
 International Journal of 

Molecular Sciences

Review

The Roles of Calmodulin and CaMKII in Cx36 Plasticity

Georg R. Zoidl 1,* and David C. Spray 2

����������
�������

Citation: Zoidl, G.R.; Spray, D.C. The

Roles of Calmodulin and CaMKII in

Cx36 Plasticity. Int. J. Mol. Sci. 2021,

22, 4473. https://doi.org/10.3390/

ijms22094473

Academic Editor: Camillo Peracchia

Received: 29 March 2021

Accepted: 20 April 2021

Published: 25 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Biology & Center for Vision Research (CVR), York University, Toronto, ON M3J 1P3, Canada
2 Dominick P. Purpura Department of Neuroscience & Department of Medicine (Cardiology), Albert Einstein

College of Medicine, New York, NY 10461, USA; david.spray@einsteinmed.org
* Correspondence: gzoidl@yorku.ca

Abstract: Anatomical and electrophysiological evidence that gap junctions and electrical coupling oc-
cur between neurons was initially confined to invertebrates and nonmammals and was thought to be
a primitive form of synaptic transmission. More recent studies revealed that electrical communication
is common in the mammalian central nervous system (CNS), often coexisting with chemical synaptic
transmission. The subsequent progress indicated that electrical synapses formed by the gap junction
protein connexin-36 (Cx36) and its paralogs in nonmammals constitute vital elements in mammalian
and fish synaptic circuitry. They govern the collective activity of ensembles of coupled neurons,
and Cx36 gap junctions endow them with enormous adaptive plasticity, like that seen at chemical
synapses. Moreover, they orchestrate the synchronized neuronal network activity and rhythmic
oscillations that underlie the fundamental integrative processes, such as memory and learning. Here,
we review the available mechanistic evidence and models that argue for the essential roles of calcium,
calmodulin, and the Ca2+/calmodulin-dependent protein kinase II in integrating calcium signals to
modulate the strength of electrical synapses through interactions with the gap junction protein Cx36.
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1. Introduction

The transmission of signals from one neuron to another is primarily via the release of
chemicals from the upstream neuron that activates receptors on the downstream neuron.
From electron micrographs of close appositions between pre- and postsynaptic elements of
the fish brain, JD Robertson proposed the existence of electrical transmission [1], which
was demonstrated through electrophysiology recordings (for review, see [2]). Although it
was generally believed that so-called electrical or electrotonic synapses were restricted to
invertebrates and lower vertebrate nervous systems, it is now clear that they are present
in higher mammals, where they are often found in association with chemical synapses
(forming “mixed synapses”) and play essential roles in synchronizing inhibitory interneu-
rons, among other functions [3,4]. The molecular identity of the electrical synaptic protein
was initially provided from cDNA libraries of skate retina, which predicted a 35-kDa
protein that was named, by convention, Cx35 [5]. Two years later, using the inferior
olive as the source material, a new rodent connexin was cloned and subsequently called
connexin-36 (Cx36) [6]; this protein had 95% sequence identity to skate Cx35. Condorelli
et al. demonstrated a strong mRNA expression in neurons of the inferior olive, the ol-
factory bulb, the CA3/CA4 hippocampal subfields, brainstem nuclei of a rat brain, and
in the retinal ganglion cell and inner nuclear layers. It was the first connexin found as
predominantly expressed in mammalian neurons, and the only other tissue in which it
is abundant is the endocrine pancreas [7]. The identification of rat Cx36 rapidly led to
the cloning of other mammalian isoforms of Cx36 [8], of a group of related connexins in
fish [9,10] and in other vertebrates [11]. Following an initial characterization, it became
apparent that Cx36/35 constitutes a novel delta subgroup of connexins. As was predicted
by Condorelli et al., molecular cloning of the primary neuronal connexin has enabled the
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study of its role in the physiology and the pathology of the mammalian brain. In this
review, we examine the knowledge gains made in the last few decades. Specifically, we
will focus on the emerging role of Cx36 and the crucial interaction with calcium-activated
calmodulin (CaM) and calmodulin-dependent protein kinase II (CaMKII) partners in the
plasticity of electrical synapses.

2. Gap Junction Proteins Forming Electrical Synapses between Neurons and Their
Interactions with Other Proteins

The initial characterization of mammalian and teleost Cx36/Cx35 genes showed that
the coding sequence is highly conserved. As shown in the amino acid sequence alignment
(Supplementary Figure S1), human Cx36 has 98% identity at the protein level with the
mouse and rat Cx36 and about 70–80% with the ortholog perch, skate, and the zebrafish
Cx35b proteins [5,9,10]. The gene structure of mammalian Cx36 was somewhat unusual for
connexins; the protein-coding region is interrupted by a single intron of variable length,
separating the coding region 71 bp after the translation initiation site. Where there is a
single Cx36 protein in mammals, genome duplications in the teleost lineage give rise to
multiple paralogs in the zebrafish [12,13]. Each ortholog is presented by two coding exons
in all vertebrates, with separating introns of variable lengths (Figure 1).
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During development, rodent Cx36 is dynamically expressed over the course of em-
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expression is dramatically reduced during postnatal maturation but remains enriched in 
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Figure 1. Organization of the exon–intron structure of Cx35/36 orthologs. Examples of the variable length of Cx35/36
exons (Ex) and introns. The relative position of the protein-coding regions is indicated in light blue. Abbreviations: UTR,
untranslated region: hCX36/GJD2, mCx36/Gjd2, and drCx35b/gjd2b. Data source (ENSEMBL releases GRCh38.p13 (human),
GRCm39 (mouse), and GRCz11 (zebrafish)).

Mammalian Cx36 and relatives are expressed in neurons and cells of ectodermic origin,
such as pancreatic beta-cells [7], microglia cells [14], and chromaffin cells [15]. Although the
Cx36 regulatory sequences are not well-characterized, the presence of neuron-restrictive
silencer elements (NRSE) in the DNA sequence elements of the mammalian and zebrafish
promoter region upstream of the coding region has been taken as a reason to explain
why Cx36 is specifically expressed in neurons and in pancreatic beta-cells. NRSEs bind
NRSF/REST-silencing transcription factors, thereby repressing the transcriptional activity
of neural genes in non-neuronal cells. Cx36 gene expression in insulin-producing beta-cell
lines is strictly controlled by the transcriptional repressor NRSF/REST [15].

During development, rodent Cx36 is dynamically expressed over the course of em-
bryonic neurogenesis (for reference, see Supplementary Table S1). Cx36 localizes to the
ventricular zone (VZ) during the first wave of neurogenesis [16]. After birth, the Cx36
expression is dramatically reduced during postnatal maturation but remains enriched in
subsets of principal neurons and interneurons in the inferior olive, hippocampus, olfactory
bulb, cerebellum, and thalamus and is sparsely expressed in the cortex. While reports on
Cx36 mRNA expression in rodents’ embryonic brains are detailed, only one study has a
reported Cx35 expression in embryonic and larval zebrafish [17]. The authors described
Cx35 immunoreactivity in the developing brain using a monoclonal antibody raised against
perch Cx35. In whole-mount larval zebrafish, from 1 to 15 dpf Cx35, immunoreactivity was
detected in the developing cerebellum, olfactory bulb, habenula, or the hindbrain.

In the adult mammalian nervous system, the distribution of Cx36 mRNA examined
by in situ hybridization was most intense in the inferior olivary complex, both in principal
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and accessory nuclei (for reference, see Supplementary Table S2). Moderate labeling was
also observed in several myelencephalic nuclei, in specific cells of the cerebellar cortex, in
a relatively large subpopulation of cells in the cerebral cortex, in the hilus of the dentate
gyrus, and in the strata radiatum and oriens of the hippocampal subfields. Moreover,
labeled cells were revealed in all the lamina of the spinal cord gray matter.

After anti-Cx36 antibodies became available in the early 2000s, rapid advances were
made complementing and supplanting the initial RNA-based data. Work from multiple
groups demonstrated a widespread localization of the Cx36 protein in major divisions of
the nervous system. For example, Cx36 was found in the cerebellar cortex, cerebellum,
hippocampus, thalamus, the spinal cord, and trigeminal and dorsal root ganglia of the
peripheral nervous system [18–24]. Cx36 was also discovered in the neurons of the auto-
nomic nervous system [25–27]. In sensory systems, Cx36 is expressed in the retina [28–30],
olfactory [31,32], and auditory systems [33–36]. Cx36 was found in both the interneu-
rons and excitatory neurons [37]. Advances in high-resolution imaging determined the
localization of Cx36 in axo-axonal, axo-dendritic, and dendrodentric contact sites [38].
In confirmed cases, ionotropic and metabotropic NMDA receptors were found in close
proximity, suggesting a functional relationship in the post-synapse [23]. Cx36 was also
found in presynaptic contacts at mixed synapses of afferent terminals in the spinal cord [39]
or hippocampal mossy fibers [40]. The Nagy group recently identified Cx36 at the axon
initial segments of neurons in the spinal cord, inferior olive, and cerebral cortex [41].

Ultrastructural imaging studies in the 1960s and the 1970s described that gap junctions
are found near electron-dense structures. Sotelo et al. (1974) described in their studies on the
inferior olive of cats a specialized junctional zone that was named an attachment plate [42].
This structure, sometimes called Nexus or electrical synapse density (ESD), resembles the
postsynaptic density found at chemical synapses. Although no comprehensive OMICS
study of the molecular components of ESDs has been reported yet, proteins interacting
with Cx36 have been identified. Broadly, these proteins fall into the following classes:
cytoskeletal/transport (tubulin [43]); anchoring (ZO1 family, AF6, and MUPP1 [44–48]);
or kinases (PKA and CaMKII [49–53]); binding proteins (CaM [54,55]); and proteins that
retrieve Cx36 from the gap junction plaque [56,57]. Although the rich diversity of the
molecules that assemble at electrical synapses parallel the diversity of the proteins involved
in forming pre- and postsynaptic compartments at chemical synapses, the molecular and
functional relationships of these proteins in mixed synaptic communication have yet to be
resolved. In general, the activity of the Cx36 channels appears closely regulated, notably
by posttranslational modifications such as phosphorylation. Protein kinases such as PKA
and CaMKII appear to regulate the gap junction at several levels, including the assembly of
channels in the plasma membrane, connexin turnover, and directly affecting the opening
and closure (“gating”) of the channels. Further, Cx36 subunits bind to auxiliary proteins
that play essential roles in channel localization and activity or form networks in which
these proteins frequently anchor to the cytoskeleton.

The protein complexes at the chemical and electrical synapses share the molecular
machinery involving CaMKII and CaM that achieves functional plasticity [53]. Cx36, CaM,
and CaMKII can all be found in both pre- and postsynaptic compartments, from which
it might be assumed that electrical synapses are functionally symmetrical. However,
the presence of other proteins can lead to an exciting asymmetry across the synapse. For
example, the localization of NMDA receptors, a major source of an activity-dependent influx
of calcium, in postsynaptic compartments suggests that the Cx36 signaling complex in the
CNS neurons is not a simple mirror image across the gap junction plaque. Additionally,
axonal or dendritic transport utilizes distinct mechanisms. Together, there is growing
evidence for functional asymmetry potentially arising from differences in posttranslational
modifications of individual Cx36 proteins [49] by asymmetrically organized signaling
complexes of Cx36-associated proteins found at the ESD [44,47,58], as well as by asymmetric
properties of pre- and postsynaptic membranes (for review, see [59,60]).
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3. Cx36 Interaction with Calmodulin Connects Calcium Signals with Gap
Junction Communication

The importance of calmodulin-regulated gap junction communication has been re-
viewed recently [61–63]. In the nervous system, calcium (Ca2+) is an essential ligand that
binds its primary intracellular receptor calmodulin (CaM) to trigger multiple downstream
processes and pathways in both pre- and postsynaptic compartments. CaM binding to
GST–Cx36 fusion proteins was first demonstrated for mammalian Cx36 and fish orthologs
and involved the C-terminal domains [54,55] (Figure 2a). Recently, a second CaM-binding
site was found in the cytoplasmic loop of the perch Cx35. This site was not analyzed in
detail after showing weak binding characteristics and rapid kinetics in surface plasmon
resonance experiments [64]. The in vitro binding and dissociation kinetics were in the
µM concentration range and Ca2+-dependent. The rapid on and off binding rates implies
that the interaction of Cx36 with CaM may change dynamically in neurons when transient
increases of Ca2+ occur in or near the activated synapses. Siu et al. [54] demonstrated in
Neuro2a cells that Ca2+-loaded CaM binds a site in the carboxy-terminus of Cx36 overlap-
ping with a previously identified CaMKII-binding site [52,53]. This extended the findings
by Burr et al. [55], who argued that the CaM-binding site’s characteristics might confer
sensitivity to the competition with other proteins with higher CaM affinities.

It can be reasoned that local differences in the intracellular calcium concentrations
open up ample possibilities for the spatial and temporal sequestering of interactions
between Cx36 and CaM. This was demonstrated in Neuro2a cells, where Cx36 was able
to bind CaM outside of the gap junction plaque in the ER/Golgi complex [54]. Similarly,
another connexin, Cx32, interacts with CaM before GJs are formed [65]. The binding of
Cx proteins to CaM has diverse functional outcomes. In Neuro2a cells, Siu et al. (2016)
showed that Ca2+-loaded CaM increased the coupling across GJs formed by Cx36 channels.
This outcome is different from other connexins closed after binding [66,67]. The NMR
solution structure demonstrated that CaM binds Cx36 in a compact state with significant
hydrophobic contributions from amino acid W277 at anchor position 1 and V284 at position
8 of Cx36 [54] (Figure 2b). Different functional outcomes of Cx36 binding to CaM were
reported by Aseervatham et al. [64] in Hela cells expressing Cx35, where CaM binding
induced Ca2+-mediated uncoupling. The opposite effect on the coupling is surprising, since
both studies used site-directed mutagenesis and the pharmacological blocking of CaM.
In general, Hela cells and Neuro2a cells are not thought to express significant amounts
of endogenous connexins or form gap junctions. However, coupling in HeLa cells is
documented [68,69], which could confound the interpretation of the results. It stands to be
demonstrated whether the different intracellular environments and degrees of endogenous
gap junction coupling of human cervical carcinoma (Hela) and rodent neuroblastoma
(Neuro2a) cell lines account for the reported opposite outcomes.

The study by Aseervatham et al. [64] further indicated that the CaM-binding motif in
the carboxyterminal domain of Cx35/Cx36 allows for structural flexibility. Aseervatham
et al. reported a 1-5-10-binding motif, which is distinct from the previously reported
1-4-8-11 motif [54]. The differences between the two predicted CaM-binding motifs may
reflect the distinct computational and analytic approaches used in separate studies. Equally
well, the CaM-binding motifs of Cx35/6 could also undergo the rapid structural adaptation
of protein interfaces that adjust the binding properties when local calcium concentrations
are dynamic. In favor of this argument are the rapid structural adaptations of CaM, which
were exploited to develop fast-acting and sensitive biosensors for intracellular calcium
dynamics. Furthermore, the Cx36 carboxyterminal domain structure is predicted to be
intrinsically disordered, like other connexins [67,70,71].

The use of alternative CaM-binding motifs might also prepare Cx36 for different
protein interactions. An example is the interaction of Cx36 with tubulin. The Cx36-
binding motif overlaps with the CaM-binding site but is distinct from those found in
Cx43 [43,72]. The mechanistic details of the trafficking to the gap-junction plaque (GJP)
were demonstrated using a pharmacological and mutational analysis, demonstrating that
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amino acids K279, I280, and K281 were critical. The potentiation of the communication
strength between coupled cells was demonstrated, reinforcing the role of and protein
transport to fine-tuned gap junction communication.
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Figure 2. Structure of the Cx36–CaM-binding motifs. (a) Visualization of the predicted murine
Cx36 structure using Protter software [73]. The CaM-binding regions I and II are indicated in blue.
(b) Protein sequence alignment of the carboxyterminal domains of mammalian and zebrafish (Cx35b).
The sequence homology and the two overlapping CaM-binding motifs described by [54,64] are
highlighted in light green and red. The PKA phosphorylation site in position S293 (pink) is located at
the boundary of the core CaM-binding motif [50].

4. Building a Cx36-CaMKII Interaction Complex

The research summarized in the previous section established Cx36 as a hub binding
Ca2+-loaded CaM, and they identified this interaction as a critical step with implications for
functions preceding the initiation of calcium/calmodulin-dependent kinase II (CaMKII)-
mediated plasticity at electrical synapses. Here, we will demonstrate that the molecular
interaction of Cx36 with CaMKII at electrical synapses has a resemblance to interactions of
CaMKII with NMDA receptors, enabling chemical synaptic potentiation, which is at the core
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of plasticity and learning and memory [74,75]. CaMKII is a dodecameric holoenzyme [76].
CaMKII comprises a family of >25 isoforms that are derived from four genes (α, β, γ, and
δ). The α- and β-subunits are the predominant isoforms in the brain, where they form
holoenzymes that are composed of either one or both subunit types [77]. Each CaMKII
isoform consists of a catalytic domain, an autoinhibitory domain, a variable segment, and
a self-association domain (Figure 3a). The catalytic domain is responsible for the kinase
activity of CaMKII [78,79]. The regulatory domain is required for autophosphorylation
and CaM binding [80]. The association domain forms a hub-like, tetrameric assembly,
composed of two rings of seven protomers each, which are stacked head-to-head and held
together by extensive interfaces [81,82].
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Figure 3. The Cx36–CaMKII-binding complex. (a) The catalytic, regulatory, and accessory domain of CaMKII. The autophos-
phorylation and T-site (top) and the CaM-binding site at the S-site are shown (bottom) in red. T286 and T305/6 indicated
phosphorylation sites in the regulatory domain. The sequence alignments below show conserved amino acids in the T-
and S-sites of Cx36 and CaMKII. (b–e) Model of the activation sequence in which CaMKII is opened by calcium-activated
CaM, followed by the sequential binding and phosphorylation of Cx36 (modified from reference [53]). (c) In step 1, elevated
intracellular Ca2+ activates CaM, and the binding of Ca2+/CaM to the autoinhibitory domains displaces the gate and, in
step 2, allows the CaMKII-binding domain in the cytoplasmic loop of Cx36 (CLB) to interact with the kinase’s target site,
CaMKII. (d) Autophosphorylation at T286 (step 3) (e) enables the kinase to bind to a domain in the carboxyl terminus of
Cx36 (labeled CTB) (step 4). Phosphorylation of the cytoplasmic loop sites follow (dashed blue arrow in (e)), as well as in
the carboxyl terminal domain.
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Central to the ability of CaMKII to generate sustained changes in the postsynaptic efficacy
after stimulation is the interaction of the subunits with the Ca2+/CaM complex. In the “off
state”, CaMKII is inactive, because the enzyme’s autoinhibitory regulatory domain buries
the catalytic region, preventing autoactivation and substrate binding (Figure 3b) [83,84].
Interestingly, both the autoactivation (T-site) and substrate binding (S-site) domains of
CaMKII share sequence homology with sequences in the cytoplasmic loop (CLB) and
carboxyterminal (CTB) domain of Cx36 [53]. The binding of Ca2+/CaM releases CaMKII
from autoinhibition by exposing the T-site and the S-site of the enzyme. This opening
of the CaMKII generates autonomous kinase activity by an intraholoenzyme, causing
intersubunit phosphorylation of the threonine residue at position T286 [79,80,85]. Once
phosphorylated at T286, the regulatory domain with its T- and S-sites can no longer interact
with the catalytic site’s corresponding domains, allowing the catalytic domain to access
and phosphorylate substrates [86]. At this step, sustained autonomous CaMKII activity
is independent of Ca2+/CaM and keeps the kinase active after the initial Ca2+ stimulus
has subsided.

One of the most prominent substrates of CaMKII at postsynaptic sites is the NR2B
subunit of the NMDA receptor. The autophosphorylation-dependent binding of CaMKII
to NR2B locks CaMKII in the active conformation [87,88]. CaMKII binding to the NR2B
protein requires two binding sites [75,89]. Based on similarities of the interaction of the
Cx36 and CaMKII-binding sites with properties of the NR2B subunit, a model was proposed
where the CLB and CTB sites of Cx36 function in a bipartite fashion, like the interaction
of the NR2B subunit with CaMKII [53]. The proposed sequence of events put forward
in Figure 3b–e is based on the autoinhibitory “gate” hypothesis of the regulatory and
catalytic domains of CaMKII. The following sequence of events was predicted. In step 1, the
binding of Ca2+/CaM to the autoinhibitory domains displaces the gate and allows the CLB
domain (step 2) to interact with the kinase’s target site. The phosphorylation of CaMKII
is not required for this initial step. The subsequent autophosphorylation at T286 (step 3)
enables the kinase to interact with the target or substrate proteins and bind Cx36–CTB to
its corresponding substrate recognition motif (step 4). An argument for the subsequential
processing of both Cx36 segments during interactions with the kinase can be made from
the discovery of phosphorylation found at amino acid residues S110 and T111 within
the cytoplasmic loop (CLA) and at S315 of the carboxyl-terminal domain [53]. Based on
the model shown, it is reasonable to speculate that the phosphorylation of S110/T111
is a direct consequence of fully activating CaMKII, even though the exact timing has
not been determined (steps 3 and 4). Although CaMKII does not phosphorylate Cx36 at
position S315 in vitro, this modification is notable. At S315, Cx36 is phosphorylated by
PKA in a position where structural changes after phosphorylation could affect the dynamic
coupling–uncoupling of Cx36 from the interaction complexes. This effect would explain the
antagonistic nature of CaMKII and PKA phosphorylation on Cx36-mediated gap junction
coupling in the cerebellum [49] or the rodent [50] or zebrafish retina [51,90].

Having established that phosphorylation by PKA and CaMKII keeps Cx36 coupling
and uncoupling in a physiological range, the next question arises as to what the role is of
the two CaMKII-binding regions. It has been demonstrated that the binding and extent
of phosphorylation of the Cx36 cytoplasmic domains varied according to the autophos-
phorylated state of CaMKII and, thus, resembled the behavior of fragments of the NR2B
subunits of the NMDA receptor. The autophosphorylation of CaMKII is less effective at
the Cx36–CLB site in terms of binding and phosphorylation. The Cx36–CTB site exhibited
a higher efficacy toward both effects when CaMKII was autophosphorylated. Since CaM
bound to the CT of Cx36 would inhibit the interaction with the substrate-binding site of
the kinase, the several orders of magnitude increase in affinity of CaMKII to Ca2+/CaM after
autophosphorylation of T286 (so-called Ca2+/CaM trapping) (Figure 3e), could explain how
CaM competes with Cx36 for the overlapping CTB-binding motif. It suggests that when
CaM is displaced from the CTB site, Cx36 is released from its inhibitions and able to bind
to CaMKII.
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The initial electrophysiological studies of Cx36 revealed that the gap junction chan-
nels have a remarkably low conductance and are highly insensitive to transjunctional
voltage compared to other connexins [91,92]. These properties optimize transmissions
during significant voltage changes and endow the electrical synapses with the requirement
that substantial changes in the conductance are accompanied by a significant increase or
decrease of the number of open or closed channels. A substantial increase in junctional con-
ductance was recorded between pairs of voltage-clamped cells after the whole-cell mode
was achieved, generally rising about tenfold for ten minutes [52,93] (see Figure 4a–c, black
traces). This phenomenon of adaptive plasticity was coined a “run-up”. It is unique for cell
pairs expressing Cx36 tested in Neuro2a cell cultures [52]. It illustrated the time-dependent
changes in Cx36 junctional conductance (Gj) and was explained as the increased open prob-
ability following altered phosphorylation or transport of Cx36 to the gap junction plaque
(GJP). Experimental ablation of the CLB and CTB-binding regions in Cx36 (Figure 4a,b) [52]
or inhibition of CaMKII was used to test for a weakening of the “run-up” phenomenon
previously described [93]. In these studies, the run-up was virtually absent in mutants
lacking the CaMKII-binding regions. It was proposed that the run-up process involved
CaMKII increasing the channel open time rather than affecting the channel insertion inter-
nalization [52]. The pharmacological blockade of CaMKII using KN-93 and with cognate
peptides applied intracellularly, together with site-directed mutagenesis of the previously
described CaMKII-binding and phosphorylation sites of Cx36, connected the previously
reported direct interaction of CaMKII with its binding sites CLB and CTB, as well as the
CaMKII phosphorylation sites at S110/T111 of Cx36 [53].

The control of Cx36 Gj was not restricted to the interaction with CaMKII. Brown et al. [43]
determined that Cx36 binds to tubulin using a motif overlapping with the afore-described
CaM and CaMKII-binding motifs. Dual patch–clamp recordings demonstrated that pharma-
cological interference of the cytoskeleton abolished Cx36 plasticity (Figure 4c). Mechanistic
details of Cx36 trafficking demonstrated that tubulin-dependent transport potentiates the
synaptic strength by delivering channels to GJPs. The extent to which the microtubule-
mediated delivery in Cx36 accounts for the run-up compared to other stimuli remains to
be determined.

The binding of three calcium-dependent proteins to overlapping domains of Cx36 em-
phasizes that the plasticity of the electrical synapses is controlled at multiple levels and that
local calcium fluctuations are a critical factor in the processes. It also points out that these
interactions involve binding hexametric gap junction channels to the macromolecular com-
plexes formed by the CaMKII holoenzyme or the microtubule superstructure (Figure 4d).
While structural and mechanistic constraints imposed by interactions of these large protein
assemblies remain to be fully resolved, the machinery, protein–protein interactions and
post-translational modifications involved in long-term electrical synapse changes may be
as complex as those at chemical synapses.
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Figure 4. Cx36 interactions with macromolecular protein complexes. (a–c) Dual patch–clamp recordings of Neuro2a cell
pairs expressing Cx36 typically reveal an initial 5–10-fold increase in the junctional conductance (Gj), termed run-up (black
symbols), modified from reference [52]. The extent of the run-up was reduced by the intracellular application of peptides
(100 µM) blocking the CLB (aa175–195) and CTB (aa272–292) sites of Cx36 (curves with red symbols). (c) The intracellular
application of monomeric tubulin (50 µM) reduced the run-up plasticity (blue trace). Modified from reference [43].
(d) Summary of macromolecular interactions between Cx36 and the CaMKII holoenzyme or microtubules. As illustrated
in Figure 3, CaMKII is activated by binding to the Ca2+/CaM complex or following T286 phosphorylation (modified
from reference [85]. Active CaMKII binds to the intracellular CTB domain, a binding target shared with the CaM and
microtubules. Details of the spatiotemporal regulation of how the macromolecular complexes bind are presently unknown;
however, the linkage of Cx36 to microtubules likely facilitates its delivery to [87] the GJP, a function that is lost when
microtubules depolymerize.

As pointed out by reference [64], gap junctions formed by Cx36 that function as elec-
trical synapses within networks of neurons will routinely encounter large fluctuations in
the local cytoplasmic calcium concentration. Presently, we have only started to uncover
the multi-faceted details of how dynamic calcium signaling modulates the functions of
mixed synapses. The complexity of the problem of studying calcium signals separated
in time and space is immense. Postsynaptic dendritic spines are home to >1000 differ-
ent proteins, many of which are calcium-dependent and require demand transport and
activation, such as AMPA/NMDA receptors or Cx36. The molecular composition of presy-
naptic contacts is equally challenging. Sourcing calcium and building often short-term
(ms) to second signals requires mechanisms not fully detailed yet. The elevation of intra-
cellular calcium can arise from multiple sources, such as voltage-gated calcium channels,
AMPA/NMDARs, or the axonal or spine ER. Identifying the relevant spatiotemporal cal-
cium signals that drive Cx36-mediated plasticity will require a new generation of tools that
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combine the sensitivity of genetically encoded biosensors with advanced and dynamic
high-resolution microscopy. The O’Brien group’s recent work is a significant step in the
direction needed [94]. In this work, the investigators demonstrated how changes in the
local Ca2+ signaling regulates plasticity using a GCaMP Ca2+ biosensor fused to Cx36. The
Cx36–GCaMP biosensor robustly reported local Ca2+ increases in response to the addition
of a Ca2+ ionophore with increases in the fluorescence that recovered during washout.
Recovery was strongly dependent on Na+-Ca2+ exchange activity. Cx36–GCaMP revealed
transient and concentration-dependent increases in local Ca2+ after the application of glu-
tamate in cells transfected with NMDA receptor subunits. The mechanism was dependent,
in part, on the CaMKII activity. In summary, Cx36–GCaMP is an effective tool to measure
the changes in the Ca2+ microenvironment around the Cx36 gap junctions. Based on this
framework, it seems reasonable to build a toolbox of customized genetically encoded fluo-
rescent biosensors or FRET sensors to dissect the calcium signaling pathways in the context
of Cx36 microdomains to shed light on the mechanistic details of how electrical synapses
operate. Finally, the recent advances in cryoEM suggest that resolving the structure of
Cx36–CaM or Cx36–CaMKII in its different stages, in similar detail as the recently reported
structures of pannexins and innexins, is a timely objective.

5. Conclusions

Regardless of the lack of a precise understanding of the conformational changes
underlying the events described above, Cx36 might quickly sample CaM, CaMKII, and other
protein-mediating functions such as transport or maintaining the local scaffold. Primed
by local calcium dynamics, CaM may translate the numerous signaling contexts Cx36
encounters throughout the passage from the ER/Golgi complex to the synaptic contacts.
Beyond doubt, the decoding of calcium signals is essential as proteins stimulated by the
calmodulin–calcium complex are protein kinases, phosphatases, or accessory proteins with
multiple functions. How these complex interactions are governed is presently unknown.

Supplementary Materials: The following materials are available online and can be found at https:
//www.mdpi.com/article/10.3390/ijms22094473/s1: Supplementary Figure S1; Supplementary
Table S2: Cx36 mRNA expression during early development of the mouse brain; Supplementary
Table S2: Cx36 mRNA and protein expression in the adult rodent nervous system.
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