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CES2 sustains HNF4a expression to promote
pancreatic adenocarcinoma progression through
an epoxide hydrolase-dependent regulatory loop
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ABSTRACT

Objective: Intra-tumoral expression of the serine hydrolase carboxylesterase 2 (CES2) contributes to the activation of the pro-drug irinotecan in
pancreatic ductal adenocarcinoma (PDAC). Given other potential roles of CES2, we assessed its regulation, downstream effects, and contribution
to tumor development in PDAC.
Methods: Association between the mRNA expression of CES2 in pancreatic tumors and overall survival was assessed using The Cancer Genome
Atlas. Cell viability, clonogenic, and anchorage-independent growth assays as well as an orthotopic mouse model of PDAC were used to evaluate
the biological relevance of CES2 in pancreatic cancer. CES2-driven metabolic changes were determined by untargeted and targeted metabolomic
analyses.
Results: Elevated tumoral CES2 mRNA expression was a statistically significant predictor of poor overall survival in PDAC patients. Knockdown of
CES2 in PDAC cells reduced cell viability, clonogenic capacity, and anchorage-independent growth in vitro and attenuated tumor growth in an
orthotopic mouse model of PDAC. Mechanistically, CES2 was found to promote the catabolism of phospholipids resulting in HNF4a activation
through a soluble epoxide hydrolase (sEH)-dependent pathway. Targeting of CES2 via siRNA or small molecule inhibitors attenuated HNF4a
protein expression and reduced gene expression of classical/progenitor markers and increased basal-like markers. Targeting of the CES2-sEH-
HNF4a axis using small molecule inhibitors of CES2 or sEH reduced cell viability.
Conclusions: We establish a novel regulatory loop between CES2 and HNF4a to sustain the progenitor subtype and promote PDAC progression
and highlight the potential utility of CES2 or sEH inhibitors for the treatment of PDAC as part of non-irinotecan-containing regimens.

� 2021 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. INTRODUCTION

Serine hydrolase carboxylesterase 2 (CES2) is a member of the alpha/
beta fold hydrolase family [1] that is commonly overexpressed in
various malignances [2e5] and plays a crucial role in the metabolism
of endogenous esters, ester-containing drugs, and environmental
toxicants [6]. The intrinsic role of CES2 in regulating lipid metabolism
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has been investigated in diabetes, liver steatosis, and nonalcoholic
fatty liver disease [7e10]. To date, the relevance of CES2 in cancer has
primarily been considered with respect to its functional role in medi-
ating the activation of pro-drugs irinotecan and LY2334737 into their
respective active forms [4,5,11e14], thereby providing a potential
marker for predicting patient response to irinotecan- or LY2334737-
containing regimens [2,5,15,16].
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CES2 expression in tumor cells has been reported to be a prognostic
indicator of poor overall survival in patients with metastatic colorectal
cancer who do not respond to chemotherapy and in patients with
neuroblastoma [3,17]. The mechanism(s) that mediate CES2 upregu-
lation and the role that CES2 plays in cancer progression remain poorly
understood. Here, we aimed to determine the biological role of CES2 in
pancreatic cancer progression. We demonstrate a critical role for CES2
in pancreatic ductal adenocarcinoma (PDAC) progression and establish
the occurrence of a novel regulatory loop of sustained CES2 expres-
sion, wherein CES2 activates its upstream transcriptional regulator
HNF4a through a CES2-soluble epoxide hydrolase (sEH)-dependent
pathway. Our findings further implicate CES2 and sEH as potential
therapeutic targets for PDAC.

2. MATERIALS AND METHODS

Additional information regarding methodologies is provided in the
Supplementary Methods.

2.1. Chemicals
The CES2 inhibitor fenofibrate was purchased from SigmaeAldrich
(Catalog #F6020). Trans-AUCB and GSK2256294, small molecular
inhibitors of soluble epoxide hydrolase, were purchased from Med-
Chemexpress LLC (Catalog #2220) and AOX Medchem LLC (Catalog
#HY-113974), respectively.

2.2. Cell culture, transfection, and viral transduction
Pancreatic cancer cell lines used in this study (BxPC-3 [#CRL-1687),
SW1990 [#CRL-2172], SU.86.86 [#CRL-1837], PANC-1 [#CRL-
1469], Hs 766T [#HTB-134], CFPAC-1 [#CRL-1918], MIA PaCa-2
[#CRM-CRL-1420], AsPC-1 [#CRL-1682], Panc 03.27 [#CRL-2549],
HPAF-II [#CRL-1997], and Capan-2 [#HTB-80]) were purchased from
ATCC and maintained in RPMI-1640 with 10% fetal bovine serum
(FBS). The identity of each cell line was confirmed by DNA finger-
printing via short tandem repeats at the time of mRNA and total protein
lysate preparation using the PowerPlex 1.2 kit (Promega). Finger-
printing results were compared with reference fingerprints maintained
by the primary source of the cell line.
Transient knockdown of CES2 was performed by transfecting the cells
using the following siRNAs: siControl (Silencer Select Negative Control
No. 1, Thermo Fisher Scientific) and siCES2 (s225041, s528; Thermo
Fisher Scientific). Short-hairpin RNAs targeting human CES2 mRNA
and cloned into the pLKO.1-puro vector were obtained from the human
library MISSION� TRC-Hs 1.0 (SigmaeAldrich, TRCN0000046965).
For overexpression, CES2 was cloned into the pLenti-C-Myc-DDK-
IRESPuro (OriGene) vector, and an empty vector was used as a con-
trol. Lentiviral infections were conducted using 293LTV cells (Cell
Biolabs, Inc.).

2.3. Cell proliferation and viability assays
Effects of CES2 knockdown on cellular morphology and proliferation
were assessed by live cell imaging confluency analysis (IncuCyte,
Essen BioScience).

2.4. Soft agar assay for colony formation
Cells were mixed with 0.6% agarose solution (Corning) and seeded at a
density of 1000 cells/well in 12-well plates pre-coated with 1%
agarose. The cells were cultured for two weeks to allow the formation
of colonies. The plates were then fixed and stained with 0.005%
crystal violet solution (Sigma) for 30 min at 37 �C. After washig with
PBS to remove excess staining solution, the plates were imaged with
2 MOLECULAR METABOLISM 56 (2022) 101426 � 2021 The Authors. Published by Elsevier GmbH. T
ChemiDoc scanner (Biorad), and ImageJ software was used to count
the colonies.

2.5. Spheroid assay
Cells were added to the wells of 96-well round bottom ultralow
attachment (ULA) plates (Corning) at a concentration of 500 cells per
well. The microplates were then incubated at 37 �C/5% CO2 for 24 h to
allow the cells to aggregate into spheroids. Bright-field images were
captured every 2 days using the Cytation 3 (Biotek) instrument using a
10x objective. The visual differences were quantified using the cellular
analysis capabilities in the Gen5 software (Biotek).

2.6. Animal studies
Animal experiment protocols were reviewed and approved by The
University of Texas MD Anderson Cancer Center IRB and in accordance
with the Guidelines for the Care and Use of Laboratory Animals pub-
lished by the NIH (Bethesda, MD). Detailed information regarding
patient-derived xenografts (PDXs) is described in a prior publication
[15]. For orthotopic xenograft models of PDAC and in vivo imaging, an
enhanced GFP/firefly luciferase double-expressing cassette FG12 was
introduced into AsPC-1 shCES2 or scramble control cells by lentiviral
infection, as described previously [18]. A total of 5� 105 viable cells in
50 ml of complete growth medium with 50% growth factor-reduced
matrigel were injected into the pancreas of 4- to 6-week-old female
nude mice; five mice were used for each experimental group. The mice
were monitored twice weekly over a period of 5 weeks for in vivo tumor
growth real time using the Xenogeny In Vivo Imaging System (Alameda,
CA). As the mice tumor burden increased, the mice were euthanized
immediately upon becoming moribund, as required by our institutional
animal care guidelines. After each mouse was killed, the tumor was
harvested and processed for routine histological and immunohisto-
chemical analyses.

2.7. Western blot analysis
Cell pellets or tissues were lysed in RIPA buffer. Tumor tissues were
cut into small pieces and homogenized using a Dounce homogenizer in
RIPA buffer. The lysates were then separated by SDS-PAGE and
subjected to Western blotting. The following antibodies were used:
CES2 (Sigma Aldrich, #HPA018897), total HNF4a (Cell Signaling,
#3113), b-actin (SigmaeAldrich, #5316), Lamin A/C (Cell Signaling,
#4777), and GAPDH (Cell Signaling, #5174).

2.8. Gene expression analysis
Total RNA was extracted using the RNeasy Mini Kit (QIAGEN, #74104)
following the manufacturer’s instructions. Reverse transcription of total
RNA into cDNA was performed using the High-Capacity Reverse
Transcriptase Kit (Applied Biosystems, #4368813). The following
probes were used: CES2 (Thermo Fisher Scientific, Hs00187279_m1),
CLDN1 (Thermo Fisher Scientific, Hs00221623_m1), MUC5AC
(Thermo Fisher Scientific, Hs01365616_m1), FOXA2 (Thermo Fisher
Scientific, Hs00232764_m1), HNF1A (Thermo Fisher Scientific,
Hs00167041_m1), HNF4A (Thermo Fisher Scientific, Hs002308
53_m1), KRT5 (Thermo Fisher Scientific, Hs00361185_m1), KRT14
(Thermo Fisher Scientific, Hs00265033_m1), S100A2 (Thermo Fisher
Scientific, Hs00195582_m1), and SIX4 (Thermo Fisher Scientific,
Hs00213614_m1).

2.9. HNF4a activity assay
Cignal� HNF4a (luc) reporter assay kit (Qiagen, #CCS-3039L) was
used to determine the effect of CES2 knockdown or overexpression on
HNF4a activity in PDAC cells according to the manufacturer’s
his is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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instructions. Briefly, w4 � 104 shControl or shCES2 AsPC-1 cells
were seeded onto a 96-well plate and transfected on the following day
with a non-inducible negative firefly luciferase reporter, HNF4a-
responsive firefly luciferase reporter, or a constitutively expressed
positive firefly luciferase reporter in combination with a constitutively
expressed Renilla luciferase reporter. Negative controls were addi-
tionally included. After three days, the cells were washed twice with
PBS, followed by sequential additions of Dual-Glo Luciferase Reagent
and Dual-Glo Stop and Glo Reagent (Promega, Madison WI) to measure
the activity of Firefly and Renilla luciferases, respectively. Lumines-
cence (RLU) of firefly luciferase was normalized with that of Renilla
luciferase; background signal was removed by subtracting the
normalized luminescence (RLU) of negative firefly reporter control.
CES2 activity was measured as described previously [5].

2.10. Gene expression datasets
RNA-seq data and clinical information for 162 pancreatic tumors from
The Cancer Genome Atlas (TCGA) pancreatic cancer dataset was
downloaded from cbioportal (https://www.cbioportal.org/) [19]. Gene
expression for PDAC cell lines was derived from the Broad Institute
Cancer Cell Line Encyclopedia (CCLE) database.

2.11. Mass spectrometry-based analyses
Detailed information regarding mass spectrometry-based analyses is
provided in the Supplementary Methods.

2.12. Untargeted metabolomics analyses
Untargeted metabolomics was conducted on a Waters Acquity� UPLC
system coupled with a Xevo G2-XS quadrupole time-of-flight MS using
standardized operating procedures as described previously [20,21].

2.13. Targeted analyses of oxylipins
Analyses for oxylipins were performed using a Waters ACQUITY i-Class
LC system (Milford, MA) coupled with a Sciex 6500þ QTRAP (Redwood
City, CA) and operated in the multiple reaction monitoring (MRM) mode.
LC-MS/MS methods and parameters for oxylipins are detailed else-
where [22].

2.14. MALDI imaging analyses
MALDI imaging was performed on a Waters MALDI SYNAPT G2-Si with
Matrix-Assisted Laser Desorption Ionization MS as described previ-
ously [23].

2.15. Proteomic analyses
Proteomic analyses of cell line whole cell lysates were performed on a
LTQ-ORBITRAP ELITE mass spectrometer (Thermo Scientific) coupled
with a nanoflow chromatography system (Easy nanoLC 1000, Thermo
Scientific) using a 25 cm separation column (75 mm ID, C18, 3um,
Column Technology Inc) and a Symmetry C18 180 mm � 20 mm trap
column (Waters) as described previously [15].
MS/MS spectra were searched against the Uniprot proteome database
(Human, January 2017) using X!Tandem in the Trans-Proteomic
pipeline (TPP-ver4.8). The mass error allowed was 20 ppm for
parent monoisotopic and 0.5 Da for MS2 fragment monoisotopic ions.
The searched result was filtered with FDR ¼ 0.01.

2.16. Data analysis and statistics
For two-class comparisons, two-sided Student’s t-tests or Wilcoxon
rank-sum tests were used depending on data distribution. For ortho-
topic xenograft models of PDAC, we employed two-way repeated-
measures ANOVA using group (control vs shCES2) and time as the
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variables of interest. Spearman correlation analyses were performed to
evaluate the association between CES2 mRNA expression and lipid
profiles of PDAC cell lines. Log rank statistic-based methods as
described by Contal and O’Quigley [24] were used to determine the
optimal cutoff point for tumoral CES2 mRNA expression for predicting
survival in the TCGA-PDAC transcriptomic dataset [25]. Survival curves
for the TCGA-PDAC transcriptomic dataset were generated using the
KaplaneMeier method and the statistical significance of the difference
in survival was evaluated using the log-rank test. Univariable and
multivariable Cox proportional hazard models were also used to
evaluate the association between tumoral CES2 mRNA
expression > or � the cutoff value and overall survival in the TCGA-
PDAC transcriptomic dataset. Sex, age (stratified by median), and
stage were included as categorical co-variables in multivariable Cox
proportional hazard models. To test for the proportionality of hazard
assumption of a Cox regression test, we utilized the method of Patricia
et al. [26].

3. RESULTS

3.1. CES2 gene expression is associated with poor overall survival
in PDAC
Using Cox proportional hazard models, we evaluated whether CES2
mRNA levels were prognostic of overall survival within the TCGA-PDAC
transcriptomic dataset. In univariable analyses, compared with low
tumor CES2 levels, elevated tumor CES2 mRNA levels were associated
with statistically significantly worse overall survival (hazard ratio: 1.78
(95% CI: 1.10e2.88), two-sided p-value: 0.02); the KaplaneMeier
survival curve is shown in Figure 1.

3.2. Loss of CES2 attenuates PDAC tumor growth
We performed stable knockdown of CES2 in PDAC cell lines CFPAC-1
and AsPC-1 and then assessed the differences in cell viability, clo-
nogenic capacity, and anchorage-independent growth. Loss of CES2 in
AsPC-1 and CFPAC-1 cells markedly reduced proliferation as well as
clonogenic capability and anchorage-independent growth in vitro (two-
sided Student’s t-test p-value < 0.05) (Figure 2AeB). Consistent with
these findings, treatment of AsPC-1 and CFPAC-1 cells with fenofi-
brate, a small molecule inhibitor of CES2 [27], resulted in dose-
dependent reductions in cell viability (Figure 2C).
To test whether CES2 is essential for tumor growth in vivo, we
implanted control or shCES2 AsPC1 PDAC cells labeled with luciferase
into the pancreas of nude mice. Tumor growth, based on tumor size
and luciferase-based bioluminescence imaging, was statistically
significantly attenuated in shCES2-tumor-bearing mice, compared
with controls (two-way repeated measures ANOVA group effect, p-
value < 0.0001) (Figure 2DeE).

3.3. CES2 sustains HNF4a expression through a CES2-soluble
epoxide hydrolase (sEH)-dependent pathway
CES2 is known to play a role in the metabolism of endogenous esters
including cholesteryl esters, triacylglycerols, and other lipid types [7,28].
To elucidate the mechanism(s) by which CES2 promotes PDAC tumor
growth, we compared the lipidome of 11 PDAC cell lines profiled by
liquid chromatography mass spectrometry (LC-MS) with mRNA
expression of CES2. Spearman correlation analyses revealed negative
associations between CES2mRNA levels and several choline-containing
lipid species (Supplementary Fig. S1). We further compared the lipid
profiles of SU.86.86 (CES2 low) and AsPC-1 (CES2 high) PDAC cells
following the overexpression or shRNA-mediated knockdown of CES2.
Overexpression of CES2 in SU.86.86 PDAC cells resulted in reduced
ccess article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 3
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Figure 1: CES2 expression predicts poor prognosis in PDAC patients. KaplaneMeier survival curves depict the relationship between tumoral mRNA expression of
CES2 > or � an optimal cutoff value and overall survival in the TCGA-PDAC transcriptomic dataset. The cutoff value was determined using log rank statistics-based methods (see
Materials and methods). Results of the univariable and multivariable Cox proportional hazard model analyses are provided. For multivariable analyses, age (stratified by median),
sex, and stage were included as co-variables.

Original Article
intracellular levels of choline-containing lipids, whereas knockdown of
CES2 in AsPC-1 resulted in elevations in choline-containing lipid species
(two-sided Student’s t-tests, p < 0.05) (Figure 3AeB). Matrix-assisted
laser desorption/ionization imaging (MALDI) of tumors derived from
PDXs with different levels of CES2 protein expression that were
engrafted subcutaneously into nude mice also revealed high CES2 tumor
4 MOLECULAR METABOLISM 56 (2022) 101426 � 2021 The Authors. Published by Elsevier GmbH. T
expression to be associated with reductions in tumor levels of choline-
containing lysophopholipids (Figure 3C).
CES2-mediated reductions in choline-containing phospholipids were
associated with increased levels of free fatty acids arachidonate (AA)
and docosahexanoate (DHA) (Figure 3D). Free fatty acids, particularly
AA, serve as precursors for a variety of downstream bioactive
his is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 2: Loss of CES2 attenuates PDAC growth in vitro and in vivo. A) Cell confluency of CFPAC-1 and AsPC-1 was checked every 12 h starting 48 h after the cells were
seeded. B) Colony formation in soft agar or anchorage-independent growth in 96-well round bottom ultralow attachment (ULA) plate of CFPAC-1 and AsPC-1 cells. C) Growth of
AsPC1 and CFPAC1 was measured by MTS assay following 96-h treatment with either DMSO or the indicated concentrations of fenofibrate. D) The growth of AsPC-1 cells
expressing high (control) or low (shCES2) level of CES2 in nude mice was monitored every week. The effect of CES2 knockdown in xenograft tumor tissue was confirmed by
immunohistochemistry using a-CES2 antibody. E) Luciferase-based noninvasive bioluminescence imaging of nude mice inoculated with control and shCES2 AsPC-1 cells at day 28
and day 35.
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Figure 3: CES2 promotes the catabolism of choline-containing lipids. A) Volcano plot of individual lipid changes classified by their lipid domain upon CES2 overexpression or
knockdown in SU.86.86 and AsPC-1 cell lines, respectively. The x-axis specifies the fold changes (FC) and the y-axis specifies the negative logarithm to the base 10 of the t-test p-
values relative to the respective control cell line. The black dots represent lipids showing a p-value < 0.05. B) Aggregate area counts for choline-containing phospholipids (left
panel), lysophospholipids (center panel), or sphingomyelins (right panel) following CES2 overexpression (CES2OE) or knockdown (CES2KD) in SU.86.86 and AsPC-1 cell lines,
respectively. Aggregate area counts were based on the sum of individual lipids belonging to the respective lipid class. Abbrev. PC, phosphatidylcholine; LysoPC, lysophospha-
tidylcholine. Significance was determined using the two-sided Student t-test. C) MALDI imaging analysis of lysophosphatidylcholines in PDX tumors with different levels of CES2
expression. The top panels show an H&E image of the analyzed tissues. D) Untargeted metabolomics analysis of the free fatty acids arachidonate and docosahexaenoate levels in
AsPC-1 and SU.86.86 cell lines after CES2 knockdown (shCES2) and overexpression (CES2 overexpression), respectively. Values represent the average metabolite peak area � SD.
E) Schematic of the phosphatidylcholine catabolism pathway.
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markers in CFPAC pancreatic cancer cells following siRNA-mediated knockdown of CES2 or treatment with the CES2 inhibitor fenofibrate. The statistical significance was
determined using two-sided Student t-tests. E) Targeted metabolomics analysis of the dihydroxyeicosatrienoic acid (�)8 (9)-DiHET levels in the conditioned media of AsPC-1 and
SU.86.86 cell lines after CES2 knockdown (shCES2) and overexpression (CES2overexpression), respectively. Values represent area units; p-values were calculated using the two-sided
Student t-test. F) Western blots for HNF4a in nuclear fraction following the sEH inhibitor Trans-AUCB (50 mM) or GSK2256294A (50 mM) treatment for 48 h in CFPAC-1 and AsPC-1
cells. Lamin A/C was used as a loading control for nuclear isolates. G) MTS cell proliferation assay for CFPAC-1 and AsPC-1 cells treated with the sEH inhibitors Trans-AUCB
(50 mM) and GSK2256294A (50 mM). P-values were calculated using the two-sided Student t-test. H) mRNA levels of CES2 and CLDN1 in AsPC-1 cells following treatment
with fenofibrate (20 mM), Trans-AUCB (20 mM), or fenofibrate plus Trans-AUCB (20 mM þ 20 mM) for 48 h. Statistical significance was determined by Dunnet’s multiple
comparison tests and adjusted two-sided p-values reported in comparison with DMSO control. I) MTS cell proliferation assay for AsPC-1 and CFPAC-1 cells following 48 h
treatment with fenofibrate, Trans-AUCB, or the combination of fenofibrate plus Trans-AUCB at the indicated concentration.
enzymatically oxidized lipids (Figure 3E) [29]. Complementary prote-
omic analyses of SU.86.86 and AsPC-1 following the overexpression or
knockdown of CES2 revealed positive associations of CES2 with pro-
tein signatures of elevated lipid hydrolysis, lipid oxidation, and eicos-
anoid metabolism (Supplementary Table S1). To this end, knockdown
of CES2 in AsPC-1 cells was associated with reductions in protein
expression of CYP3A5 and bifunctional epoxide hydrolase 2 (EPHX2,
sEH) (Supplementary Table S1 and Supplementary Figs. S2AeB).
Collectively, our proteomic analyses support our metabolomics
findings.
Essential fatty acids can serve as endogenous, reversible ligands for
HNF4a, which have been shown to be essential for tumor growth
[30,31]. We previously demonstrated that HNF4a is the upstream
transcriptional regulator of CES2 [15]. We next assessed whether CES2
MOLECULAR METABOLISM 56 (2022) 101426 � 2021 The Authors. Published by Elsevier GmbH. This is an open a
www.molecularmetabolism.com
may regulate the activation of HNF4a. Loss of CES2 in AsPC-1 was
associated with statistically significantly reduced HNF4a transcrip-
tional activity as compared with the control (two-sided Student t-test,
p < 0.001) (Figure 4A); siRNA-mediated knockdown of CES2 in AsPC-
1 cells similarly attenuated nuclear protein expression of HNF4a
(Figure 4B) without a change at the mRNA level (Supplementary
Fig. S3A). Treatment of CES2-high AsPC-1 and CFPAC-1 PDAC cell
lines with the CES2 inhibitor fenofibrate attenuated HNF4a protein
levels as well as mRNA levels in a dose-dependent manner (Figure 4C
and Supplementary Fig. S3B), although we acknowledge that the
reduction in HNF4a protein and mRNA levels may be attributed to
alternative mechanisms of fenofibrates [32,33].
HNF4a is a pivotal transcription factor associated with the classical/
progenitor subtypes of pancreatic cancer [34]. Loss of HNF4a, in
ccess article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 7
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addition to GATA6, has been reported to drive PDAC cells to acquire a
basal-like phenotype [34]. Using endogenous CES2-high CFPAC-1
PDAC cells, which exhibit the characteristics of the classical subtype
[35], we performed siRNA-mediated knockdown of CES2 and assessed
the gene expression profiles associated with the classical (MUC5,
FOXA2, HNF1A, and HNF4A) and basal-like subtypes (KRT5, KRT14,
S100A2, and SIX4). Our analyses revealed that loss of CES2 was
associated with a statistically significant (two-sided student t-test
p < 0.05) reduction in MUC5 mRNA expression and increases in
several basal-like markers including KRT5, KRT14, and S100A2
(Figure 4D). Inhibition of CES2 using fenofibrate yielded comparable
findings (Figure 4D). Taken together, the results provided in Figure 4D
suggest a role of CES2 in maintaining the classical subtype of PDAC in
a HNF4a-dependent manner.
Proteomic analyses of SU.86.86 and AsPC-1 following the over-
expression or knockdown of CES2 revealed a positive association of
CES2 with CYP3A5 and EPHX2. Targeted analysis of oxylipins in
conditioned media of SU.86.86 and AsPC-1 cell lines following the
overexpression or knockdown of CES2 identified dihydroxyeicosa-
trienoic acid (�)8 (9)-DiHET, a diol generated from the hydrolysis of
arachidonate-derived 8,9-EET via epoxide hydrolase (EH), to be posi-
tively associated with CES2 expression (Figure 4E). To determine
whether EPHX2 is essential for HNF4a expression, we treated AsPC-1
and CFPAC-1 with the EPHX2 inhibitors Trans-AUCB and GSK
2256294A (GSK) and found that the inhibition of EPHX2 resulted in
dose-dependent reductions in nuclear protein levels of HNF4a with
concomitant loss of cell viability (Figure 4FeG). Of relevance, targeting
of CES2 and/or sEH in AsPC-1 cells with fenofibrate, Trans-AUCB, or
the combination of fenofibrate plus Trans-AUCB resulted in statistically
significant (Dunn’s multiple comparison test adjusted 2-sided
P < 0.05) reductions in mRNA levels of HNF4a and its transcrip-
tional targets CES2 and CLDN1 (Figure 4H and Supplementary
Fig. S3B) [15,36,37]. Moreover, treatment of AsPC-1 and CFPAC-1
PDAC cells with the combination of Trans-AUCB (EPHX2 inhibitor)
and fenofibrate (CES2 inhibitor) yielded improved anticancer effects
compared with either drug alone (Figure 4I).

4. DISCUSSION

We demonstrate here that CES2 is critical for PDAC progression and
that elevated tumoral CES2 mRNA expression is predictive of poor
overall survival. We further establish a novel mechanism by which
PDAC cells sustain elevated CES2 expression through a CES2-sEH-
HNF4a axis to promote PDAC growth (Figure 5). Moreover, we
demonstrate that targeting of the CES2-sEH-HNF4a axis using small-
molecule inhibitors of CES2 or sEH leads to a potent anticancer effect.
We note that while increased tumoral CES2 expression was associated
with poor overall survival in PDAC, no association was found between
HNF4a mRNA expression and survival outcomes. This may be attrib-
uted to our findings that knockdown of CES2 reduced HNF4a protein
levels but not mRNA levels in pancreatic cancer cells.
Our prior study established HNF4a as the upstream transcriptional
regulator of CES2, which is enriched in the progenitor subtype of PDAC
[15]. Aberrant expression of HNF4a is characteristic of several ma-
lignancies and its altered expression is predictive of clinical outcome
[38e41]. The regulation of HNF4a in PDAC is multifaceted, with both
pro- or anti-tumor effects occurring in a context-dependent manner
[40,41]. This paradox is likely to be attributed to the different splice
variants that are generated by transcription from two alternative pro-
moters (P1 and P2) and by two different ‘3’ splicing events that play
discrete physiological roles in development and transcriptional
8 MOLECULAR METABOLISM 56 (2022) 101426 � 2021 The Authors. Published by Elsevier GmbH. T
regulation of target genes [42,43]. In the adult pancreas, the P2
promoter-driven HNF4a is predominantly expressed [44].
Here, we demonstrate that CES2 promotes the catabolism of phos-
pholipids, particularly choline-containing phospholipids, in PDAC,
resulting in the accumulation of free fatty acids that are further
enzymatically oxidized to their downstream lipid diol derivatives. Fatty
acids are established reversible endogenous ligands of HNF4a [30,31],
thereby providing an explanation for the attenuation of HNF4a acti-
vation following knockdown or chemical inhibition of CES2. Interest-
ingly, inhibition of epoxide hydrolase similarly decreased HNF4a
activation, implying the relevance of diols in maintaining activated
HNF4a and establishing the CES2-sEH-HNF4a axis.
HNF4a is a key driver of endodermal differentiation and is associated
with the classical/progenitor subtypes of pancreatic cancer [34,45].
HNF4a is typically absent in normal pancreatic ducts, undifferentiated
or poorly differentiated PDAC, but shows high expression in well-
differentiated PDAC [46]. Loss of HNF4a, in addition to GATA6, has
been reported to drive PDAC cells toward a basal-like phenotype [34].
Silencing of HNF4A due to hypermethylation is well characterized in
poorly differentiated basal-like PDAC [45]. Our findings demonstrate
that loss of CES2 through siRNA-mediated knockdown or small-
molecule inhibition attenuates HNF4a activation, which is met with a
concordant loss in gene expression of classical/progenitor markers
and elevations in basal-like markers. These findings suggest a novel
role of CES2 in maintaining the classical/progenitor subtype of PDAC.
Targeting of CES2 using fenofibrate reduced the cell viability of PDAC
cells in our study. Fenofibrate is an FDA-approved drug used for pa-
tients with hypertriglyceridemia, primary hypercholesterolemia, or
his is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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mixed dyslipidemia [47,48]. Prior studies on other cancer types have
demonstrated the anticancer effects of fenofibrate [49]. Small-
molecule inhibition of sEH via Trans-AUCB similarly reduced PDAC
cell viability, consistent with prior studies on other cancer types [50e
53]. Notably, in our study, the combination of fenofibrate plus trans-
AUCB yielded improved anticancer effects compared with either
treatment alone. CES2 converts irinotecan into its active form, and
CES2 expression levels in pancreatic tumors are predictive of response
to irinotecan-containing therapies including FOLFIRINOX [5,15]. While
outside the scope of the current study, the potential utility of CES2 or
sEH inhibitors for the treatment of PDAC should be evaluated in the
context of non-irinotecan-containing regimens.
In summary, we demonstrate that CES2 is an essential mediator of
PDAC progression and reveal a novel sEH-dependent mechanism by
which CES2 promotes HNF4a protein expression to maintain the
classical/progenitor subtype of PDAC. Importantly, we show that small
molecule inhibition of CES2 or sEH may have relevance for the treat-
ment of PDAC.
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