeling (multilevel SEM), such differences
are accommodated by specifying models (such as factor models) at the different levels of multilevel
data. Multilevel SEM is increasingly applied in various fields such as psychology and education.

Researchers commonly interpret standardized parameter estimates, which may lead to
interpretational difficulties in multilevel models. The most common standardized solution
in multilevel factor models is the level-specific standardization (Hox, 2010). This type of
standardization involves standardizing the within-level parameter estimates with respect to the
within-level variance, and standardizing the between-level parameter estimates with respect to
the between-level variance. In this standardization, it is common to find very high correlations
among between-level factors, and to find standardized factor loadings that are (almost) one at
the between level (e.g., Hanges and Dickson, 2006; Bakker et al., 2015). The reason that these
findings are common is that residual variance at the between level is often (close to) zero (Hox,
2010), leading to relatively high standardized between-level factor loadings. At the same time, the
unstandardized between-level factor loadings may not differ from the factor loadings at the within
level. However, researchers tend to interpret the larger standardized parameter estimates at the
between level as if the construct meaning is very different across the two levels of the analyses.
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For example, Whitton and Fletcher (2014) found larger
standardized between-level factor loadings than within-level
factor loadings, and concluded that the measured construct
is a “group-level construct,” and that future research should
emphasize interpretation at the group level rather than on the
individual level. However, in the same article they reported the
intraclass correlations for the subscales, showing that only 38% of
the variance was at the between level, while 62% of the variance
was at the individual level.

The current article explains and illustrates that neither the
(near) absence of residual variance at the between level (with
consequently high standardized factor loadings at the between
level) nor very high reliability at the between level should be
interpreted as different factors operating at the within and
between level. In the next three paragraphs we briefly introduce
the three concepts of measurement invariance across groups
(or clusters), invariance across levels in multilevel SEM, and
reliability in multilevel SEM. The goal of this article is to
illuminate the relations between these three issues. Therefore,
in section Relations between the three concepts we discuss each
combination of concepts, and in section Example we provide
illustrations with real data from students nested within schools.

Measurement Invariance Across Groups
Testing for measurement invariance is important to evaluate
whether items measure the same attributes for different (groups
of) respondents (Mellenbergh, 1989; Meredith, 1993). For
example, if the items in a mathematical ability test measures the
same attribute in boys and girls, then boys and girls with equal
mathematical ability should, on average, have identical observed
scores. That is, mean differences in observed scores should reflect
mean differences in the true mathematical ability scores. If this is
not the case, there is measurement bias. For example, given equal
mathematical ability, a specific itemwith a wordedmath problem
may be easier to solve for girls, because girls are generally better
in reading than boys (Wei et al., 2012). For that reason, given
equal levels of mathematical ability, girls might havemore correct
answers on this item than boys would. The item is therefore
biased with respect to gender.

Structural equation modeling (SEM) with latent variables
provides a flexible method to test for measurement invariance.
When measurement invariance is tested with respect to a
grouping variable (e.g., boys vs. girls), we can use multigroup
factor analysis (MGFA) with structured means (Sörbom,
1974). In the multigroup method, specific manifestations
of measurement bias can be investigated by testing across-
group constraints on intercepts and factor loadings. Adequate
comparisons of factor means across groups are possible if
strong factorial invariance across groups holds (Meredith, 1993;
Widaman and Reise, 1997). Strong factorial invariance across
groups comprises equality of factor loadings and intercepts
across groups. The model for the observed variables’ means and
covariances in group j under strong factorial invariance across
groups will therefore be:

µj = ν + 3κ j, and (1)

6j = 38j3
′
+ 2j, (2)

where µj and 6j represent respectively the mean vector and
covariance matrix of the observed variables in group j, κj and 8j

represent respectively the vector of common factor means and
the covariance matrix of the common factors in group j, 2j is
the matrix with residual (co)variances of observed variables in
group j, ν is a vector of intercepts [interpretable as the means of
the residual factors, Meredith and Teresi (2006)] that is invariant
across groups, and 3 is a matrix with factor loadings (regression
coefficients relating the common factor to the factor indicators)
that is also invariant across groups. These equations show that if
strong factorial invariance holds, differences in observed means
across groups (µj), are a function of differences in factor means
across groups (κj), because nothing else on the righthand side of
Equation (1) varies across groups. Also, note that the matrix with
factor loadings is part of the model for the means as well as the
model for the covariances. In order to provide scale and origin to
the common factors, factor means and variances have to be fixed
to some value in one reference group (commonly 0 for the factor
means and 1 for the factor variances), and can be freely estimated
in all other groups.

If the intercepts differ across groups, but the factor loadings
are invariant, then strong factorial invariance is rejected, but
weak factorial invariance holds. Group differences in intercepts
are called “uniform bias” and differences in factor loadings are
called “non-uniform bias” (Millsap and Everson, 1993).

Invariance Across Levels in Two-Level SEM
Multilevel SEM is a useful statistical technique to analyze data
from many different groups, such as data from children in
different school classes. Multilevel SEM then allows researchers
to separate the levels of analysis (Muthén, 1990; Rabe-Hesketh
et al., 2004). For example, one could evaluate differences
in the students’ average mathematical ability across different
school classes (called the between level) and separately evaluate
differences in students’ relative mathematical ability within their
class (called the within level). In two-level SEM, the vector of
continuous response variables yij, is split into a vector of cluster
means (µj), and a vector of individual deviations from the
respective cluster means (ηij = yij − µj):

yij = µj + ηij. (3)

It is assumed that µj and ηij are independent. The covariances of
yij (6TOTAL) can be written as the sum of the covariances of µj

(6BETWEEN) and the covariances of ηij (6WITHIN):

6TOTAL = 6BETWEEN + 6WITHIN (4)

The within-level and between-level covariances are modeled
simultaneously but independently (unless across-level
constraints are applied). For example, we may consider a
two-level factor model for p observed variables and k common
factors at each level:

6BETWEEN = 3BETWEEN8BETWEEN3′

BETWEEN + 2BETWEEN,

6WITHIN = 3WITHIN8WITHIN3′

WITHIN + 2WITHIN, (5)
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where 8BETWEEN and 8WITHIN are k × k covariance matrices of
common factors, 2BETWEEN and 2WITHIN are p × p (typically
diagonal) matrices with residual (co)variances, and 3BETWEEN

and 3WITHIN are p × k matrices with factor loadings at the
between and within level, respectively.

In principle, the factor structures at the two levels can be
completely different. However, in many situations the results
are hard to interpret without assuming some constraints across
levels. Stapleton et al. (2016) provide a nice overview of types of
constructs inmultilevel models. They showed that if the between-
level construct represents the aggregate of the characteristics
of individuals within the clusters, cross-level constraints are
required. Specifically, to correctly model such constructs, the
same factor structure has to apply to both levels, and factor
loadings should be equal across levels. In cross-cultural research,
equality of factor loadings across levels is called isomorphism
(Tay et al., 2014). Across-level invariance ensures that the factors
at different levels can be interpreted as the within-level and
between-level components of the same latent variable (van de
Vijver and Poortinga, 2002). This decomposition also allows
for free estimation of the factor variance at the between level,
and consequently for the calculation of the factor intraclass
correlation (Mehta and Neale, 2005), representing the percentage
of factor variance at the between level.

Reliability in Multilevel Factor Models
Lord and Novick (1968) defined reliability as the squared
correlation between true and observed scores. An alternative (but
mathematically equivalent) definition of reliability is that it is
the ratio of the true score variance over the total variance (e.g.,
McDonald, 1999). The “true score variance” in this definition
points to the part of the total score variance that is free from
random error. Assuming that one has access to the true score
variance, the reliability is:

Var(T)

Var (T) + Var(E)
(6)

where Var(T) is the true score variance, and Var(E) is
measurement error variance.

In factor models, the common factor variance is used as
an estimate of the true score variance. The remaining variance
in an indicator stems from a residual factor (δ) that consists
of two components: a reliable component, s, which is a stable
component over persons, but not shared with other indicators;
and a truly random component, e (Bollen, 1989). One difference
between the concept of reliability in classical test theory (CTT)
and the concept of reliability in the factor modeling framework
is that in CTT, the variance of the stable component s is
part of the reliable variance (included in the nominator in
Equation 6), whereas in the factor analysis framework it is
considered an unreliable part (only included in the denominator
in Equation 6)1.

1The specific variance of a measure is typically not known. In a factor model,

specific variance is part of the residual variance and really only included in the

denominator of Equation (6). In CTT-measures of reliability however, the specific

variance may only partly be included in the numerator. See Bollen (1989, p. 219)

for a discussion.

The common factor therefore represents the reliable common
parts of the indicators. In the SEMdefinition of reliability (Bollen,
1989, p. 221), the regressions of the indicator variables on the
common factors represent the systematic components of the
indicators, and all else represents error. The reliability of a single
indicator can therefore be evaluated based on the size of the
factor loading. Indices that focus on the reliability of scales with
multiple indicators commonly represent some form of the ratio
of common indicator variance over total indicator variance.

Geldhof et al. (2014) provided an overview of reliability
estimation in multilevel factor models. They showed that
level-specific reliability estimates are preferable to single-level
reliability estimates when the variance at the between level
is substantial. Also, they found that estimated between-cluster
composite reliability (ω) was generally more unbiased than
between-cluster alpha (α) and maximal reliability estimates. In
this article we will therefore focus on composite reliability.
Composite reliability in a congeneric factor model is defined as
the ratio of common indicator variance over the total indicator
variance (Werts et al., 1974; Raykov, 1997). Assuming no
covariances between residual factors, and no cross loadings,
composite reliability of a scale with factor variance ϕ, factor
loadings λ1, λ2, ..., λk and residual variances θ1, θ2, ..., θk can be
estimated by:

ω =
(
∑k

i= 1 λi)
2
ϕ

(
∑k

i= 1 λi)
2
ϕ +

∑k
i= 1 θi

(7)

Level-specific composite reliability is estimated by plugging in
the level-specific factor loading and residual variance estimates
into the formula for ω. Cluster-level reliability as estimated with
Equation (7) reflects the degree to which group-level differences
in a researcher’s observed data can be generalized to represent
between-group differences in a construct of interest (Geldhof
et al., 2014).

RELATIONS BETWEEN THE THREE
CONCEPTS

How Invariance between Groups Relates
to between-Level Reliability
Given that in factor analysis the reliable part of the indicator is
the part that reflects the common factor, reliable mean differences
in observed variables between groups would reflect mean
differences in common factors across groups. Lubke et al. (2003)
very nicely explained the relationship between sources of within-
and between-group differences and measurement invariance in
the common factor model. They explicated that measurement
invariance implies between-group differences cannot be due to
other factors than those accounting for within-group differences.

Suppose observed mean differences between groups are due to

entirely different factors than those that account for the individual

differences within a group. The notion of “different factors” as

opposed to “same factors” implies that the relation of observed

variables and underlying factors is different in the model for the

means as compared with the model for the covariances, that is,

the pattern of factor loadings is different for the two parts of the
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model. If the loadings were the same, the factors would have the

same interpretation. In terms of the multigroup model, different

loadings imply that the matrix 3 in Equation (1) differs from the

matrix 3 in Equation (2) (Equation numbers adjusted). However,

this is not the case in the MI (measurement invariance) model.

Mean differences are modeled with the same loadings as the

covariances. Hence, this model is inconsistent with a situation

in which between-group differences are due to entirely different

factors than within-group differences (Lubke et al., 2003, p. 552).

In other words, if measurement invariance holds, then observed
mean differences between groups reflect differences in the means
of common factors across groups. Suppose for example that
one has used several indicators to measure mathematical ability
in boys and girls. Within the group of boys, the mathematical
ability likely differs from boy to boy, leading to differences in
the observed indicators. Similarly, within the group of girls there
will be systematic differences between girls that are caused by
individual differences in mathematical ability. In addition, the
mean mathematical ability may differ between boys and girls.
If measurement invariance holds, all group mean differences
in the observed scores are caused by differences in the mean
mathematical ability across groups. If the differences within and
between groups are due to entirely different factors, or if there
are additional factors besides mathematical ability affecting the
between-group scores, then measurement invariance does not
hold (Lubke et al., 2003). In this case, the measurement of
between-group differences is not reliable, because differences
between groups do not only reflect differences in common factors
across groups.

How Invariance between Groups Relates
to Invariance across Levels
When researchers are interested in differences between large
numbers of groups, it becomes infeasible to conduct multigroup
modeling. In these cases it is sensible to treat group as a
random rather than a fixed variable, and to use multilevel
techniques (Muthén and Asparouhov, 2017). For example, if
a researcher wants to evaluate differences in latent variables
between many countries, one could use a two-level model
in which countries are treated as the clustering variable (Jak,
2017). In this example, the between-level model would represent
country-level mean differences in the variables, and the within-
level model would represent differences in individual deviations
from the respective country means. Jak et al. (2013, 2014)
provided a short overview of how three increasingly restrictive
assumptions across groups/clusters (configural, weak, and strong

factorial invariance) lead to testable restrictions across levels
in a two-level. Specifically, they showed how weak factorial
invariance across groups in a multigroup factor model translates
to equal factor loadings across levels in a two-level factor model
(Equations 9 and 10 in Jak et al., 2013). When strong factorial
invariance holds, in addition to equal factor loadings across
levels, the residual variance at the between level is zero (Equation
11 in Jak et al., 2013). We provide a more detailed and annotated
derivation of these models in Appendix A in Supplementary
Material. The first two columns in Table 1 provide an overview
of restrictions in a multigroup model, and the implications for a
two-level model.

How Invariance Across Levels Relates to
Reliability
In principle, level-specific reliability estimates can be calculated
using the estimates of a two-level factormodel without cross-level
invariance constraints. However, in that case, the interpretation
of the common factor at the two levels is not identical. In practice,
research questions will often be answered using multilevel data
that involves what Stapleton et al. call “configural constructs.”
These are constructs for which the interest is both in the within
and between cluster differences, and the between-level construct
represents the aggregate of the within-level characteristics.
Examples are evaluation of differences in citizenship behavior
within and between countries (Davidov et al., 2016) and the
evaluation of teacher-student relationship quality within and
between school classes (Spilt et al., 2012). These types of models
require cross-level invariance restrictions on the factor loadings.
When using Equation (7) to estimate composite reliability at the
both levels in such amodel, and provided that the two-level factor
model with cross-level invariance fits the data satisfactorily, one
would plug in the same unstandardized factor loadings when
calculating within-level and between-level composite reliability.
However, the factor variances and residual variance likely differ
across levels, leading to different reliability estimates at the two
levels. In the case that cluster invariance holds for all items, all
residual variances at the between level will be zero, leading to
perfect composite reliability at the between level (as indicated
in the last column of Table 1). In practice, it is unlikely to
find cluster invariance for all items, as it is unlikely that strong
factorial invariance across clusters holds for all items. Perfect
composite reliability is therefore expected to be rare in practice.
Often, researchers find partial strong factorial invariance across
groups (Byrne et al., 1989). Similarly, it is quite common to find

TABLE 1 | Comparison of the restrictions in a multigroup model and the implications in a two-level model with different levels of factorial invariance.

Restrictions in multigroup model Implications in two-level model Implications reliability

LEVEL OF FACTORIAL INVARIANCE

Configural pattern(3g) = pattern(3) –

Weak 3g = 3 3WITHIN = 3BETWEEN

Strong 3g = 3, νg = ν 3WITHIN = 3BETWEEN, 2BETWEEN = 0 ωBETWEEN = 1

ν is a p-dimensional vector of intercepts. Subscript g is used for group/cluster.
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TABLE 2 | Model fit of three increasingly restrictive multigroup invariance models on the well-being items.

df χ2 RMSEA [90%CI] CFI BIC

Configural invariance 203 1742.848 0.063 [0.061; 0.066] 0.985 637061.39

Weak factorial invariance 343 3168.430 0.066 [0.064; 0.068] 0.972 636959.90

Strong factorial invariance 455 12471.471 0.118 [0.117; 0.120] 0.882 645041.28

perfect reliability for some of the items at the between level (e.g.,
Bottoni, 2016; Zee et al., 2016).

EXAMPLE

Data
We illustrate the multigroup modeling, two-level modeling,
and multilevel reliability analysis using six items to measure
“emotional well-being” that were included in round 2012 of
the European Social Survey (Huppert et al., 2009; ESS Round
6: European Social Survey, 2014). Three items are positively
formulated, asking how often in the last week a respondent
was happy (WRHPP), enjoyed life (ENJLF), and felt calm and
peaceful (FLTPCFL). The other three items were negatively
phrased, asking how often in the last week a respondent
felt depressed (FLTDP), felt sad (FLTSD), and felt anxious
(FLTANX). The items were scored on a 4-point scale ranging
from 0 (none or almost none of the time) to 3 (all or almost all
of the time). Round 2012 of the ESS included data from 54,673
respondents from 29 countries on these items.

Analysis
All models were fit to the data with Mplus version 7 (Muthén
and Muthén, 1998–2015), using maximum likelihood estimation
(MLR). This estimation method provides a test statistic that is
asymptotically equivalent to the Yuan–Bentler T2 test statistic
(Yuan and Bentler, 2000), and standard errors that are robust for
non-normality. For illustrative purposes, we treat the responses
to the 4-point scale as approximately continuous.

Statistical significance of the χ2 statistic (using α = 0.05)
indicates that exact fit of the model has to be rejected. With
large sample sizes, very small model misspecifications may lead
to rejection of the model. Therefore, we also consider measures
of approximate fit; the root mean square error of approximation
(RMSEA; Steiger and Lind, 1980) and the comparative fit index
(CFI; Bentler, 1990). RMSEA values smaller than 0.05 indicate
close fit, and values smaller than .08 are considered satisfactory
(Browne and Cudeck, 1992). CFI values over 0.95 indicate
reasonably good fit (Hu and Bentler, 1999). In addition, formodel
comparison we evaluate the BIC (Raftery, 1986, 1995), of which
smaller values indicate better fit.

Emotional well-being is an individual-level construct, of
which the aggregated scores at the country level may differ. In
the terminology of Stapleton et al. (2016), this is a configural
construct, which needs cross-level equality constraints on the
factor loadings.

Measurement Model
First, we fitted a two factor model to the well-being items
on the merged dataset of all countries. The fit of this
model was satisfactory, χ2

(8)
= 2633.591, p < 0.05, RMSEA

TABLE 3 | Number of countries with a modification index of the intercept >50 and

>100 per item.

#MI > 50 #MI > 100

WRHPPY 9 4

ENJLF 13 5

FLTPCFL 10 8

FLTDPR 13 7

FLTSD 8 2

FLTANX 18 14

#MI = number of modification indices.

= 0.078, 90% CI [0.075; 0.080], CFI = 0.98. Inspection of
modification indices showed that the modification index of a
cross loading of FLTPCFL on the factor Negative well-being
was around three times larger than the other modification
indices. This item is the only positively phrased item that
refers to feelings, while all negatively phrased items refer to
feelings. Therefore, we decided to add this (negative) cross
loading. The resulting model fitted the data satisfactorily,
χ2
(7)

= 1352.814, RMSEA = 0.059, 90% CI [0.057; 0.062],

CFI = 0.99, and was considered the final measurement
model2.

Multigroup Model
Next we fitted the three multigroup models representing
configural invariance, weak factorial invariance, and strong
factorial invariance to the data of 29 countries, with Albania
as the reference country. The fit results of these three models
can be seen in Table 2. Overall fit of the models with configural
and weak factorial invariance can be considered satisfactory, but
strong factorial invariance does not hold according to all fit
indices. In addition, the model with weak factorial invariance
has the lowest BIC-value. Apparently, at least some intercepts
were not invariant across countries. Rejection of strong factorial
invariance can be caused by relatively large differences in
intercepts across a few countries, relatively small differences in
intercepts across many countries, or a combination of both. In
order to find out which items were most biased, we counted the
number of countries in which each item’s intercept had a high
modification index. Table 3 shows the number of countries for
which specific items were flagged to be biased based on whether
an intercept’s modification index exceeded a threshold of 50 or

2The reported fit measures are obtained from an overall analysis on the merged

dataset while ignoring the dependency of individuals within countries. Using an

analysis with corrected fit statistic (Type = Complex in Mplus) leads to better

model fit and similar conclusions, with χ2
(8)

= 327.979, p < 0.05, RMSEA= 0.027,

90% CI [0.025; 0.030], CFI= 0.99 for the first model, and χ2
(7)

= 212.285, p< 0.05,

RMSEA= 0.023, 90% CI [0.021; 0.026], CFI= 0.99 for the modified (final) model.
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TABLE 4 | Model fit of three increasingly restrictive two-level models on the

well-being items.

df χ2 RMSEA CFI BIC

Two-level CFA 14 516.692 0.026 0.976 641634.92

Cross-level invariance 19 619.519 0.024 0.972 641597.23

Strong factorial invariance 25 6880.934 0.071 0.679 647276.03

TABLE 5 | Modification indices (MIs) and chi-squared differences for releasing

specific residual variances.

free θi

Item MI ∆χ2

WRHPPY 8895.463 661.022

ENJLF 28777.092 1229.299

FLTPCFL 40919.137 1410.159

FLTDPR 36531.309 1380.276

FLTSD 8491.897 641.51

FLTANX 147722.922 2868.184

100. Based on these counts, the item FLTANX seems to be most
biased, and the item FLTSD seems the least biased.

Two-Level Model
We fitted three increasingly restrictive two-level models. The fit
results can be found in Table 4. The first model is a two-level
model specifying the measurement at the within and between
levels without any constraints across levels. The fit of this model
was satisfactory according to the RMSEA and CFI. However,
this model does not allow for a meaningful interpretation of the
factors at the two levels. Next, we constrained the factor loadings
to be equal across levels, and freely estimated the factor variances
at the between level. This model fitted the data significantly
worse, which may be expected given the large sample size, but
lead to a lower BIC-value. The overall fit was still acceptable
according to the RMSEA and CFI.

Constraining the loadings to equality across levels allows
computation of the factor ICC. For positive well-being, the ICC
was 0.06/(1 + 0.06) = 0.057, indicating that 5.7% of the factor
variance was on the country level, and for negative well-being the
ICC was 0.133/(1 + 0.133) = 0.117, indicating that 11.7% of the
factor variance was on the country level.

The model assuming strong factorial invariance, that is, the
model with the between-level residual variances fixed to zero,
fitted the data much worse than the first two models based on
all fit indices, indicating that strong factorial invariance does
not hold across countries. This finding matches the conclusion
from the multigroup analysis. Non-zero residual variance at
the between level shows that there are other factors than well-
being influencing the country level scores on the items. Table 5
shows the modification indices for each item’s residual variance,
and the actual decrease in χ2 when freeing each item’s residual
variances. It is notable that, similar to the analysis of Muthén
and Asparouhov (2017), the modification indices are not a

good approximation of the actual drop in χ2 when freeing the
respective parameter. However, the ordering of the amount of
bias present in each item is identical for the two methods. The
item FLTANX seems to have the most bias, and the item FLTSD
seems to be the least biased. These findingsmatch the results from
the multigroup analysis.

Figure 1 shows the unstandardized and standardized
parameter estimates from the two-level model with cross-level
invariance. It can be seen that although the factor loadings are
constrained across levels, the standardized factor loadings are
different across levels, and they are quite high at the between
level, specifically for the least biased indicators. Assuming the
model is configured correctly (i.e., the same construct operates
at the individual and country levels), the standardized residual
variance at the between level represents the proportion of item
variance at the country level that is not explained by the common
factor(s). These proportions are highest for the items FLTANX
and FLTPCFL, and smallest for the item FLTSD, which again
matches the previous conclusions about which items are most
biased across countries.

Reliability
We used a two factor model with a cross loading as the
measurement model. However, the formula for composite
reliability that we presented (Equation 7) is only suited for
congeneric factor models. Raykov and Shrout (2002) provided
a method to obtain estimates of reliability for composites of
measures with non-congeneric structure. Treating well-being as
a multidimensional construct at each level, composite reliability
for the six items was estimated as 0.77 at the within level, and 0.87
at the between level. As expected, the reliability at the between
level is much higher than at the within level. The indicators
that contribute most to the composite reliability estimates are
the indicators with the largest standardized factor loadings (and
least residual variance). For the positive well-being scale, the
most reliable indicator at the between level is WRHPPY, and
for the negative well-being scale the most reliable indicators are
FLTDPR and FLTSD. These two items are also the items that
came out as least biased in the multigroup analysis, as well as
in the two-level analysis. The item with the lowest between-level
standardized factor loadings is FLTPCFL, which loads on both
the positive and the negative well-being factor. However, for
items that load on multiple common factors, we cannot take the
individual standardized factor loadings as direct indications of
unbiasedness, because it does not take into account the amount
of variance that is explained by the other factor(s).

DISCUSSION

The goal of our paper was to elucidate the relationship between
measurement invariance across clusters, loading invariance
across levels, and reliability in multilevel SEM. We used a real-
data example to illustrate special issues that applied researchers
should consider, which we summarize below. Invariance of
loadings across levels is implied for configural constructs, so
testing equality constraints on loadings across levels constitutes a
test of whether a between-level construct can be interpreted as an
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FIGURE 1 | Unstandardized and standardized parameter estimates from the two-level model with cross-level invariance.

aggregate of its within-level counterpart. Invariance of loadings
across levels is also implied when factor loadings are assumed
to be equal across clusters (i.e., when weak factorial invariance

across clusters holds). Cross-level invariance is a necessary but
not sufficient condition for weak factorial invariance across
clusters. This means that if a construct cannot be regarded as
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configural (i.e., if cross-level invariance does not hold), then
weak factorial invariance across clusters does not hold. But the
reverse does not hold: If a construct is configural, that does not
necessarily imply that weak factorial invariance across clusters
also holds, because non-uniform bias across clusters has also been
found to show up as residual variance at the between level (Jak
et al., 2013). To summarize, equal factor loadings across clusters
imply equal factor loadings across levels (and thus a configural
construct), but not the other way around3.

Equality of intercepts, on the other hand, cannot be
tested across levels because the intercepts apply only to the
observed variables, not separately for within- and between-level
components. The common practice of fixing factor means to zero
for identification of the mean structure makes it easy to show that
within-level intercepts are expected to be zero. This is because
the within-level component (ηij) of yij is partitioned from the
group means (µj), which are the between-level components of
yij. Thus, as shown in the Appendix in Supplementary Material,
the group means of yij are a function of τj because their between-
level components µj are themselves a function of τj. Strong
invariance can, however, be tested across clusters. If intercepts do
not vary across clusters, that implies no between-level residual
variance, so strong invariance across clusters can be tested by
constraining between-level residual variances to zero in a model
with cross-level loading invariance.

Finally, when working with multilevel data, reliability should
be estimated separately for each level of measurement (Geldhof
et al., 2014). When the construct is meant to be interpreted
only at the within or between level, reliability need only be

3Testing equality of factor loadings across clusters in a multilevel framework

requires estimating each loading as a random slope, represented as a Level-2

factor with freely estimated variance. Testing whether a variance equals zero would

constitute a test of invariance of loadings across clusters. This topic is beyond

the scope of our paper but is discussed in Kim et al. (2017) and Muthén and

Asparouhov (2017).

calculated at the level of interest, and a saturated model
should be specified at the other level (Stapleton et al.,
2016). Level-specific reliability can be interpreted for configural
constructs that have analogous interpretations at each level of
measurement. For example, within-level composite reliability is
the proportion of variance between individuals within clusters
(i.e., variability around cluster means) that is accounted for by
individual differences on the within-level construct. Between-
level composite reliability is the proportion of variance in
cluster means that is accounted for by differences in cluster
means of the same construct. Greater between-level than within-
level reliability should not be mistaken for indicating that the
construct has a different meaning at the between level, because
(near) perfect between-level reliability (and therefore nearly zero
between-level residual variance) is necessarily implied by (near)
strong invariance across clusters.

AUTHOR CONTRIBUTIONS

SJ conceptualized and designed the study, SJ selected the example
data and performed the analyses, TJ critically reviewed the
analyses, TJ and SJ drafted the manuscript.

FUNDING

The first author was supported by a grant from The Netherlands
Organization for Scientific Research: NWO-VENI-451-16-001.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fpsyg.
2017.01640/full#supplementary-material

REFERENCES

Bakker, A. B., Sanz-Vergel, A. I., Rodríguez-Mu-oz, A., and Oerlemans, W.

G. (2015). The state version of the recovery experience questionnaire: A

multilevel confirmatory factor analysis. Eur. J. Work Org. Psychol. 24, 350–359.

doi: 10.1080/1359432X.2014.903242

Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychol. Bull.

107, 238–246. doi: 10.1037/0033-2909.107.2.238

Bollen, K. A. (1989). Structural Equations with Latent Variables. Hoboken, NJ:

Wiley.

Bottoni, G. (2016). A multilevel measurement model of social cohesion. Soc. Indic.

Res. doi: 10.1007/s11205-016-1470-7. [Epub ahead of print].

Browne,M.W., and Cudeck, R. (1992). Alternative ways of assessingmodel fit. Soc.

Methods Res. 21, 230–258. doi: 10.1177/0049124192021002005

Byrne, B. M., Shavelson, R. J., and Muthén, B. (1989). Testing for the equivalence

of factor covariance and mean structures: the issue of partial measurement

invariance. Psychol. Bull. 105, 456–466. doi: 10.1037/0033-2909.105.3.456

Davidov, E., Dülmer, H., Cieciuch, J., Kuntz, A., Seddig, D., and Schmidt, P. (2016).

Explaining measurement nonequivalence using multilevel structural equation

modeling the case of attitudes toward citizenship rights. Soc. Methods Res.

doi: 10.1177/0049124116672678. [Epub ahead of print].

ESS Round 6: European Social Survey (2014). ESS-6 2012 Documentation Report.

2.1 Edn. Bergen: European Social Survey Data Archive, Norwegian Social

Science Data Services.

Geldhof, J. G., Preacher, K. J., and Zyphur, M. J. (2014). Reliability estimation in a

multilevel confirmatory factor analysis framework. Psychol. Methods 19, 72–91.

doi: 10.1037/a0032138

Hanges, P. J., and Dickson,M.W. (2006). Agitation over aggregation: clarifying the

development of and the nature of the GLOBE scales. Leadersh. Q. 17, 522–536.

doi: 10.1016/j.leaqua.2006.06.004

Hox, J. J. (2010). Multilevel Analysis: Techniques and Applications, 2nd Edn. New

York, NY: Routledge.

Hu, L., and Bentler, P. M. (1999). Cutoff criteria for fit indices in covariance

structure analysis: conventional versus new alternatives. Struct. Equat. Model.

6, 1–55. doi: 10.1080/10705519909540118

Huppert, F. A., Marks, N., Clark, A., Siegrist, J., Stutzer, A., Vittersø, J., et al. (2009).

Measuring well-being across europe: description of the ESS well-being module

and preliminary findings. Soc. Indicat. Res. 91, 301–315. doi: 10.1007/s11205-00

8-9346-0

Jak, S. (2017). Testing and explaining differences in common and residual

factors across many countries. J. Cross Cult. Psychol. 48, 75–92.

doi: 10.1177/0022022116674599

Jak, S., Oort, F. J., and Dolan, C. V. (2013). A test for cluster bias:

Detecting violations of measurement invariance across clusters in multilevel

data. Struct. Equat. Model. 20, 265–282. doi: 10.1080/10705511.2013.

769392

Jak, S., Oort, F. J., and Dolan, C. V. (2014). Measurement bias in multilevel data.

Struct. Equat. Model. 21, 31–39. doi: 10.1080/10705511.2014.856694

Frontiers in Psychology | www.frontiersin.org 8 October 2017 | Volume 8 | Article 1640

https://www.frontiersin.org/articles/10.3389/fpsyg.2017.01640/full#supplementary-material
https://doi.org/10.1080/1359432X.2014.903242
https://doi.org/10.1037/0033-2909.107.2.238
https://doi.org/10.1007/s11205-016-1470-7
https://doi.org/10.1177/0049124192021002005
https://doi.org/10.1037/0033-2909.105.3.456
https://doi.org/10.1177/0049124116672678
https://doi.org/10.1037/a0032138
https://doi.org/10.1016/j.leaqua.2006.06.004
https://doi.org/10.1080/10705519909540118
https://doi.org/10.1007/s11205-008-9346-0
https://doi.org/10.1177/0022022116674599
https://doi.org/10.1080/10705511.2013.769392
https://doi.org/10.1080/10705511.2014.856694
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Jak and Jorgensen Multilevel Measurement Invariance and Reliability

Kim, E. S., Cao, C., Wang, Y., and Nguyen, D. T. (2017). Measurement invariance

testing with many groups: a comparison of five approaches. Struct. Equat.

Model. 24, 524–544. doi: 10.1080/10705511.2017.1304822

Lord, F. M., and Novick, M. R. (1968). Statistical Theories of Mental Test Scores.

Reading, MA: Addison-Welsley Publishing Company.

Lubke, G. H., Dolan, C. V., Kelderman, H., and Mellenbergh, G. J. (2003). On

the relationship between sources of within-and between-group differences and

measurement invariance in the common factor model. Intelligence 31, 543–566.

doi: 10.1016/S0160-2896(03)00051-5

McDonald, R. P. (1999). Test Theory: A Unified Treatment. Mahwah, NJ: Erlbaum.

Mehta, P. D., and Neale, M. C. (2005). People are variables too:

multilevel structural equations modeling. Psychol. Methods 10, 259–284.

doi: 10.1037/1082-989X.10.3.259

Mellenbergh, G. J. (1989). Item bias and item response theory. Int. J. Educ. Stat. 13,

127–143. doi: 10.1016/0883-0355(89)90002-5

Meredith, W. (1993). Measurement invariance, factor analysis, and factorial

invariance. Psychometrika 58, 525–543. doi: 10.1007/BF02294825

Meredith, W., and Teresi, J. A. (2006). An essay on measurement and factorial

invariance.Med. Care 44, S69–S77. doi: 10.1097/01.mlr.0000245438.73837.89

Millsap, R. E., and Everson, H. T. (1993). Methodology review: statistical

approaches for assessing measurement bias. Appl. Psychol. Meas. 17, 297–334.

doi: 10.1177/014662169301700401

Muthén, B. (1990). Mean and Covariance Structure Analysis of Hierarchical Data

(UCLA Statistics Series No. 62). Los Angeles, CA: University of California, Los

Angeles.

Muthén, B., and Asparouhov, T. (2017). Recent methods for the study of

measurement invariance withmany groups: alignment and random effects. Soc.

Methods Res. doi: 10.1177/0049124117701488

Muthén, L. K., and Muthén, B. O. (1998–2015). Mplus User’s Guide, 7th Edn. Los

Angeles, CA: Muthén and Muthén.

Rabe-Hesketh, S., Skrondal, A., and Pickles, A. (2004). Generalized

multilevel structural equation modeling. Psychometrika 69, 167–190.

doi: 10.1007/BF02295939

Raftery, A. E. (1986). Choosing models for cross-classification. Am. Sociol. Rev. 51,

145–146. doi: 10.2307/2095483

Raftery, A. E. (1995). Bayesian model selection in social research. Sociol. Methodol.

25, 111–163. doi: 10.2307/271063

Raykov, T. (1997). Estimation of composite reliability for congeneric measures.

Appl. Psychol. Meas. 21, 173–184. doi: 10.1177/01466216970212006

Raykov, T., and Shrout, P. E. (2002). Reliability of scales with general structure:

point and interval estimation using a structural equation modeling approach.

Struct. Equat. Model. 9, 195–212. doi: 10.1207/S15328007SEM0902_3

Sörbom, D. (1974). A general method for studying differences in factor means

and factor structures between groups. Br. J. Math. Stat. Psychol. 27, 229–239.

doi: 10.1111/j.2044-8317.1974.tb00543.x

Spilt, J. L., Koomen, H.M., and Jak, S. (2012). Are boys better offwithmale and girls

with female teachers? A multilevel investigation of measurement invariance

and gender match in teacher–student relationship quality. J. School Psychol. 50,

363–378. doi: 10.1016/j.jsp.2011.12.002

Stapleton, L. M., Yang, J. S., and Hancock, G. R. (2016). Construct

meaning in multilevel settings. J. Educ. Behav. Statist. 41, 481–520.

doi: 10.3102/1076998616646200

Steiger, J. H., and Lind, J. C. (1980). “Statistically based tests for the number of

common factors,” in Paper Presented at the Annual Meeting of the Psychometric

Society, Vol. 758 (Iowa City, IA).

Tay, L., Woo, S. E., and Vermunt, J. K. (2014). A conceptual and methodological

framework for psychometric isomorphism validation of multilevel construct

measures. Org. Res. Methods 17, 77–106. doi: 10.1177/1094428113517008

van de Vijver, F. J. R., and Poortinga, Y. H. (2002). Structural

equivalence in multilevel research. J. Cross Cult. Psychol. 33, 141–156.

doi: 10.1177/0022022102033002002

Wei, W., Lu, H., Zhao, H., Chen, C., Dong, Q., and Zhou, X. (2012).

Gender differences in children’s arithmetic performance are accounted

for by gender differences in language abilities. Psychol. Sci. 23, 320–330.

doi: 10.1177/0956797611427168

Werts, C. E., Linn, R. L., and Jöreskog, K. G. (1974). Intraclass reliability

estimates: testing structural assumptions. Educ. Psychol. Meas. 34, 25–33.

doi: 10.1177/001316447403400104

Whitton, S. M., and Fletcher, R. B. (2014). The group environment questionnaire:

a multilevel confirmatory factor analysis. Small Group Res. 45, 68–88.

doi: 10.1177/1046496413511121

Widaman, K. F., and Reise, S. P. (1997). “Exploring the measurement

invariance of psychological instruments: applications in the substance use

domain,” in The Science of Prevention: Methodological Advances from

Alcohol and Substance Abuse Research, eds K. J. Bryant, M. Windle,

and S. G. West (Washington, DC: American Psychological Association),

281–324.

Yuan, K. H., and Bentler, P. M. (2000). Three likelihood-based methods for

mean and covariance structure analysis with nonnormal missing data. Sociol.

Methodol. 30, 165–200. doi: 10.1111/0081-1750.00078

Zee, M., Koomen, H. M., Jellesma, F. C., Geerlings, J., and de Jong, P. F. (2016).

Inter-and intra-individual differences in teachers’ self-efficacy: a multilevel

factor exploration. J. Sch. Psychol. 55, 39–56. doi: 10.1016/j.jsp.2015.12.003

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2017 Jak and Jorgensen. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) or licensor are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Psychology | www.frontiersin.org 9 October 2017 | Volume 8 | Article 1640

https://doi.org/10.1080/10705511.2017.1304822
https://doi.org/10.1016/S0160-2896(03)00051-5
https://doi.org/10.1037/1082-989X.10.3.259
https://doi.org/10.1016/0883-0355(89)90002-5
https://doi.org/10.1007/BF02294825
https://doi.org/10.1097/01.mlr.0000245438.73837.89
https://doi.org/10.1177/014662169301700401
https://doi.org/10.1177/0049124117701488
https://doi.org/10.1007/BF02295939
https://doi.org/10.2307/2095483
https://doi.org/10.2307/271063
https://doi.org/10.1177/01466216970212006
https://doi.org/10.1207/S15328007SEM0902_3
https://doi.org/10.1111/j.2044-8317.1974.tb00543.x
https://doi.org/10.1016/j.jsp.2011.12.002
https://doi.org/10.3102/1076998616646200
https://doi.org/10.1177/1094428113517008
https://doi.org/10.1177/0022022102033002002
https://doi.org/10.1177/0956797611427168
https://doi.org/10.1177/001316447403400104
https://doi.org/10.1177/1046496413511121
https://doi.org/10.1111/0081-1750.00078
https://doi.org/10.1016/j.jsp.2015.12.003
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles

	Relating Measurement Invariance, Cross-Level Invariance, and Multilevel Reliability
	Introduction
	Measurement Invariance Across Groups
	Invariance Across Levels in Two-Level SEM
	Reliability in Multilevel Factor Models

	Relations between the Three Concepts
	How Invariance between Groups Relates to between-Level Reliability
	How Invariance between Groups Relates to Invariance across Levels
	How Invariance Across Levels Relates to Reliability

	Example
	Data
	Analysis
	Measurement Model
	Multigroup Model
	Two-Level Model
	Reliability

	Discussion
	Author Contributions
	Funding
	Supplementary Material
	References


