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Abstract

Background: Acquired resistance to antifungal agents now supports the introduction of susceptibility testing for species-
drug combinations for which this was previously thought unnecessary. For pathogenic yeasts, conventional phenotypic
testing needs at least 24 h. Culture on a porous aluminum oxide (PAO) support combined with microscopy offers a route to
more rapid results.

Methods: Microcolonies of Candida species grown on PAO were stained with the fluorogenic dyes Fun-1 and Calcofluor
White and then imaged by fluorescence microscopy. Images were captured by a charge-coupled device camera and
processed by publicly available software. By this method, the growth of yeasts could be detected and quantified within 2 h.
Microcolony imaging was then used to assess the susceptibility of the yeasts to amphotericin B, anidulafungin and
caspofungin (3.5 h culture), and voriconazole and itraconazole (7 h culture).

Significance: Overall, the results showed good agreement with EUCAST (86.5% agreement; n = 170) and E-test (85.9%
agreement; n = 170). The closest agreement to standard tests was found when testing susceptibility to amphotericin B and
echinocandins (88.2 to 91.2%) and the least good for the triazoles (79.4 to 82.4%). Furthermore, large datasets on
population variation could be rapidly obtained. An analysis of microcolonies revealed subtle effects of antimycotics on
resistant strains and below the MIC of sensitive strains, particularly an increase in population heterogeneity and cell density-
dependent effects of triazoles. Additionally, the method could be adapted to strain identification via germ tube extension.
We suggest PAO culture is a rapid and versatile method that may be usefully adapted to clinical mycology and has research
applications.
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Introduction

Pathogenic fungi are a major source of human infections and

are a serious risk factor for mortality. In the past, species

identification has often been considered sufficient to target

effective antimicrobial therapy. However, the spread of acquired

resistance in both yeasts and filamentous fungi as well as persistent

issues of intrinsic resistance require increased susceptibility testing

[1–5]. Slow growth, the heterogeneous response of populations to

some antimycotics, effects of inoculum density and the poor

culturability of some strains are challenges for phenotypic

methods. However, limitations for molecular testing include

multiple mutations conferring resistance and the lack of suitable

genetic markers for some drugs [6]. These considerations suggest a

need for further development of rapid, culture-based susceptibility

testing in fungi. For yeasts and filamentous fungi, a number of

rapid phenotypic methods have been developed. These include

culture in microwells containing broth with antimycotics and

colorimetric redox indicators [7–9]. Flow cytometry has also been

used to assess the action of antifungal agents with minimal

incubation times [10–12].

In recent years there has been considerable progress in the

determination and standardization of susceptibility testing for

Candida species, including reference procedures (CLSI and

EUCAST) and the study of populations of strains to determine

logical breakpoints [13]. However, such procedures are quite

complex and require significant expertise and resources to

implement [14]. Agar diffusion methods, including commercial
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versions such as the E-test, are not as rigorously standardized

[15,16] but are convenient and widely used.

Microcolony detection has been used to speed up culture-based

assays in fungi. For example, detection of microcolonies grown for

14 h on porous nylon membranes has been developed for viability

counting of Aspergillus fumigatus [17]. Microcolony imaging after

culture on a porous aluminum oxide support (PAO or Anopore)

has been used for rapid antibiotic sensitivity testing of bacteria.

Culture on PAO permits handling of intact microcolonies,

including heat killing, staining with fluorogenic dyes and imaging

by microscopy. Using this method, trimethoprim susceptibility has

been accurately assessed in the Enterobacteriaceae within a few

hours [18]. Mycobacterium tuberculosis can be cultured on PAO and

used to determine drug susceptibility after 3 days [19]. PAO

culture methods for M. tuberculosis have also been developed that

allow monitoring during growth [20]. Given that fungi are

relatively easy to image, culture on PAO may be useful for

susceptibility testing of yeasts. This feasibility of this approach is

supported by recent advances in low-cost imaging and analysis, i.e.

microcolony quantification is becoming more accessible and

automatable [21].

The aim of this study was to develop a microcolony-based

method for rapid susceptibility testing of Candida species using a

PAO support. This new approach was compared to the commonly

used EUCAST and E-test methods. The objective was an assay

with increased speed, reduced costs and less clinical waste.

Results and Discussion

Imaging and culture of Candida on PAO
Candida spp. could be cultured on PAO placed on nutrient agar

plates (Table 1 and Figures 1 and 2). Imaging cells stained with

Fun-1/Calcofluor White was possible, using CCD camera

exposures from 20 to 200 ms. Staining with a combination of

Fun-1 and Calcofluor White gave an exceptionally sharp image,

using a610 objective, with from 50 to 250 microcolonies captured

per field of view. The image quality was important in automating

image processing, allowing all images to be treated identically, i.e.

batch processed with minimal human intervention. Stacks of up to

50 images (.5000 microcolonies) could be processed together, but

10 images (.1000 microcolonies) were sufficient for most

purposes. During the time frame of these studies the microcolonies

Figure 1. Illustration of digitization process. A, Raw image
(100 mm across with10% area of a full picture shown) of microcolonies
of C. krusei 870 containing up to 24 cells. B, Same image, now digitally
processed with Median filter to merge individual cells within the same
microcolony. C, Conversion of image from panel B to binary image to
allow calculation of microcolony area.
doi:10.1371/journal.pone.0033818.g001

Table 1. Minimal detection times and growth on PAO.

Strain

Minimal Detection Times on
PAO Doubling Time on PAO

Growth AMB ITR VOR CAS ANI

C. albicans 4208 40 min 2 h 3 h 4 h 2 h 2 h 57 min

C. glabrata 1925 51 min 2 h R 5 h R 5 h 2.5 h 2 h 69 min

C. krusei 870 90 min 2.5 h 5 h 5.5 h 2.5 h 2 h 81 min

C. tropicalis 4367 87 min 2.5 h 5 h 5 h 2.5 h 2 h 91 min

MIC Values (mg ml21)

AMB ITR VOR CAS ANI

C. albicans 4208 0.25 0.016 0.016 0.5 0.008

C. glabrata 1925 0.25 8 16 0.5 0.016

C. krusei 870 0.5 0.125 0.25 0.5 0.031

C. tropicalis 4367 0.25 0.063 0.063 0.031 0.016

For each strain the minimal time to detect growth and the minimal time to detect drug susceptibility was calculated from triplicate time series using 8 mg AMB, VOR or
ITR ml21 or 4 mg CAS or ANI ml21. Values are the result of triplicate determinations. The variation between such experiments was ,12%. R indicates strain was resistant
(so time to detection of resistance is given). Lower part of table indicates MIC values.
doi:10.1371/journal.pone.0033818.t001

Susceptibility Testing on PAO

PLoS ONE | www.plosone.org 2 March 2012 | Volume 7 | Issue 3 | e33818



analysed within these experiments and in growth curves and for

MIC testing were predominantly (.90%) monolayers. In the later

stages of growth (.4 h) colonies with bilayers of cells formed.

However, the microcolony area continued to increase from 4 to

6 h and was reduced in susceptible strains by triazoles; so effective

MIC testing was still possible.

The minimum time necessary to detect growth was calculated by

imaging a series of strips of PAO incubated for different times after

inoculation. A significant increase in microcolony area (P,0.05,

ANOVA with Tukey post hoc test, N.1000 comparing later time

points with T = 0) was used to assess growth. For all Candida species

tested, significant microcolony growth on PAO was found within

91 min (Table 1). Growth curves were calculated from average

microcolony areas for C. albicans 4208, C. glabrata 2925 and C. krusei

870 in the first 4 h of growth. C. glabrata 1925 had a lag time of

51 min on PAO and a doubling time of 69 min. C. albicans 4208 had

a lag time of 40 min and doubling time of 57 min (Table 1, Figure 3).

Viability testing on Sabouraud agar suggested that culturability on

PAO was similar to that on agar (viable counts on PAO were 94 to

107% relative to those cells cultured directly on agar).

Alternative staining methods
The nucleic acid stain Syto9, the metabolic dye Fun-1 and the

cell wall stain Calcofluor White were all tested individually as

alternatives to the combination of Fun-1/Calcofluor White. When

staining microcolonies of C. albicans 4208 cultured for 3 h, the

difference in assessment of microcolony area was minimal

comparing Syto9 with Fun-1/Calcofluor White (Table 2). The

variance was higher for Fun-1 in the absence of Calcofluor White.

In this situation the poor definition of the cell boundary had an

impact and in some cases led to single microcolonies being

interpreted as clusters of microcolonies. However, all four staining

methods gave MIC determinations that differed by less than two-

fold (Table 2) suggesting that the dye choice is not critical.

Surface culture of Candida on agar and PAO
Candida spp. respond to the texture and topography of their

environment and are known to penetrate tissues, agar and

Nuclepore membranes [22,23]. However, cross-sections of agar

plates after E-test revealed no penetration of the RPMI agar

(within the area of drug action or outside it) after a 48 h assay. C.

albicans 4208 was unable to pass through a strip of PAO, as

indicated by the sterility of the Sabouraud agar surface directly

beneath the PAO and by imaging. Therefore, both PAO and E-

test assays are similar, in being conducted on the upper surface of

the test environment.

Susceptibility testing of Candida on PAO
The minimal times for the detection of susceptibility to AMB,

ANI, CAS, ITR, and VOR were assessed using a concentration of

each antimycotic agent above the MIC and the test panel of

Candida species (Table 1). For AMB and CAS significant growth

inhibition (ANOVA, comparing .200 microcolonies, P,0.05 by

Tukey post hoc test) could be detected within 2.5 h. ANI

susceptibility was detectable within 2 h. For the triazoles (ITR,

VOR) the minimal time to detecting a significant effect was more

variable, from 3 to 5.5 h. As a result, the standard time for PAO

susceptibility testing used in subsequent work was set at 3.5 h for

AMB and the echinocandins (ANI, CAS) and 7 h for the triazoles

(ITR, VOR). The PAO method was tested against both EUCAST

and E-test methods (Table 3). Over the entire set of five antifungal

agents (170 tests per method) PAO gave good agreement with both

EUCAST (86.5%) and E-test (85.9%). All three methods gave

agreement in 81.2% of tests (Table 3). The best matches between

PAO and both standard methods were for AMB, CAS and ANI

(88.2 to 91.2% agreement). Lesser agreement was found for the

triazoles ITR and VOR (79.4 to 85.3%). The datasets for VOR

were recalculated using recently available population breakpoints

[13] determined for C. albicans, C. tropicalis and C. parapsilosis. Using

previously available breakpoints for these species (n = 17) the

agreement with EUCAST was 14/17 and with E-test 13/17.

An additional triazole, FLU, was tested for 10 strains of C.

albicans scored as susceptible by the standard methods. The PAO

method scored 6/10 of these clinical isolates as susceptible after

3.5 h and 9/10 after 7 h. Four FLU resistant strains of C. krusei

were also tested. Of these four strains, three were scored as

resistant after 3.5 h and all four after 7 h. Taken together, these

data suggest that the method may be extended to testing against

FLU using a similar methodology to that for ITR and VOR.

Data analysis in these testing used batch processing of each data

point (different combinations of drug/strains) as separate stacks of

images. This took 20–30 min per MIC determination. However,

further automation of the MIC determination is possible via

simple scripting methods, which suggests that data analysis will not

be a major factor in the time to result in the future.

Figure 2. C. albicans strain 3003 growing on PAO and imaged by
scanning electron microscopy. A, Structure of PAO viewed from
above at high resolution. Pores (dark areas; example marked P) range
from 50 to 200 nm on this face of the material. B, C. albicans growing
on PAO viewed from above. C, C. albicans microcolony viewed from
above, at a 45u angle. Scale bar indicates 100 nm when applied to panel
A, 1 mm for panel B and 5 mm for panel C.
doi:10.1371/journal.pone.0033818.g002
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Germ tube outgrowth on PAO
Culture of 10 clinical isolates of C. albicans on PAO on sheep’s

blood agar allowed germ tube outgrowth to be detected with

90 min incubation, a similar time period to that needed by a

human observer. However, culture on PAO followed by Fun-1/

Calcofluor White staining and imaging allowed a degree of

automation of the evaluation. The criteria used for evaluation

were aspect ratio, microcolony area and frequency. Whilst germ

tube extension produced an aspect ratio that was on average

longer than budding cells there were confounding factors that

required additional criteria. Firstly, some strains produced a

subpopulation of elongated cells on Sabouraud medium that also

passed these criteria. However, such cells were rare (,5%

population) and false positives were excluded by the requirement

that .20% of cells had an appropriate aspect ratio. These criteria

scored all 10 strains as producing germ tubes on PAO on blood

agar and none on PAO on Sabouraud agar. We were unable to

reproduce these results by imaging unstained cells (data not

shown): the high image quality of Fun-1/Calcofluor White

staining was critical to obtaining good image analysis.

Changes in microcolony heterogeneity on PAO
When scoring susceptibility it was noticed that Fun-1 staining

was enhanced in sensitive strains growing in the presence of

triazoles at concentrations close to the MIC. Cells were often

strongly and uniformly stained when at the periphery of

microcolonies with .10 cells or when part of smaller microcol-

onies. This trend was not seen with VOR- or ITR-resistant strains.

Furthermore, when cells were viewed by fluorescence microscopy,

the variation in staining intensity appeared unusually large even

within sibling cells forming individual microcolonies and therefore

separated by at most three rounds of division. For example, the

mean microcolony area was identical for strain 2526 of C. tropicalis

cultured with 0 and 0.0625 mg VOR ml21 but the mean staining

intensity and heterogeneity of staining within individual micro-

colonies was elevated in the presence of VOR. Therefore, VOR

Figure 3. Examples of growth curves derived from microcolony areas (averaging 200 microcolonies for each data point). Open
squares: C. albicans 4208. Closed squares: C. glabrata 2925. Open triangles: C. krusei 870. Closed triangles: C. tropicalis 4367. Microcolony areas at time
0 usually reflect between 1 and 2 cells.
doi:10.1371/journal.pone.0033818.g003

Table 2. Effect of staining procedure on calculation of microcolony area and MIC determination using C. albicans 4208.

PAO method with specified dye E-test

Fun-1 Calcofluor Fun+Calcofluor Syto9

Average Microcolony Area1 113 126 131 143

Variance2 0.048 0.029 0.024 0.022

MIC (AMB)3 1 0.5 1 1 0.5

MIC (ANI)3 0.128 0.256 0.128 ,0.128 0.064

MIC (CAS)3 0.25 0.25 ,0.128 ,0.128 ,0.01

MIC (ITR)3 0.128 0.063 ,0.063 ,0.063 0.023

MIC (VOR)3 ,0.128 0.128 0.128 ,0.128 0.25

1area in mm2.
2calculated from log10 microcolony area.
3MIC in mg ml21.
doi:10.1371/journal.pone.0033818.t002
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and ITR appeared to be having a significant effect on cells at levels

below those required to limit growth. The center of the

microcolonies showed pinpoint staining whilst the periphery

showed strong but even staining (Figure 4). A spatial analysis

was made, scoring each of 300 cells (.80 microcolonies) for

staining pattern. In sensitive strains, sub-lethal VOR stress

elevated the number of intensely staining cells, particularly cells

with few immediate neighbors – i.e. small microcolonies or cells on

the periphery of large microcolonies (Figure 5). Typically, cells in

the interior of microcolonies with 20+ cells had from 6 to 8

immediate neighbors. As with the qualitative analysis, this trend

was weak or absent in a VOR-resistant (MIC 8 mg ml21) strain

using the same concentration of VOR. The data presented in

Figures 4 and 5 are derived from C. tropicalis but the same staining

pattern was detectable in other species including C. albicans (data

not shown) and for ITR and FLU as well as VOR.

Fun-1 is a halogenated unsymmetrical cyanine dye that

fluoresces when complexed with proteins and does so more

intensely when bound to nucleic acids. Sequestration of metabolic

products of Fun-1 within CIVS is the most common result for

healthy yeasts [24,25]. Staining of CIVS is punctate and intense. A

more uniform and intense fluorescence is associated with cell stress

or death. Enhancement of mean Fun-1 staining [10,11] and

increased heterogeneity (C. Pina Vaz, personal communication)

has also been observed by FACS analysis of triazole treated

Candida spp. The increased staining intensity was attributed to the

blocking of efflux pumps that export the drug [10,11]. Microcol-

ony imaging allowed this observation to be refined: sublethal

concentrations of triazoles were apparently more stressful to cells

on the periphery of a microcolony than to those in the interior.

In non-pathogenic yeasts, phenotypic variation has been shown

to be a valuable survival strategy in fluctuating environments [26].

It is possible that this is also the case in Candida spp. For example,

in generating individual cells with an above-average ability to

export a toxic compound. However, the positional effects suggest

that this is not a random increase in phenotypic variation, but that

the interior of even a small microcolony (,20 cells) may be a safer

place to be during limited triazole exposure. Given that the limited

number of cells and nutrients and triazoles supplied from beneath

the cells directly through the high-porosity PAO, we suggest this

phenomenon is unlikely to be due to poor access to nutrients or

reduced drug concentrations. From viewing microcolonies of

different proximity to each other (e.g. Figure 4B) it appeared that

the apparent protection is short-ranged (,10 microns) but does

not necessarily require cells to be touching. These data suggests

that microcolony analysis reveals the behaviour of subpopulations

that are not amenable to other methods.

Testing Candida spp. for triazoles required a longer culture time

for sensitivity to be reliably detected than tests for AMB, ANI or

CAS, for which 3.5 h culture was used as standard. Incubation for

7 h was required for a consistent MIC determination with ITR

and VOR (Table 1). This was also the case for FLU. The triazoles

are fungistatic for Candida spp., with trailing effects caused by

continued growth of a proportion of sensitive cells. For all the

antimycotics the time taken to result was rapid compared to E-test:

tests for AMB and the echinocandins could be completed within

5 h whilst the triazoles could be assayed within a normal working

day or overnight. We suggest that another advantage of this test is

its versatility. To date we have looked at a wide range of bacteria

[18–20] and fungi and a chemically diverse range of antimicro-

bials. Furthermore, other dyes such as Syto9 were effective in

accurately determining MICs. We suggest that this toolbox can

readily be adapted to new antimicrobials or new organisms.

Finally, as the method is based around cell imaging it may be able

to cope with agents such as echinocandins in filamentous fungal

for which the primary assay is a change in morphology (minimal

effective concentration or MEC).

Microcolony assays can be used to look at heterogeneity within

populations. Such analysis reveals a degree of variance within

genetically homogeneous populations as well as spatial effects.

Fun-1 is a particularly interesting dye for this purpose as it shows

very different staining patterns depending on the stage of

conversion and sequestration [25]. However, as the susceptibility

Table 3. Summary of susceptibility testing comparing PAO method with EUCAST and E-test methods.

Antifungal PAO vs EUCAST PAO vs E-TEST EUCAST vs E-TEST ALL TESTS

AMB 91.2 88.2 91.2 82.4

CAS 88.2 88.2 88.2 82.4

ITR 82.4 79.4 85.3 79.4

VOR 79.4 82.4 82.4 76.5

ANI 91.2 91.2 88.2 85.3

AVERAGE 86.5 85.9 86.5 81.2

Results of testing the panel of 34 strains noted in the Methods against AMB, CAS, ITR, VOR, and ANI. The percentage of exact matches was scored (S [sensitive] vs S, R
[resistant] vs R, and where relevant I [intermediate] vs I) for pairwise comparisons between different tests and perfect agreement between all three tests.
doi:10.1371/journal.pone.0033818.t003

Figure 4. The effect of VOR on Fun-1 staining patterns of C.
tropicalis cells within microcolonies. A, C. tropicalis 2526 (VOR
sensitive, MIC 0.0625 mg ml21) grown for 7 h on PAO (no-drug control).
B, Microcolonies of the same strain cultured on 0.0625 mg VOR ml21

with an increase in Fun-1 staining (particularly for cells on the
periphery). C, As panel B, showing the enhancement of Fun-1 staining
of peripheral cells by 0.125 mg VOR ml21. Pictures were taken with
identical exposure times (45 ms). Scale bar indicates 20 mm for all
images.
doi:10.1371/journal.pone.0033818.g004
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assay is primarily dependent on calculation of microcolony area

such heterogeneity of conversion does not have a major impact as

long as the contrast between stained cells and edge of the colony is

sufficient to allow accurate measurements, which was the case in

our experiments (Table 2).

The large datasets obtained from this analysis (up to 1000

microcolonies) permit the detection of subtle trends, such as the

density-dependent effects [27] of antimycotics that are less obvious

than bulk inhibition of growth or killing. In this work we observed

shifts in the distribution of populations in response to levels of

antimycotics. Whilst there was very little change in the mean

microcolony area, the variance of the microcolony area increased.

Increase in microbial heterogeneity is often a response to stress.

Such information may prove useful in understanding both the

mechanism of resistance and phenotypic heterogeneity, particu-

larly with reference to effective dosage of antimycotics.

Conclusions
Clinical isolates of a range of Candida spp. grew as rapidly on

PAO as on agar, and after a few hours the resultant microcolonies

could be stained and quantified. Microcolony imaging on PAO

allowed the creation of rapid culture-based assays and the MIC

testing on Candida on surfaces may be more relevant to how these

yeasts exist in the human body than planktonic growth, as used in

broth dilution methods. Poor nutrient environments with oxygen

limitation and the potential for biofilm development can be

created on PAO, which may allow further development to increase

the relevance of MIC testing in vitro to clinical outcomes. A

microcolony-based susceptibility assay was developed, giving

accurate results with 3.5 to 7 h culture, compared with 24 to

48 h by E-test. Agreement between the PAO method and the two

standard approaches was good (c. 86% in both cases). Triazoles

were somewhat harder to test, in terms both of requiring a longer

incubation and of slightly lower accuracy compared to the results

for the echinocandins and AMB (Table 3) but could also give good

results. The clinical gains from increasing the speed of conven-

tional methods (24–48 h) requires investigation – but we note

Candida can be life threatening on an immediate basis (e.g. sepsis)

so there are obvious applications for this method. Analysis is via

simple computer scripts and plug-ins for publicly available, free

software (ImageJ) and further automation is possible. This method

has the advantages of speed and versatility; currently the cost per

test is less than 15 dollars, though integration of multiple tests on a

single PAO strip has the potential to decrease this. Further

standardization is required for the introduction of our method into

routine clinical practice. Developments in low-cost LED imaging

may support readout systems that are cheaper and improve

standardization, allowing use of the technique in a routine setting.

Significant morphology changes such as germ tube extension can

also be scored from growing microcolonies, suggesting that this

method of strain identification is feasible on PAO. Microcolony

analysis gives significant data on the state of individual cells within

populations, variation that conventional tests do not reveal. We

noted that sensitive cells within the interior of microcolonies

appeared less affected by triazoles than cells at the periphery. We

suggest that the PAO microcolony imaging method for suscepti-

bility can also be adapted to other fungi. To develop this test

further the testing of multiple antimicrobials on a single strip of

PAO is desirable and imaging without staining would improve the

workflow.

Methods

Strains and culture
Candida spp. were obtained as clinical isolates from the JB

Hospital, Den Bosch, The Netherlands, with reference strains

from the Mycology Reference Laboratory (Bristol, UK). A panel of

34 strains (11 strains of C. albicans, 2 C. dubliniensis, 9 C. glabrata, 6 C.

krusei, 2 C. parapsilosis and 4 C. tropicalis) was used. Clinical isolates

were identified by Auxacolor (Bio-Rad Laboratories, Veenendaal,

The Netherlands) and germ tube extension in serum. Additional

strains were three amphotericin B-resistant isolates derived from

UV mutagenesis of strain JBZ111 and repeated selection on

Figure 5. Effect of the number of flanking cells and the effect of
sub-MIC concentrations of antimycotics on Fun-1 staining
intensity. Positional effects of Fun-1 staining were analyzed, scoring
cells staining intensely throughout (likely to be dead or stressed) and
relating this to the number of adjacent cells. A, C. tropicalis 2526 (VOR
sensitive, MIC 0.0625 mg ml21) grown for 7 h on PAO. White bars, no-
drug control. Black bars, culture with 0.0625 mg VOR ml21. Hatched
bars, culture on 0.125 mg VOR ml21. B, C. tropicalis 8404 (VOR resistant,
MIC 8 mg ml21), VOR concentrations and shading as panel A.
doi:10.1371/journal.pone.0033818.g005
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Sabouraud agar containing 4 mg amphotericin B ml21. Routine

culture of all strains was on Sabouraud dextrose agar at 37uC.

Antifungal drugs
Amphotericin B (AMB; Bristol Myers Squibb, Woerden, The

Netherlands), voriconazole (VOR; Pfizer Central Research,

United Kingdom), itraconazole (ITR; Janssen Cilag, The Nether-

lands), caspofungin (CAS; Merck Sharp & Dohme BV, The

Netherlands), fluconazole (FLU; Sigma Chemicals, The Nether-

lands) and anidulafungin (ANI; Pfizer Central Research) were used

in this study. The drugs were obtained as reagent-grade powders

and were preserved according to the manufacturer’s instructions.

MIC determinations by standard methods
The minimal inhibitory concentrations (MICs) or minimum

effective concentrations were determined using a broth microdilu-

tion method, according to the reference procedure of the

Antifungal Susceptibility Testing Subcommittee of EUCAST

(http://www.eucast.org/). The E-test was implemented using

RPMI-1640 plates and according to the manufacturer’s instruc-

tions and recommended breakpoints (E-test, BioMerieux, Boxtel,

The Netherlands) with incubation for 48 h.

Preparation, culture and imaging on PAO
PAO strips (8636 mm, 60 mm thick, pore size 200 nm;

manufactured by Whatman, Maidstone, UK) for the culture of

fungi were sterilized by dry heat; 170uC for 2 h [19,28]. Sterile

strips, and strips divided into up to 6 culture areas, were stored in

tubes and deployed onto nutrient agars by gently tapping the

tube. Dilutions of clinical isolates were made in sterile phosphate-

buffered saline; these were inoculated onto PAO placed on agar

plates from 2,000 to 20,000 colony-forming units (CFU) mm22.

Agar plates used were RPMI-1640 medium (all components

Sigma, Heerhugowaard, The Netherlands), Sabouraud dextrose

(Oxoid, Basingstoke, UK) or sheep’s blood agar (Oxoid) with

incubation at 37uC. Staining of fungi was with Calcofluor White/

FUN-1 and Syto9 (Invitrogen, Breda, The Netherlands). Dyes

were diluted into molten 1% (w/v) low-melting-point agarose

(10 mM Syto 9, 20 mM Fun-1, 0.05% (w/v) Calcofluor White as

appropriate). Aliquots (1 ml) of the relevant dye mix were poured

evenly on a microscope slide and allowed to solidify. The PAO

was transferred to the slide for staining and imaged on the same

slide after 20 min. Image capture used an Olympus BX-41

microscope equipped with a 610 Fluorotar objective lens and an

8 bit Kappa black-and-white CCD camera [29]. Growth curves

were calculated from microcolony areas (.400 for each data

point).

Agar and PAO penetration assays
Vertical cross-sections of agar (1 mm thick, 2 cm across,

0.6 mm high), taken from Sabouraud plates after E-tests, were

made with a sterile razor blade. The region sectioned included

the zone of clearing created by the antimycotics and the flanking

regions of vigorous growth. Such cross-sections were placed on

slides covered with solidified low-melting-point agar containing

20 mM FUN-1 [25], then incubated for 40 min in a humidified

environment and imaged for evidence of penetration of the agar

by Candida spp. Assays for the penetration of PAO were done by

inoculating sterile PAO on Sabouraud or sheep’s blood agar with

103 to 105 CFU of C albicans JBZ111 and incubating for 1 to 6 h

at 37uC. After removal of the PAO, penetration of the agar

beneath was assessed by further incubation of the agar plate

(16 h) and direct imaging by microscopy. Imaging used Olympus

BX-41 fluorescence microscope equipped with U-MWIBA filters

(excitation spectrum of 460 to 490 nm, dichroic mirror splitting

at 505 nm, and an emission spectrum of 515 to 550 nm, used for

Syto9 and Fun-1 dyes), U-M41007 (530 to 560 nm excitation,

565 nm splitting, and 575 to 645 nm emission, used for PI and

HI dyes), and U-M41008 (590 to 650 nm emission, 660 nm

splitting, and 665 to 735 nm excitation) (Olympus, Japan). An

Olympus V-MNV2 filter with excitation of ,420 nm was used

for visualizing Calcofluor White staining.

Image processing and statistical analysis
Greyscale 8-bit TIFF images were processed as individual

images or in stacks using ImageJ software (http://rsbweb.nih.gov/

ij/). Processing used a median filter (radius 4 pixels) followed by a

binary threshold adjustment (Fig. 1). The ImageJ ‘‘analyze

particle’’ function was then used to calculate microcolony areas,

excluding particles too small to be cells and those only partially

within the field of view. Statistical analysis used ANOVA with a

Tukey post hoc test calculated by the Vassar statistics server (http://

faculty.vassar.edu/lowry/VassarStats.html). For large-scale analy-

sis (.5 images), stacks of up to 50 images were created using

ImageJ and then batch processed. The intrapopulation variance in

microcolony area was calculated after a log10 transformation of the

microcolony area [30] calculated from at least 1000 microcolonies.

The variance in Fun-1 staining was derived from non-saturated, 8-

bit TIFF images, calculating the average signal intensity per cell

using ImageJ cell-counter plug-ins. Heterogeneity analysis was also

performed within microcolonies, looking at positional effects on

the staining pattern. In this case each cell was scored for (a) the

number of cells it had as immediate neighbours and (b) the type of

staining pattern. Staining type was scored as intense, with even,

strong staining throughout the cell; punctate, with pinpoint

staining of cylindrical intravacuolar structures (CIVS); or weak

(cell wall stain brighter than interior stain) as described by Millard

et al. [25].

MIC testing on PAO
MIC testing was done on RPMI-1640 plates containing defined

concentrations of antimycotics with up to four PAO strips per

plate, up to six samples per strip. MIC values were calculated from

the decrease in average microcolony areas from at least five images

(.1000 microcolonies) for each data point. The number of

microcolonies to be analyzed was chosen on the basis of detecting

an average 1.3-fold increase in microcolony area (P,0.05,

Student’s t-test). The method was similar to that previously

described for Enterobacteriaceae [19]. Fun-1/Calcofluor White

staining was used unless stated otherwise.

Germ tube outgrowth on PAO. Inoculation for germ-tube

formation was as for other culture experiments on PAO but using

sheep’s blood agar. Staining and data capture were as above.

Image processing used specific criteria to identify germ-tube-

producing cells: an aspect ratio of .3.2 and longest dimension of 3

to 8 mm. A strain was scored as positive if at least 20% of the

objects analyzed passed this test.

Scanning electron microscopy (SEM)
Cells were cultured and fixed with glutaraldehyde (2.5% v/v)

on PAO, then treated with osmium tetroxide (1% w/v),

dehydrated and subjected to critical point drying as previously

described [18]. Imaging was done with an FEI Magellan electron

microscope (FEI Company, Eindhoven, The Netherlands) after

tungsten sputtering.
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