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BACKGROUND: Alterations in electrocardiographic (ECG) intervals are well-known markers for arrhythmia and sudden cardiac 
death (SCD) risk. While the genetics of arrhythmia syndromes have been studied, relations between electrocardiographic 
intervals and rare genetic variation at a population level are poorly understood.

METHODS: Using a discovery sample of 29 000 individuals with whole-genome sequencing from Trans-Omics in Precision 
Medicine and replication in nearly 100 000 with whole-exome sequencing from the UK Biobank and MyCode, we examined 
associations between low-frequency and rare coding variants with 5 routinely measured electrocardiographic traits (RR, 
P-wave, PR, and QRS intervals and corrected QT interval).

RESULTS: We found that rare variants associated with population-based electrocardiographic intervals identify established 
monogenic SCD genes (KCNQ1, KCNH2, and SCN5A), a controversial monogenic SCD gene (KCNE1), and novel genes 
(PAM and MFGE8) involved in cardiac conduction. Loss-of-function and pathogenic SCN5A variants, carried by 0.1% of 
individuals, were associated with a nearly 6-fold increased odds of the first-degree atrioventricular block (P=8.4×10−5). 
Similar variants in KCNQ1 and KCNH2 (0.2% of individuals) were associated with a 23-fold increased odds of marked 
corrected QT interval prolongation (P=4×10−25), a marker of SCD risk. Incomplete penetrance of such deleterious variation 
was common as over 70% of carriers had normal electrocardiographic intervals.

CONCLUSIONS: Our findings indicate that large-scale high-depth sequence data and electrocardiographic analysis 
identifies monogenic arrhythmia susceptibility genes and rare variants with large effects. Known pathogenic variation in 
conventional arrhythmia and SCD genes exhibited incomplete penetrance and accounted for only a small fraction of marked 
electrocardiographic interval prolongation.
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Nearly 1 in 3 adults will experience an arrhythmia 
and up to 10% will die of sudden cardiac death 
(SCD) during their lifetime.1,2 The ECG is an inex-

pensive, noninvasive, and widely used screening test for 
abnormalities in cardiac conduction. Previous work has 
demonstrated that electrocardiographic intervals are 
quantitative markers for arrhythmias and SCD3–8 and 
have a considerable heritable basis.9

Monogenic mutations underlying many conduction dis-
orders and arrhythmia syndromes, such as the long QT syn-
drome (LQTS),10,11 have been the focus of extensive study 
over the past 2 decades. Typically, these studies have focused 
on sequencing a modest number of affected patients or 
families to identify the causative genes. In contrast, large-
scale genome-wide association studies have identified a 
multitude of loci associated with electrocardiographic traits 
by studying common variants in large study samples com-
prising thousands of individuals.12–15 However, the effect 
of discovered genome-wide association studies variants is 
inherently small and direct implication of any particular gene 
tagged by an identified common variant is difficult.

To date, a missing gap in our understanding of common 
electrocardiographic traits and related diseases has been 
whether rare coding variants have a substantial contribu-
tion to variation at the population level. Rare variants may 
have substantial effect sizes, confer pathogenicity, and 
have a measurable impact on disease risk. Yet, identify-
ing such variants has been technically challenging since 
this analysis requires both the sequencing of large study 
samples and the availability of electrocardiographic data.

To address this challenge, we used a unique resource 
of over 130 000 individuals with whole-exome or 
-genome sequencing, and a rigorous 3-stage design, to 
examine the associations between rare coding genetic 
variation and several routinely collected electrocardio-
graphic traits, including the heart rate, maximum P-wave 
duration, PR interval, QRS duration, and corrected QT 
interval (QTc). We then specifically assessed the fre-
quency, magnitude of association, and penetrance of 
clinically pathogenic variation in select SCD genes that 
are associated with electrocardiographic variation.

METHODS
Detailed methods are provided in the Data Supplement. The 
data that support the findings of this study are available from 

the corresponding author upon reasonable request. There are 
restrictions to the availability of raw Trans-Omics in Precision 
Medicine (TOPMed) and MyCode phenotypic and genotypic 
data due to the identifiable nature of this data. UK Biobank 
raw data are available to researchers via application through 
the UK Biobank website. All TOPMed participants provided 
written informed consent, and participating studies obtained 
ethical approval from their local institutional review boards. 
The UK Biobank resource was approved by the UK Biobank 
Research Ethics Committee, and all participants provided 
written informed consent to participate. Use of UK Biobank 
data was performed under application number 17488 and 
was approved by the local Massachusetts General Brigham 
Institutional Review Board.

RESULTS
An overview of the study design and sample selection 
flow is presented in Figure 1 and Figures I through III 
in the Data Supplement. Characteristics of the included 
studies are displayed in the Table and Tables I through III 
and Figure IV in the Data Supplement.

Once we had aggregated electrocardiographic and 
genetic data for participants in TOPMed, we began by 
performing genome-wide association studies for com-
mon variants related to 5 electrocardiographic traits (Fig-
ure 2A and Table IV in the Data Supplement). As expected, 
we observed associations at 44 previously reported loci 
(Results in the Data Supplement). Cross-trait pleiotropy 
was particularly notable at the SCN5A-10A locus and 
the CAV1 locus, which demonstrated robust associations 
across multiple electrocardiographic traits.

We then performed an analysis of the protein-cod-
ing regions of the genome and identified a low-fre-
quency coding variant in PAM that was associated with 
PR interval duration (p.Ser539Trp, rs78408340_G, 
MAF=0.5%, β=8 ms, P=1.9×10−7, Figure 2B and Table 
V in the Data Supplement). This finding was replicated 
in the UK Biobank (β=2 ms, P=0.01) and in MyCode 
(β=3 ms, P=1.8×10−4). Variants in PAM were also asso-
ciated with PR interval duration in gene-based testing 
in TOPMed (P=4.5×10−7, Figure 3, Table VI in the Data 
Supplement), an association driven by p.Ser539Trp 
(Figure V in the Data Supplement). We did not observe 
consistent associations between rare high-confidence 
loss-of-function (LOF) variants in PAM and PR inter-
val duration across data sets (Results, Tables VII and 
VIII, and Figure VIA in the Data Supplement). Low-
frequency coding variant testing also identified a syn-
onymous variant in MFGE8 (p.Ser52=rs141997845_T, 
MAF=0.1%, β=19 ms, P=4.9×10−8), which was 
associated with marked PR interval prolongation in 
TOPMed (Figure 2B, Results and Table V in the Data 
Supplement). Only one carrier was identified in the UK 
Biobank, who had a first-degree atrioventricular block 
(PR=200 ms). In MyCode, the association was repli-
cated (β=15 ms, P=1.6×10−3).

Nonstandard Abbreviation and Acronyms

LOF loss-of-function
LQTS long QT syndrome
QTc corrected QT interval
SCD sudden cardiac death
TOPMed Trans-Omics in Precision Medicine
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Gene-based testing in TOPMed also identified 3 
genes established as important for cardiac conduction, 
arrhythmias, and SCD (SCN5A [PR interval, P=7.6×10−7], 
KCNQ1 [QTc, P=2.3×10−12], KCNH2 [QTc, P=3.2×10−8], 
Figure 3, Table VI in the Data Supplement). Rare LOF 
variants in SCN5A conferred a 38 ms (P=4.3×10−32, N 
carriers=70) increase in PR interval duration across all 
data sets (Results, Figure VIA, and Tables VII and VIII 
in the Data Supplement). Furthermore, gene-based 
testing highlighted pleiotropy of SCN5A, as rare vari-
ants also associated with prolonged P-wave duration 
and QRS duration (Results and Figure VII in the Data 
Supplement). Similarly, rare LOF variants in KCNQ1 
were associated with marked prolongation of the QTc 
(β=42 ms, P=3.9×10−44, N carriers=78), as were rare 
LOF variants in KCNH2 (β=38 ms, P=8.5×10−12, N car-
riers=21, Results, Figure VIB, and Tables VII and VIII in 
the Data Supplement). In exploratory exome-wide analy-
ses, a number of genes reached significance (Results 
and Table IX in the Data Supplement). Of these genes, 
none reached P<0.05 in replication among UK Biobank 
participants, except for SCN5A (PR interval), PAM (PR 
interval), KCNQ1 (QTc), and KCNH2 (QTc).

In an analysis of 17 genes included on a typical 
clinical sequencing panel for long QT syndrome,16 in 
addition to KCNQ1 and KCNH2, we also identified an 
association between QTc and predicted-deleterious 
variants in KCNE1 in TOPMed (P=1.2×10−4), which 
was replicated in the UK Biobank (P=9.0×10−5; 
Results and Table X in the Data Supplement). No 

KCNE1 LOF variants were identified in TOPMed or 
the UK Biobank, although rare predicted-deleterious 
missense variants in these data sets were associated 
with a 16 ms (P=3.3×10−7) prolongation of the QTc 
(Results and Tables XI and XII in the Data Supple-
ment). In contrast to the large effect sizes observed 
for deleterious variation in the aforementioned genes, 
the top variants in common variant analyses for PR 
interval and QTc conferred effect sizes of 4 and 3 ms, 
respectively (Table IV in the Data Supplement).

We observed similar findings for pathogenic or likely 
pathogenic variants adjudicated by clinical testing labora-
tories and submitted to ClinVar. Among 54 355 TOPMed 
and UK Biobank participants, 239 (0.44%) carried such 
a variant in a LQTS gene from the panel cited above. 
Half were located in one of the 3 most validated suscep-
tibility genes, KCNQ1, KCNH2, and SCN5A (Table XIII 
in the Data Supplement).10 Pathogenic or likely patho-
genic variants in KCNQ1 and KCNH2 were associated 
with substantially prolonged QTc values across all stud-
ies (Figure VIII and Table VII in the Data Supplement). 
Pathogenic and likely pathogenic variants in SCN5A 
were not associated with QTc prolongation, likely owing 
to heterogeneity of allele effects, although were associ-
ated with substantially prolonged PR intervals (Results 
and Figure IXA in the Data Supplement). When aggre-
gated together, LOF, pathogenic, or likely pathogenic 
variants in KCNQ1 and KCNH2 were associated with a 
30 ms (P=1.1×10−67) and 27 ms (P=1.0×10−16) prolon-
gation of the QTc, respectively (Figure 4).

Figure 1. Flow chart of study and analyses.
Top of the figure illustrates different traits detected by the ECG. Genetic association studies were performed for 5 electrocardiographic traits in 
9 studies from Trans-Omics in Precision Medicine (TOPMed) as a discovery cohort and findings from discovery analyses were replicated using 
UK Biobank and MyCode studies (blue). We analyzed genetic variations using both single variant association and gene-based association 
approaches (orange). Moreover, we calculated frequency of loss-of-function, pathogenic and likely pathogenic variants in long QT syndrome 
genes and performed association tests between such variants and QT interval. EUR indicates European ancestry; ME, multi-ethnic; PWD, 
P-wave duration; QRS, QRS duration; QTc, corrected QT interval; WES, whole-exome sequencing; and WGS, whole-genome sequencing.
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Despite the marked effect of deleterious variation 
on electrocardiographic intervals, incomplete pen-
etrance was common (Table XIV in the Data Supple-
ment). LOF, pathogenic, or likely pathogenic variants 
in SCN5A, which were carried by 0.1% of individuals, 
and were associated with an ≈6-fold increased odds 
of first-degree atrioventricular block in TOPMed and 
the UK Biobank (P=8.4×10−5), and 12-fold increased 
odds in MyCode (P=2.7×10−12; Tables XV in the Data 
Supplement). Nevertheless, about 70% of carriers had 
a PR interval of <200 ms, indicating absence of first-
degree atrioventricular block (Results and Figure IX in 
the Data Supplement).

Similarly, deleterious KCNQ1 and KCNH2 variants 
were carried by 0.2% of individuals and were associated 
with an almost 23-fold increased odds of a QTc dura-
tion of at least 480 ms in TOPMed and UK Biobank 
(P=4.5×10−25) and 9-fold increased odds in MyCode, an 
interval length that is suggestive of LQTS (Figure 5 and 
Table XV and Figure X in the Data Supplement).17 Yet 
over 75% of individuals carrying an LOF, pathogenic, or 
likely pathogenic variant in KCNQ1 or KCNH2 had a QTc 
below 480 ms (95/110 in TOPMed and UK Biobank, 
137/181 in MyCode).

Few individuals with prolonged intervals carried 
known deleterious variation. For example, among indi-
viduals with first-degree atrioventricular block, only 0.3% 
carried a LOF, pathogenic, or likely pathogenic variant in 
SCN5A in TOPMed and the UK Biobank, and 0.5% in 
MyCode. Similarly, among individuals with marked QTc 

prolongation (eg, ≥480ms), only 2.4% carried a LOF 
or known deleterious variant in KCNQ1 or KCNH2 in 
TOPMed and UK Biobank, and 1.2% in MyCode (Fig-
ure 5). Extended analyses summarizing the frequency of 
additional rare protein-coding variation are displayed in 
Table XVII in the Data Supplement. Notably, fewer than 
11% of individuals with QTc≥480ms or QTc≥500 ms car-
ried any rare KCNQ1 or KCNH2 protein-altering variant 
across TOPMed and UK Biobank.

DISCUSSION
Using a unique resource of high-depth genomic sequence 
data from over 130 000 individuals, we identified low-
frequency and rare genetic variants underlying variability 
in 5 routinely collected electrocardiographic traits. Our 
findings indicate that pathogenic variation in arrhythmia 
and SCD genes are associated with marked PR (SCN5A) 
and QTc (KCNQ1, KCNH2, and KCNE1) prolongation in 
the general population. Nevertheless, over 70% of indi-
viduals with deleterious variation had normal electrocar-
diographic intervals, indicating that routinely measured 
electrocardiographic intervals may be insensitive for the 
detection of such carriers. Moreover, <3% of individuals 
with marked PR interval or QTc variation carried a known 
deleterious variant, and <10% with marked QTc pro-
longation carried any rare protein-changing variant in a 
predominant LQTS gene. The causes of such electrocar-
diographic interval prolongation remain unclear and war-
rant further examination. Last, our findings highlight the 

Table. Baseline Characteristics of TOPMed Participants

ECG traits RR interval P-wave duration* PR interval QRS duration QTc†

No. of participants 27 967 23 567 28 008 27 874 26 976

Ancestry, N (%)

 European 16 749 (59.9) 15 801 (67.0) 16 707 (59.7) 16 644 (59.7) 16 074 (59.6)

 African 5034 (18.0) 4149 (17.6) 5063 (18.1) 5019 (18.0) 4887 (18.1)

 Amish 1028 (3.7) … 1024 (3.7) 1025 (3.7) 998 (3.7)

 East Asian 727 (2.6) 700 (3.0) 727 (2.6) 727 (2.6) 715 (2.7)

 Ad Mixed American 615 (2.2) 520 (2.2) 616 (2.2) 610 (2.2) 596 (2.2)

 South Asian 56 (0.2) … 57 (0.2) 57 (0.2) 53 (0.2)

 Undetermined 3758 (13.4) 2397 (10.2) 3814 (13.6) 3792 (13.6) 3653 (13.5)

Female, N (%) 18 077 (65) 15 566 (66) 18 140 (65) 18 069 (65) 17 644 (65)

Mean age at ECG, y (SD) 60.2 (12.5) 61.1 (11.3) 60.1 (12.5) 60.1 (12.5) 59.8 (12.5)

Mean interval length, ms (SD) 937.9 (148.9) 109.5 (13.3) 164.9 (26.1) 91.0 (12.7) 423.8 (22.9)

Mean height, cm (SD) 166.0 (9.6) 166.1 (9.4) 166.0 (9.6) 166.0 (9.6) 166.0 (9.5)

Mean weight, kg (SD) 79.6 (18.8) 79.3 (18.3) 79.6 (18.8) 79.6 (18.9) 79.5 (18.9)

Myocardial infarction, N (%) 2521 (9.8) 2158 (9.2) 2503 (9.8) 2493 (9.8) 2361 (9.6)

Heart failure, N (%) 1925 (8.1) 1558 (6.7) 1914 (8.0) 1913 (8.1) 1788 (7.8)

β-Blocker, N (%) 3651 (13) 2740 (12) 3626 (13) 3638 (13) 3415 (13)

Calcium channel blocker, N (%) 3220 (12) 2632 (11) 3203 (12) 3198 (12) 3043 (12)

TOPMed indicates Trans-Omics in Precision Medicine.
*The maximum P-wave duration was obtained from the ECG leads.
†QTc is corrected QT interval using the Bazett method.



Choi et al Rare Gene Variants Affecting the ECG

Circ Genom Precis Med. 2021;14:e003300. DOI: 10.1161/CIRCGEN.120.003300 August 2021 469

value of large-scale sequencing efforts to identify novel 
genes, such as PAM and MFGE8, which we implicated in 
atrioventricular conduction.

Our study complements and extends prior literature. 
To date, most genome-wide association studies of 
electrocardiographic traits have largely been focused 
on common genetic variants, have studied these traits 
individually,12,13,15,18–20 or have relied on sequencing 
in smaller samples with imputation of low-frequency 
variants.14 In contrast, the recent and rapid innovation 
in sequencing technology has enabled the analysis 
of very rare and potentially deleterious coding varia-
tion in relation to cardiac traits. Such rare variants are 
likely to directly implicate genes in cardiac physiology 

and may confer large effect sizes which could be of 
clinical relevance.

Our findings have 3 important implications. First, rare 
variants in arrhythmia and SCD susceptibility genes are 
associated with large effects on the ECG in the popula-
tion, yet routinely measured electrocardiographic inter-
vals may not be a reliable method for identifying most 
carriers. Incomplete electrocardiographic penetrance 
was common among individuals carrying deleterious 
variation. Indeed, it is likely that pathogenic variation in 
arrhythmia and SCD genes exhibits lower penetrance 
than was reported previously in family-based analy-
ses,21–23 consistent with reports for arrhythmogenic 
cardiomyopathy genes.24 Considering the frequency of 

Figure 2. Manhattan plots for 5 electrocardiographic traits.
A illustrates circular Manhattan plot illustrating genome-wide association testing results between 5 electrocardiographic traits and common 
variants with minor allele frequency (MAF) >1%. Loci that reached a conventional genome-wide significant threshold (P=5×10−8, red dotted 
lines) are annotated with the nearest genes. B shows associations between low-frequency (0.1% ≤ MAF <1%) variants and PR interval. The 
gray dotted line is the significant threshold (0.05/83 994 variants =6.0×10−7).
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second hits that can predispose to QTc prolongation 
and lethal ventricular arrhythmias, the consequences of 
subclinical genetic predisposition to arrhythmias requires 
prospective evaluation, particularly given the adoption of 
genome-first approaches for which return of incidental 
findings in several arrhythmia and SCD genes is encour-
aged.25 Since electrocardiographic intervals may vary 
over time, future analyses that leverage repeated elec-
trocardiographic measures may provide more accurate 
estimates of rare variant penetrance. Moreover, analy-
sis of additional electrocardiographic features beyond 
standard intervals is warranted. Importantly, whether a 
genome-first approach to identifying pathogenic variant 
carriers will have a material impact on SCD risk requires 
prospective evaluation.

Second, our observations suggest that quantita-
tive traits measured in population-based studies are 

endophenotypes for pathogenic variation. Analyzing 
low-frequency and rare genetic variation in relation to 
commonly ascertained electrocardiographic traits is an 
efficient approach for identifying important genes, both 
established and novel, that are related to cardiac conduc-
tion and arrhythmia risk. For example, variation in SCN5A 
was associated with PR duration. SCN5A encodes the 
α-subunit of the cardiac sodium channel and comprises 
the major inward sodium current responsible for car-
diomyocyte depolarization during phase 0. Mutations in 
SCN5A are responsible for several conditions, including 
atrial fibrillation, bradyarrhythmias, cardiomyopathy, Bru-
gada syndrome, LQTS, and SCD.11 Additionally, low-fre-
quency and rare coding variants in KCNQ1, KCNH2, and 
KCNE1 were associated with QTc. KCNQ1 and KCNH2 
encode voltage-gated potassium channel subunits 
responsible for the outward rectifier currents IKs and IKr, 

Figure 3. Association results between electrocardiographic traits and predicted-deleterious variants in genes from 
candidate loci.
Figure 3 illustrates associations between electrocardiographic traits (RR interval, P-wave duration [PWD], PR interval, QRS duration, and 
corrected QT interval [QTc]) and genes in candidate loci in Trans-Omics in Precision Medicine (TOPMed) using SMMAT. Genes with P>0.05 
for all traits were removed from this figure. As shown in the key legend, the gradient of blue colors represents the strength of associations in 
this heatmap. Genes with a star (*) were significantly associated with an electrocardiographic trait (P<1.2×10−4); tests with P>0.05 have been 
made white. The maximum PWD was significantly associated with HAND1 (P=2.4×10−5). PR interval was significantly associated with SCN5A 
(P=7.6×10−7) and PAM (P=4.5×10−7). QRS duration was significantly associated with CR1L (P=1.2×10−4). QTc was significantly associated 
with KCNQ1 (P=2.3×10−12) and KCNH2 (P=3.2×10−8). PR indicates PR interval; QRS, QRS duration; and RR, RR interval.

Figure 4. Forest plots for loss-of-function (LOF), pathogenic or likely pathogenic variants in KCNQ1 and KCNH2 and their effect 
on corrected QT interval (QTc).
Across Trans-Omics in Precision Medicine (TOPMed), UK Biobank and MyCode datasets, KCNQ1 and KCNH2 LOF and pathogenic or likely 
pathogenic variants significantly and markedly prolonged the QTc, with inverse-variance weighted fixed-effects meta-analyzed effect estimates 
of 30 ms (P=1.1×10−67) and 27 ms (P=1.0×10−16) prolongation, respectively.
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respectively, which govern cardiomyocyte repolarization 
during phases 2 and 3 of the action potential. Mutations 
in KCNQ1 and KCNH2 represent the most common 
forms of LQTS.10 KCNE1 encodes a β-subunit that inter-
acts with KCNQ1 to form the IKs current. Notably, KCNE1 
has recently been considered a controversial susceptibil-
ity gene for typical monogenic LQTS.10,26

Examination of sequence data in relation to ECGs 
can also identify novel pathways involved in cardiac 
physiology. PAM encodes peptidylglycine-alpha-amidat-
ing-monooxygenase, an enzyme expressed in atrial car-
diomyocytes, where it colocalizes with atrial natriuretic 
peptide.27–29 MFGE8 encodes the milk fat globule-epi-
dermal growth factor 8 that is involved in phagocytic sig-
naling and has been implicated in neovascularization,30 
cardiac hypertrophy,31 and atrial fibrosis.32 These novel 
conduction genes have not been examined extensively 
in relation to cardiovascular disease. Future work is nec-
essary to characterize the relations between genetic 
variation in these genes and disease, as well as their 
mechanistic roles in cardiovascular biology. Larger dis-
covery samples anticipated in the near future are likely 
to identify additional arrhythmia and SCD susceptibility 
genes, emphasizing the importance of high-throughput 
functional characterization of new genes.

Third, few individuals with markedly abnormal electro-
cardiographic intervals had known deleterious variation 
in classic arrhythmia and SCD genes, indicating that the 
causes of such electrocardiographic variability remain 

unclear. We suspect that multiple factors may account for 
prolonged electrocardiographic intervals, including rare 
variants in genes not traditionally implicated in arrhyth-
mias and SCD, polygenic susceptibility to electrocardio-
graphic interval prolongation, and other factors, such as 
electrolyte abnormalities or medication exposures, that 
were not accounted for in our analysis. We excluded 
individuals on antiarrhythmic medications, individuals 
with paced rhythms, and pathological QRS prolongation 
which may confound some intervals (eg, QTc). The yield 
of contemporary panel-based genetic evaluations in indi-
viduals with isolated electrocardiographic interval prolon-
gation is, therefore, likely low. The cause, prognosis, and 
optimal management of these genotype-negative indi-
viduals in the community warrants evaluation considering 
the adverse prognosis traditionally associated with both 
prolonged PR interval and QTc.3,8,33–36

Our results should be evaluated in the context of the 
study design. The sample consisted mainly of middle-
aged individuals of European ancestry, limiting generaliz-
ability of results beyond the ancestral groups and age 
strata represented. We used single time point electro-
cardiographic analyses and intervals may vary over time, 
although for the studied traits 10 second ECGs have 
been determined to be reliable.37,38 We did not account 
for all medications that may affect cardiac conduction, 
which requires future investigation. Finally, we cannot 
exclude a survival bias since included participants were 
adults at the time of enrollment.

Figure 5. Effect of loss-of-function (LOF), pathogenic or likely pathogenic variants in KCNQ1 and KCNH2 on corrected QT 
interval (QTc) in the population.
A illustrates distributions for carriers (red, N=110) of a LOF or pathogenic or likely pathogenic variant in KCNQ1, KCNH2, and noncarriers (gray, 
N=54 245) in Trans-Omics in Precision Medicine (TOPMed) and UK Biobank. The dotted lines represent QTc cutoffs of 460, 480, and 500 
ms. Of the carriers, 15 (13.6%) individuals had QTc interval ≥480 ms while 662 (1.2%) of noncarriers revealed QT prolongation. B illustrates 
the odds ratio for QTc prolongation at different cutoffs (460, 480, and 500 ms) conferred by LOF, pathogenic or likely pathogenic variants in 
KCNQ1 and KCNH2 in TOPMed and UK Biobank.



Choi et al Rare Gene Variants Affecting the ECG

Circ Genom Precis Med. 2021;14:e003300. DOI: 10.1161/CIRCGEN.120.003300 August 2021 472

In conclusion, we demonstrate the value of large-
scale high-depth sequence analysis for interrogating the 
genetic basis of the ECG. As biorepositories grow in the 
near future, similar approaches will undoubtedly uncover 
additional rare variants with other high-impact on cardio-
vascular diseases.
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