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Abstract

Numerous studies covering some aspects of SARS-CoV-2 data analyses are being published on a daily basis, including a
regularly updated phylogeny on nextstrain.org. Here, we review the difficulties of inferring reliable phylogenies by
example of a data snapshot comprising a quality-filtered subset of 8,736 out of all 16,453 virus sequences available
on May 5, 2020 from gisaid.org. We find that it is difficult to infer a reliable phylogeny on these data due to the large
number of sequences in conjunction with the low number of mutations. We further find that rooting the inferred
phylogeny with some degree of confidence either via the bat and pangolin outgroups or by applying novel computational
methods on the ingroup phylogeny does not appear to be credible. Finally, an automatic classification of the current
sequences into subclasses using the mPTP tool for molecular species delimitation is also, as might be expected, not
possible, as the sequences are too closely related. We conclude that, although the application of phylogenetic methods to
disentangle the evolution and spread of COVID-19 provides some insight, results of phylogenetic analyses, in particular
those conducted under the default settings of current phylogenetic inference tools, as well as downstream analyses on the
inferred phylogenies, should be considered and interpreted with extreme caution.
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Introduction
The Coronavirus disease 2019 (COVID-2019) caused by a
novel coronavirus (severe acute respiratory syndrome
coronavirus-2 [SARS-CoV-2]) emerged in Wuhan, China in
December 2019 (WHO situation report May 30, 2020) and
spread worldwide in 212 countries and territories causing
more than 17.6 million cases and 680,000 deaths within a
period of 7 months (WHO situation report August 2, 2020).

A full genome sequence analysis revealed that 2019-nCoV-
2 belongs to the betacoronaviruses, but that it is divergent
from the SARS-CoV and MERS-CoV that caused past epidem-
ics. The 2019-nCoV-2 and the bat-SARS-like coronavirus form
a distinct lineage within the subgenus of the Sarbecovirus.
The whole-genome sequence of SARS-CoV-2 shows 96.2%
similarity to that of a bat SARS-related coronavirus
(RaTG13) collected in the Yunnan province of China. The
SARS-CoV-2 also exhibits similarity to the coronavirus from
Malayan pangolin in a particular genomic region coding for
the spike protein, including the receptor-binding domain.

Note that the aforementioned bat and pangolin sequences
merely constitute the most similar sequences known, yet not
necessarily the most closely related sequences.

Since the early characterization of SARS-CoV-2 in Hubei,
China, an enormous number of sequences have been char-
acterized. On July 31, 2020, approximately 75,000 full genome
sequences have become available. Molecular epidemiology
has attempted to provide a detailed picture about the distinct
lineages and substrains circulating in different geographic
areas as well as about the dispersal pattern and cross-
border transmissions at different time periods during the
pandemic (https://nextstrain.org/ncov/global; Hadfield et al.
2018). Moreover, whole-genome sequence analysis has been
used for within-country studies as well as for the detailed
investigation of viral dispersal within specific communities.

To date, the globally circulating viruses have been classified
into six major clades denoted as S, L, V, G, GH, and GR
(https://www.gisaid.org/; Shu and McCauley 2017). Analyses
of the viral sequences can unravel the number of mutations
separating the lineages from the founding Wuhan haplotype.
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These analyses provide a more detailed classification of var-
iants into haplotypes that can be used to trace the geograph-
ical distribution and patterns of dispersal of distinct lineages
(Brufsky 2020; Rambaut et al. 2020). Molecular epidemiology
studies attempt to quantify the number of introductions of
SARS-CoV-2 to different countries and their putative geo-
graphic origin (Rambaut et al. 2020; van Dorp et al. 2020).
Haplotype analyses based on SARS-CoV-2 can also provide
information about within-country infection clusters.

A study from Iceland applied molecular analyses and ver-
ified their results via a comparison with contact tracing net-
works (Gudbjartsson et al. 2020). It concludes that, when
contact tracing networks are unavailable, phylogenetic anal-
yses can be deployed to disentangle infection clusters within
countries. Full-genome analyses of SARS-CoV-2 can poten-
tially identify emerging novel variants that may alter the spike
interaction with the ACE2 receptor, TMPRSS2 protease, and
epitope mapping.

SARS-CoV-2 evolves at an estimated nucleotide substitu-
tion rate ranging between 10�3 and 10�4 substitutions per
site and per year (see Table 1 in van Dorp et al. (2020).
Molecular clock analyses have been used to estimate the
time of the most recent common ancestor of the global
pandemic as well as the most recent common ancestor of
local epidemics in different geographical regions (see again
Table 1 in van Dorp et al. [2020]).

The inference of a phylogenetic tree on the full genomes is
pivotal to numerous molecular epidemiology tools and stud-
ies (e.g., Deng et al. 2020; Duchene et al. 2020; Guohu et al.
2020; Lemey et al. 2020; Rambaut et al. 2020). A plethora of
studies (e.g., Filipe et al. 2020; Gonzalez-Reiche et al. 2020;
Jaimes et al. 2020; Lednicky et al. 2020; Li et al. 2020; Liu
et al. 2020; Lu et al. 2020; Pipes et al. 2020; Zhou et al.
2020) to disentangle the evolution of the SARS-CoV-2 pan-
demic is currently being published at a high pace and under
considerable time pressure, both with respect to the tree
inference time, paper writing time as well as the review
time for these papers. In almost all cases, including the daily
updated virus phylogenies on the exceptional nextstrain plat-
form, phylogenetic inference on the currently available virus
genomes is conducted predominantly via standard maxi-
mum likelihood (ML)-based tools using default program
parameters. In addition, several publications also deploy
some of the fast, yet less accurate bootstrapping and tree
search options implemented in tools such as standard
RAxML (Stamatakis et al. 2008) and IQ-TREE (Hoang et al.
2018). In general, some of these analyses might have been
(too?) rushed, not only at the phylogenetic inference level
(see analogous cautionary notes in Villabona-Arenas et al.
(2020) but also potentially at previous stages of SARS-CoV-
2-related data generation and data analysis steps (e.g.,
see http://virological.org/t/issues-with-sars-cov-2-sequencing-
data/473).

In our study, we do not follow this trend, but take a de-
tailed look at the general difficulties of inferring and postana-
lyzing phylogenies on the highly challenging SARS-CoV-2 data
set, as it contains thousands of taxa with few mutations, and
hence comparatively weak signal. Together, these

aforementioned difficulties render phylogenetic analysis and
postanalysis highly challenging, both with respect to the sig-
nal that we can extract, but also regarding the numerical
stability of current tools.

The remainder of this paper is structured as follows. We
first provide an overview of our data preparation and analysis
pipeline. Subsequently, we discuss some noteworthy difficul-
ties that arose when processing the data. Then, we present
the results of our inference, rooting, and classification
attempts. We conclude the paper with a critical discussion
of the results.

Data Preparation and Analysis Pipeline
Our data analysis pipeline is available at https://github.com/
BenoitMorel/covid19_cme_analysis under GNU GPL.

Raw Data Preprocessing
We downloaded the raw data from gisaid.org on May 5, 2020.
It contained 16,453 full-genome (> 29; 000 bp) raw sequen-
ces with high coverage. High-coverage sequences are defined
by GISAID as sequences containing less than 1% Ns (unde-
termined characters), less than 0.05% unique amino acid
mutations, and no insertions/deletions unless these have
been verified by the submitter.

Filtering
We applied additional filters to identify sequences of high
quality. We initially removed approximately 7,717 sequences
using the following two-step strategy. First, we trimmed ex-
ternal undetermined characters at the beginning and at the
end of the genomes (Step 1). After this trimming, we only
kept sequences with less than ten internal undetermined
characters (Step 2). We trimmed external undetermined
characters (Step 1) prior to filtering (Step 2) because our
goal was to only use sequences with a low number of internal
undetermined characters. External undetermined characters
do not affect the alignment quality since not all sequences
start at exactly the same nucleotide. The final filtered raw
sequence data set comprised 8,736 SARS-CoV-2 genomes
and two outgroup sequences: the bat CoV (hCoV-19/bat/
Yunnan/RaTG13/2013; Accession ID EPI_ISL_402131) and

Table 1. Metrics for Assessing the Quality of the Tree Inference
Conducted on the Four Distinct MSA Versions (FMSA, FMSAO,
SMSA, SMSAO).

Metric FMSA FMSAO SMSA SMSAO

Taxa 4,869 4,871 2,888 2,904
ML trees RF 0.783 0.783 0.775 0.783
Search RF 0.112 0.112 0.128 0.119
Plausible trees 76 75 74 76
MR res. r(T) 0.129 0.131 0.155 0.147
MRE res. r(T) 0.706 0.701 0.699 0.680

NOTE.—ML trees RF is the average relative RF distance between all 100 inferred ML
trees. Search RF is the average relative RF distance between the parsimony starting
trees and the final ML trees of the respective tree searches on these starting trees.
Plausible trees represents the number of trees (out of 100) in the plausible trees set.
MR and MRE resolutions are the resolution ratios (see definition in the text) of the
MR and MRE trees computed on the plausible tree sets.
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pangolin CoV (hCoV-19/pangolin/Guangdong/1/2019;
Accession ID: EPI_ISL_410721) genomes.

Multiple Sequence Alignment
We aligned the 8,736 and 8,738 (including outgroups)
trimmed sequences using the parallel version of MAFFT
(v.7.205; Katoh and Standley 2013) with 40 threads.

Trimming after Alignment
After the MSA process, we further trimmed the first and the
last 1,000 alignment sites. We applied this additional trim-
ming as the sequencing did not start/finish at the same po-
sition for all sequences. Thus, the initial untrimmed MSA was
characterized by a large amount of missing data at the be-
ginning and the end of the MSA (see supplementary fig. 8,
Supplementary Material online).

Overall, we generated four distinct versions of the
alignment:

(1) A comprehensive (comprising all 8,738 sequences) Full
MSA with bat and pangolin Outgroups (FMSAO)

(2) A comprehensive Full MSA of 8,736 sequences without
outgroups (FMSA)

(3) A noncomprehensive (not comprising all sites, and, as a
consequence of additional removed sequence duplicates,
not containing all 8,736 virus sequences; see below)
singletons-removed MSA with bat and pangolin out-
groups (SMSAO)

(4) A noncomprehensive singletons-removed MSA without
outgroups (SMSA)

We generated the noncomprehensive SMSAs by removing
so-called singleton sites from the corresponding full MSAs
(FMSA, FMSAO). For biallelic sites, that is, sites with only
two states, a singleton site is a column of the MSA where
the allele with the lowest frequency is only present in but a
single sequence (e.g., AAAAAAAAT). Such sites only have a
negligible contribution to the tree inference process due to
weak phylogenetic signal. Furthermore, singleton sites can
represent sequencing errors, as it is expected that most se-
quencing errors will appear as singleton sites.

The FMSA consists of 3,752 polymorphic sites, out of
which 2,503 are either biallelic singletons (e.g.,
AAAAAAACAAA) or “multiallelic singletons” (e.g.,
AAAAAAACAAG), that is, sites where more than one allele
only occurs once, whereas the site itself is not biallelic. Further,
we also removed 97 “pseudosingleton” sites (e.g.,
AAAAACCCAAG), that is, sites that are neither biallelic nor
multiallelic singletons, but do contain a nucleotide with only
a single occurrence. In our example, G appears only once. The
numbers of polymorphic sites, biallelic, and multiallelic single-
tons are exactly identical for the FMSAO data set (we double
checked). Even though multiallelic singletons as well as pseu-
dosingletons do contain some phylogenetic signal, we de-
cided to remove them as they may also represent
sequencing errors. Further, the pseudosingleton sites only
account for a small proportion (�2.5%) of the overall poly-
morphic sites.

Our singleton removal strategy is further justified by a
recent study that has shown that lab-specific sequencing
practices yield mutations that have been observed predom-
inantly or exclusively by single labs. These can in turn affect
the phylogeny reconstruction process (Turakhia et al. 2020).
The authors provide regularly updated masking recommen-
dations at https://github.com/W-L/ProblematicSites_SARS-
CoV2/blob/master/problematic_sites_sarsCov2.vcf.

Finally, we removed all duplicate sequences from all of the
above input MSAs, that is, all sequences that are exactly iden-
tical. We did this because identical sequences do not yield any
additional signal for a phylogenetic analysis. Furthermore, du-
plicate sequences confound the calculation of support values,
branch lengths, and needlessly increase the computational
cost of the analyses.

After removal of duplicate sequences, the MSAs contained
the following number of taxa: FMSAO (4,871), FMSA (4,869),
SMSAO (2,904), SMSA (2,888). Note that, the difference in the
number of taxa between SMSAO and SMSA is not simply two
(i.e., the two outgroups) as conducting the alignment step
with and without outgroups yields distinct MSAs that in turn
induce a distinct number of identical sequences after trim-
ming and singleton removal.

Also note that, when only considering the ingroup align-
ments, the data sets comprise a low proportion of unique
alignment site patterns relative to the genome length:
FMSAO/FMSA 4,997, SMSAO 1,781, SMSA 1,679. The num-
ber of unique patterns in FMSAO/FMSA is higher than the
number of polymorphic sites that we reported previously, as
the tool we used to analyze polymorphic sites ignores sites
containing gaps. These low overall numbers in conjunction
with the high number of taxa already indicate that the phy-
logenetic analysis is challenging.

For some exploratory experiments on topological and nu-
merical stability, we used earlier data snapshots from April 2
and April 8 for which we assembled FMSAO data sets. The
April 2nd FMSAO snapshot comprises 1,897 sequences and
the April 8th snapshot comprises 2,754 sequences.

Our strict filtering strategy might not be applicable for
analyses targeting specific geographic regions and might in-
duce a shift in the geographical distribution of the data.
Therefore, we assessed the potential shift in geographical dis-
tribution of samples for all four MSA versions. We find that
our filtering approach induces predominantly stable per-
country sequence number reduction factors that range be-
tween a factor of 2 and 4 (data not shown) for the FMSA and
FMSAO data sets. The more strictly filtered SMSA and
SMSAO data sets exhibit higher peak reduction factors, espe-
cially for sequences from Senegal (19), the Dem. Rep. of
Congo (13), and Wales (13). However, our focus here is mainly
on computational issues arising with the analysis of these data
and we hence opted for assembling as “clean” as possible data
sets (i.e., best case data quality). Nonetheless, in particular, the
singletons-removed data sets induce a higher shift in the
geographical distribution of the sequences and might there-
fore not be apt for specific epidemiological studies.
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Phylogenetic Inference
We initially determined the best fit model on the SMSA data
set using ModelTest-NG (Darriba et al. 2020). ModelTest-NG
selected GTRþR4 (GTR model with four discrete free rate
categories, also frequently referred to as “free rates model”) as
best fit model. The free rates model (R4) exhibits some sub-
stantial intrinsic numerical difficulties (see Difficulties section
for a more thorough discussion). To this end, we decided to
use the numerically more stable GTRþC model with four
discrete rates for all subsequent inferences.

With respect to the tree search strategy per se, we first
executed 100 RAxML-NG (Kozlov et al. 2019) tree searches on
the April 2 snapshot of the full MSA including outgroups
using 50 randomized stepwise addition order parsimony
starting trees and 50 random starting trees. We did this to
explore the behavior of tree searches on these data. We ob-
served that tree searches initiated on parsimony starting trees
yielded phylogenies with better log-likelihood scores (consis-
tently >400 log-likelihood units). Thus, we executed all sub-
sequent phylogenetic tree searches on the data snapshot of
May 5 using parsimony starting trees only.

Moreover, initial analyses of the April 2nd snapshot of the
full MSA unsurprisingly showed low bootstrap support val-
ues, low transfer bootstrap support values (Lutteropp et al.
2020), and a phenomenon that we have termed “rugged
likelihood surface” (Stamatakis 2011).

We had already observed such a rugged likelihood surfaces
for difficult-to-analyze data sets with few sites and many taxa
that do typically not contain strong phylogenetic signal on
bacterial 16S data sets before (Stamatakis 2011).
Characteristic of such data sets is that, for instance, 100 in-
dependent tree searches for the best-scoring ML tree on the
original alignment will yield 100 distinct tree topologies with
similar likelihood scores. Moreover, as we will show here, most
of these ML tree topologies also exhibit a large pairwise to-
pological distance. However, at the same time, we cannot
deploy standard statistical significance tests to distinguish
and select among those topologically diverse trees. This is
because most of the resulting trees will not be statistically
significantly different from each other with respect to their
likelihood scores. Hence, given these substantial uncertainties
in the search for the best-scoring ML tree in conjunction with
the low number of variable sites, we apply the following pro-
cedure in an attempt to infer a representative phylogeny:

(1) Conduct 100 ML tree searches using ParGenes (Morel
et al. 2019) that seamlessly orchestrates such searches
using RAxML-NG from randomized stepwise addition or-
der parsimony trees.

(2) Apply all statistical significance tests implemented in IQ-
TREE to this set of 100 ML trees.

(3) Assign ML trees to a “plausible” ML tree set that are not
significantly worse than the best-scoring ML tree under
any statistical significance test implemented in IQ-TREE.
This assignment is conservative, as it will yield the smallest
plausible tree set and circumvents the long-lasting debate
about which phylogenetic significance test is most appro-
priate (e.g., see Goldman et al. [2000]).

(4) Build a majority rule (MR) and an extended majority rule
(MRE) consensus tree from the plausible ML tree set.
Note that, neither the MR, nor the MRE consensus trees
will necessarily be strictly bifurcating.

We conducted tree inferences exclusively on the ingroup
MSAs (FMSA/SMSA and FMSAO/SMSAO with outgroups
removed after the alignment process) as the usage of out-
groups, in particular, if they are distant from the ingroup as is
the case here, can perturb a phylogenetic analysis (Steiper and
Young 2006; Gatesy et al. 2007). We describe later on how we
place the outgroups onto the ingroup phylogenies after the
inference, that is, independently of the ingroup tree inference.

Although we believe that building a consensus tree from
the plausible ML tree set constitutes a reasonable approach,
the fact of having a (in most cases) multifurcating (e.g., MR- or
MRE-based) reference tree topology complicates matters for
some of the downstream phylogenetic postanalysis methods,
which often expect a strictly bifurcating phylogeny as input.
The general strategy we adopt for addressing this issue is that,
whenever possible, we attempt to compute summary statis-
tics of postanalyses over the individual bifurcating trees in the
plausible tree set. This approach is, in a sense, analogous to
summarizing a posterior tree set as obtained from Bayesian
analyses.

For improved clarity and readability, we introduce the fol-
lowing notation for the inferred trees:

• FMSA-C: MR consensus of plausible ML ingroup tree set
on FMSA

• FMSA-CE: MRE consensus of plausible ML ingroup tree
set on FMSA

• FMSA-P: Plausible ML tree set for FMSA
• FMSA-B: Best-scoring ML ingroup tree inferred on FMSA
• SMSA-C: MR consensus of plausible ML ingroup tree set

on SMSA
• SMSA-CE: MRE consensus of plausible ML ingroup tree

set on SMSA
• SMSA-P: Plausible ML tree set for SMSA
• SMSA-B: Best-scoring ML ingroup tree inferred on SMSA

The notation for inferred trees is analogous for the FMSAO
and SMSAO data sets that do also not include the outgroups
in the tree search step. We will use the MSA versions of
FMSAO and SMSAO that do include the outgroup sequences
in a separate step for assessing outgroup rooting.

Tree Thinning
At the time of writing, more SARS-CoV-2 sequences become
available on a daily basis, whereas the available phylogenetic
signal is already comparatively weak. To this end, it can be
desirable to reduce the number of sequences we use for phy-
logenetic analysis in a reasonable way. We call this reduction
“thinning” of a phylogenetic tree. The problem of thinning or
clustering sequences on taxon-rich trees is not new in virus
phylogenetics (e.g., see, Prosperi et al. 2011; Ragonnet-Cronin
et al. 2013).
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To thin a given tree or input MSA prior to phylogenetic
analysis one has two options. First, one can use biologically
reasonable ad hoc criteria as we already apply them here by
removing singleton and duplicate sequences, or as deployed
by nextstrain that removes sequences that are below a certain
length threshold. In addition, nextstrain randomly subsam-
ples sequences within predefined geospatial groups, to yield
the inference process more computationally tractable.
Second, one can deploy an inferred comprehensive phylog-
eny to guide the thinning process. We present and make
available one MSA-based and one phylogeny-based thinning
method in the following.

As with the criteria we applied for quality filtering the
sequences, our thinning criteria solely focus on computation-
ally improving the data quality and the signal in the data.
They disregard biological thinning criteria such as maintaining
the sampling time and geographical distributions and thus
represent a possible best-case thinning scenario. More specif-
ically, both thinning algorithms we describe below induce
substantial shifts in the geographical distribution of the
sequences. The inclusion of additional biological/geographical
thinning criteria such as focusing on a specific country, region,
and time period might therefore induce a reduction of data
quality as the choices for selecting “good” representative
sequences become more limited. As a consequence, phyloge-
netic inference will become more challenging. Nonetheless,
the algorithms we present here can serve as a starting point
for developing thinning methods that take into account both,
computational as well as epidemiological criteria.

The first method which we term “maximum entropy”
selects a given number of representative sequences from
the alignment that maximize sequence diversity (as measured
by their entropy). The second method which we term
“support selection” relies on bipartition support values to
identify a subset of sequences with more stable phylogenetic
signal.

The “maximum entropy” method aims to represent the
original MSA in n sequences that capture as much of its
diversity as possible. The method, implemented in our
GENESIS tool (Czech et al. 2020), takes as input an MSA
and a target number n of sequences to select from that
MSA. First, we select a “seed” sequence by finding the se-
quence in the MSA that is most different from a consensus
sequence computed for the entire MSA; here, we measure the
sequence difference as the number of nonidentical sites (i.e.,
the Hamming distance). We use this seed to initiate the al-
gorithm with a sequence that is as different as possible from
all others. Then, the remaining n� 1 sequences are iteratively
added to the result sequence set. In each step, we select one
sequence from the yet unselected sequences of the MSA and
include it in the result sequence set. We select the new se-
quence such that it maximizes the average per-site entropy of
the current result sequence set. Hence, in each step, we greed-
ily maximize the diversity of the current result set, as mea-
sured by its entropy; see Czech et al. (2018) for details on the
computation. The algorithm terminates once the result set
contains n sequences (the initial seed, and n� 1 sequences

chosen via entropy maximization), and then outputs the re-
sult set.

The “support selection” method takes as input an
unrooted multifurcating consensus tree T (here either the
SMSA-C/SMSA-CE or FMSA-C/FMSA-CE trees) with a sup-
port value associated to each internal branch/bipartition of
the tree. We define the accumulated support value (ASV) of a
tree as the sum of the support values over its internal
branches. Our support selection method constructs a bifur-
cating tree T0s by pruning subtrees from T such that the ASV
of T0s is maximized. If, for the sake of simplicity, we initially
assume that T is rooted, we can traverse T in postorder: at
each inner node, our algorithm selects the two children (sub-
trees) with the highest ASV, and calculates the ASV of the
current node as the sum of the two selected children ASVs
and the support value of the current bipartition. If the current
node has more than two children (i.e., it is multifurcating), we
prune the children that we did not select. If T is unrooted, we
iterate over all possible inner nodes r of T, and consider each r
as possible root of T. Note that each inner node r only con-
stitutes a “virtual” root that is required to initiate the recur-
sion, but that the bifurcating tree T0s remains unrooted. In
particular, all internal nodes of T0s have three outgoing
branches. This includes the specific virtual root r used for
the recursion. Thus, when computing the ASV at the current
virtual root r, we select three children subtrees instead of two.
We then return the bifurcating tree T0s;i for i ¼ 1 . . . r with
the highest ASV.

A disadvantage of the “support selection” method is that
we cannot control the number of taxa that we will prune.
Consider, for instance, the scenario of a multifurcation with
ten children subtrees of equal size (where the size of a subtree
is the number of terminal nodes in the subtree). In this case,
the “support selection” method will prune 8 of these subtrees.

A key question that arises is how we assess the quality of a
tree thinning method and how we compare these methods
against each other. In our study, we consider topological sta-
bility as quality criterion. More specifically, we assess if the
reduced taxon set yields a higher topological stability in terms
of pairwise relative Robinson–Foulds (RF) distances
(Robinson and Foulds 1981) among the trees in the plausible
tree set and a lower number of trees in the plausible tree set
than a random thinning/subsampling of the taxa to the same
number. The RF distance quantifies the difference between
two tree topologies in terms of the number of induced splits
(also called bipartitions) of the taxon set by inner branches
that are not common to both trees. Thus, a distance of 100%
means that they do not share any common split whereas a
distance of 0% means that they share all splits and are hence
identical. One main pitfall of the RF distance is that it treats all
splits as having equal weight. Depending on the context of a
study, the weight of splits located close to the tips or in the
inner regions of the tree should be adjusted. We also assess if
the thinned trees exhibit higher topological stability than the
full trees on the comprehensive alignments that include all
taxa.
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Outgroup Rooting with EPA-NG
To place the pangolin and bat outgroups onto our inferred
ingroup phylogenies (more specifically, the respective plausi-
ble tree sets: FMSA-P, SMSA-P), we use our evolutionary
placement algorithm EPA-NG (Barbera et al. 2019) as it allows
to place an arbitrary number of candidate outgroup sequen-
ces onto a given phylogeny after the ingroup inference. For
each branch of the ingroup EPA-NG computes an outgroup
placement probability via a likelihood weight ratio (LWR).
The LWR indicates how probable it is that the outgroup is
located somewhere along a specific branch. In other words,
the methods implemented in EPA-NG allow to assess out-
group placement uncertainty and can help to answer the
question if the pangolin and/or bat sequences constitute ap-
propriate outgroups for the SARS-CoV-2 phylogeny.

As input, EPA-NG requires the ingroup tree, an MSA com-
prising the ingroup sequences (in this context called reference
tree and reference MSA, respectively), and the outgroup
sequences aligned against this reference MSA. For the align-
ments that included the outgroups (FMSAO, SMSAO) this is
straightforward, as the outgroups are already aligned to the
reference. To also assess the impact the specific MSA method
has on the outgroup placements, we additionally deployed
HMMER (Eddy 2011) to align the outgroups to the corre-
sponding ingroup alignments (FMSA, SMSA) yielding two
additional reference MSAs which we denote by FMSAO-
HMMER and SMSAO-HMMER.

Furthermore, EPA-NG requires a strictly bifurcating input
tree. This poses a challenge for trees containing multifurca-
tions (FMSA-C, SMSA-C), as there exist alternative
approaches to making such trees strictly bifurcating. To ob-
tain a better understanding of the behavior of outgroup
placements with EPA-NG in such cases, we performed place-
ments on all trees in the respective plausible tree sets (FMSA-
P, SMSA-P) that form the basis for the respective consensus
trees. We evaluate the appropriateness of the bat and pan-
golin outgroups for each tree in the respective plausible tree
sets individually by identifying the LWR of the best place-
ment, as well as the entropy of the LWR distribution for a
given outgroup.

We calculate the entropy as

H ¼ �
X

p

lwrp � log2lwrp;

where lwrp denotes the LWR of an individual placement of an
outgroup sequence on a branch p, for all placements calcu-
lated by EPA-NG.

We then summarize these values for the entire plausible
tree set using the mean and SD.

We present these statistics separately for each of the four
reference MSA versions (FMSAO, SMSAO, FMSAO-HMMER,
SMSAO-HMMER) in the respective results section on rooting
the virus phylogeny.

Rooting with RootDigger
To further assess the uncertainty of the root location via a
mathematically distinct approach, we also performed

analyses with our RootDigger tool (Bettisworth and
Stamatakis 2020). RootDigger computes the likelihood of
placing a root on every branch of an existing, strictly bifur-
cating tree topology using a nonreversible model of nucleo-
tide substitution. This also allows to quantify root placement
uncertainty, again, by calculating LWRs for each possible root
placement in terms of root placement probabilities. As
RootDigger represents an alternative to outgroup rooting
(albeit outgroup rooting and RootDigger rootings agree on
50% of empirical data sets tested; Bettisworth and Stamatakis
2020), we only executed RootDigger on the FMSA-P and
SMSA-P tree sets. As the input trees are large in terms of
number of taxa, we also parallelized RootDigger using MPI
(Message Passing Interface) to maximize throughput.

We applied RootDigger to evaluate the root placement
uncertainty for 5% of the trees with the highest likelihood
scores in the respective FMSA-P and SMSA-P tree sets. We
only execute RootDigger on 5% of the best trees in the plau-
sible tree sets due to excessive runtime requirements. As for
EPA-NG, we subsequently calculate analogous summary sta-
tistics for the root placement probability distributions over
the respective selected plausible trees.

Species Delimitation with mPTP
The mPTP (Kapli et al. 2017) tool implements a method for
molecular species delimitation on given, rooted and strictly
bifurcating phylogenies of barcoding or other marker genes
via so-called multirate Poisson Tree Processes.

As such, it exclusively relies on the tree topology and the
associated branch lengths to infer an ML-based delimitation.
It can also sample candidate delimitations via an MCMC
procedure. In a recent study, we have shown that mPTP
can be successfully deployed to hepatitis type B and type C
virus phylogenies for classifying subtypes (Serdari et al. 2019).
To this end, we applied mPTP to all trees in FMSA-P and
SMSA-P.

In general, mPTP requires a rooted strictly bifurcating input
tree. If the tree is not rooted, mPTP will by default place a root
in the middle of the longest branch of the tree. If one does not
trust this rooting approach, one can also execute mPTP on all
distinct possible rootings of a given unrooted tree. This is not
an option provided by mPTP but needs to be explicitly
scripted. To assess the impact of root selection on the species
delimitation, we executed mPTP ML delimitations with all
possible roots on all trees in the respective plausible tree
sets (i.e., thousands of mPTP runs per plausible tree topology)
via an appropriate script. We also executed delimitation runs
with mPTP by rooting on the longest branch (i.e., one mPTP
run per plausible tree) using the ML and MCMC procedures.
Finally, note that mPTP is a purely computational and
parameter-free tool for classifying sequences into subclasses
that does not rely on the underlying sequence data. It does
therefore differ from the standard virus classification and
naming schemes that use the sequence data and either in-
volve direct human intervention or require a plethora of ad
hoc as well as subjective threshold parameters such as used
for instance in the Pangolin tool (Rambaut et al. 2020) or for
the nextstrain and GISAD naming schemes. Nonetheless,
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these more subjective naming schemes tend to yield reason-
able classifications. As we show here, they currently appear to
represent the only viable solution for devising such naming
schemes.

Difficulties
Based on our experience with the development of likelihood-
based phylogenetic inference tools, we expected the phylo-
genetic analyses to be numerically challenging because of the
large number of highly similar sequences. In fact, the data set
has a structure that is more similar to a typical population
genetics data set than a phylogenetic data set because it
exhibits, for instance, a high proportion of invariable sites.
To this end, the key difficulty we expected were numerical
instabilities associated with the short branch lengths.

Impact of the Minimum Branch Length Parameter Setting
We initially tested the impact of the minimum allowed
branch length parameter setting on RAxML-NG and IQ-
TREE log-likelihood scores on the April 8th snapshot of the
full MSA. For this, we used the best-known ML tree, the C
model of rate heterogeneity, and set blmax (i.e., the maxi-
mum branch length) as well as lh� (i.e., the likelihood differ-
ence between successive numerical optimization steps used
for stopping the optimization) to their default values (see
fig. 1).

With all these parameters fixed, we then maximized the
ML score (by optimizing branch lengths and the remaining
model parameters) of the fixed tree under different minimum
branch length settings. We show the results of this experi-
ment in figure 1. We observe that the minimum allowed
branch length setting has a substantial impact on the result-
ing log-likelihood score. For instance, the default setting for
IQ-TREE (blmin ¼ 1e� 6) yields a log-likelihood score that is
35 log-likelihood units worse than for blmin ¼ 1e� 7. These
small differences in log-likelihood scores can have detrimental
impact, for instance, when assessing the significance of
obtained topologies via the Shimodaira–Hasegawa
(Shimodaira and Hasegawa 1999) likelihood ratio test. Initial
experiments under GTRþFOþR4 yielded an analogous, yet
even more distorted ordering of log-likelihood scores (data
not shown).

Based on the results presented in figure 1, we therefore
conducted all log-likelihood score calculations with IQ-TREE

for determining the plausible tree set via the statistical signif-
icance tests as well as all tree searches with RAxML-NG using
a minimum branch length setting of 1e� 9.

Unreliable Scores under the Free Rates Model
Runs of ModelTest-NG (Darriba et al. 2020) that we con-
ducted on the SMSA and FMSA data sets for the final May
5th snapshot suggested that the best fit model for both data
sets is GTR with an ML estimate of the base frequencies and a
free rates model of rate heterogeneity.

It is common knowledge among developers of ML infer-
ence programs that the numerical optimization of the free
rates model is difficult and that the optimization can become
stuck in local optima.

To this end, we performed model parameter and branch
length reoptimization on the 100 fixed ML trees inferred with
RAxML-NG on the SMSA and FMSA data sets using the
RAxML-NG tree evaluation function. In other words, we com-
pare the final log-likelihood scores as obtained in the very end
of 100 RAxML-NG tree searches with the log-likelihood scores
as recalculated/optimized with RAxML-NG on the very same
final, fixed ML trees. We conducted ML tree searches and
reoptimization under the GTR model with an ML estimate
of the base frequencies and the four free rates that accom-
modate rate heterogeneity (GTRþFOþR4).

To assess log-likelihood score discrepancies, we calculated
the Spearman rank correlation on the resulting log-likelihood
scores obtained from RAxML-NG tree searches and RAxML-
NG tree evaluations for the same set of 100 ML trees. We
show the log-likelihood score correlation in figure 2.

The obtained correlation of merely 0.84 between the
RAxML-NG tree search and RAxML-NG evaluation mode
log-likelihood scores on the FMSA data set for exactly iden-
tical tree topologies under exactly the same model of evolu-
tion indicates that the free rates model should not be used for
the full SARS-CoV-2 data set. An analogous experiment with
IQ-TREE (fig. 3) yielded a rank correlation of 0.72 for the free
rates model on the FMSA data set. However, on the SMSA
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FIG. 1. Log-likelihood scores of the best-scoring ML tree topology after
model parameter (GTR, ML base frequencies, and C rate heteroge-
neity) and branch length optimization with the following (default)
settings: blmax: 100, fast branch length optimization, lh� : 0.1, and
varying the indicated blmin (vertical line: default value of 10�6).

FIG. 2. Spearman rank correlation of RAxML-NG tree search and
RAxML-NG evaluation mode log-likelihood scores under the free
rates model on a set of 100 ML tree topologies on the FMSA data set.
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data set, the respective rank correlations under the free rates
model improved to 1.0 (RAxML-NG) and 0.95 (IQ-TREE). This
indicates that our singleton-removal strategy helps to im-
prove the numerical stability of inferences under the free rates
model on the SMSA data set. In addition, this observation will
allow for a more targeted analysis of the underlying causes for
the observed behavior. In general, we assume that this behav-
ior is due to the fact that the free rates optimization is in-
voked several times during the IQ-TREE and RAxML-NG tree
searches on intermediate and hence distinct tree topologies.
Thus, the optimization of the free rates on the final tree of the
tree search is initiated with distinct (often better) starting
values than in the stand-alone from scratch tree evaluation.
Because of local optima in the free rates optimization, the
resulting log-likelihood score is therefore sometimes worse,
yet often better for the scores obtained by the tree searches.
This holds for RAxML-NG and IQ-TREE. In addition, the pres-
ence of singletons appears to increase the number of local
optima in the free rates optimization landscape. Finally, the
numerical stability of the model should be reviewed in general
on a broader benchmark of empirical data sets.

To ensure that this behavior is model-specific and not data
set-specific, we also conducted an analogous test under the C
model of rate heterogeneity with four discrete rates
(GTRþFOþG). The corresponding Spearman rank correla-
tions for RAxML-NG and IQ-TREE are both 1.0 on the FMSA
data set, and 1.0 and 0.98 on the SMSA data set, respectively.
We therefore conclude that the C model of rate heterogene-
ity should be used for analyzing the SARS-CoV-2 data set with
RAxML-NG or IQ-TREE.

Results

Tree Inference
To discuss the results of the tree inferences, we initially need
to define the resolution ratio of the consensus trees we in-
ferred from the plausible tree sets. Let T be a multifurcating

tree, B(T) the number of internal bifurcating nodes, and L(T)
the number of leaves. We define the resolution ratio of T as:

rðTÞ ¼ BðTÞ
LðTÞ � 2

:

This ratio measures to which degree a tree is resolved. For
instance, r(T) is equal to 0.0 for a star topology and equal to
1.0 for a fully bifurcating (fully resolved) tree.

Overall, we computed six metrics on the distinct trees and
tree sets inferred on the four different MSA versions. We
summarize these metrics in table 1. For each metric, we
obtained approximately identical values for all four MSA ver-
sions. Thus, removing singletons does not appear to improve
the stability of the inferred trees, albeit the reduced taxon set
can facilitate visualization and interpretation.

Moreover, for all MSA versions, we inferred 100 distinct
topologies from the 100 ML searches (i.e., the signal was so
weak that we did not recover a single tree topology twice).
Furthermore, the ML tree topologies per MSA are highly dif-
ferent among each other with an average pairwise relative RF
distance of approximately 78%. Despite these large RF distan-
ces and due to the aforementioned pitfalls of the RF distance
metric, we do observe some signal near the tips of the plau-
sible tree set in the respective consensus tree.

In contrast, the relative RF distance between the respective
parsimony starting trees and the corresponding final ML trees
of individual searches is comparatively low (ranging between
0.11 to 0.13). This indicates that every ML tree search quickly
reaches a local maximum and that all MSA versions induce a
high number of local maxima. In general, approximately 75
out of 100 inferred ML trees per MSA end up in the respective
plausible tree sets. This shows that it is difficult, if not impos-
sible, to distinguish among the topologically highly diverse ML
trees from 100 searches via statistical significance tests. Hence,
it does not appear reasonable to represent the results in the
form of a single ML tree, as 75% of the inferred trees are
statistically indistinguishable.

We further found that the MR consensus trees (FMSA-C
and SMSA-C) we computed from the plausible tree sets are
poorly resolved and only contain but a few bifurcating inter-
nal nodes. The MRE trees (FMSA-CE and SMSA-CE), which
attempt to construct bifurcating tree topologies via a greedy
heuristic strategy (note that constructing the optimal MRE
consensus with maximum support is NP-hard) still contain a
high number of multifurcating nodes. Nonetheless, they do
show an improved degree of resolution (r(T)) by a factor of 4–
5 compared with the MR trees which simplifies their visual
interpretation.

Overall, we find that the ML tree topologies in the plausible
tree sets are topologically divergent which substantiates our
claims that the data set is hard to analyze, as it exhibits a weak
phylogenetic signal and a rugged likelihood surface. Our
experiments also show that results of phylogenetic analyses
of these data can and should not be represented via a single
ML tree. Our findings contradict a recent study (Mavian et al.
2020) that finds that there is sufficient phylogenetic signal in
the data. This study relies on the so-called likelihood mapping

FIG. 3. Spearman rank correlation of IQ-TREE tree search and IQ-TREE
evaluation mode log-likelihood scores under the free rates model on a
set of 100 ML tree topologies on the FMSA data set.
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technique that only evaluates quartets (subsets of four
sequences) to quantify the signal. Therefore, the aforemen-
tioned numerical issues associated with a full tree search on a
comprehensive MSA did not become apparent in that study.
Finally, we observe that the specific MSA version used does
not have any notable effect on the resulting tree set.

In the following, we briefly discuss the virological conclu-
sions that we can draw by example of the FMSAO-CE tree.

The FMSAO-CE consensus tree (see fig. 4) suggests that
the clades that occur frequently in the respective plausible
tree set (> 75%) consist predominantly of SARS-CoV-2
sequences sampled from the same geographic area or neigh-
boring countries. Specifically, we find large monophyletic clus-
ters from a single country or geographic area such as the
United States, India, Hong Kong, Shanghai, Korea, Iceland,
Wales, Scotland, England, Australia, Belgium, Luxembourg,
the Netherlands, and France. We detected the largest clusters
for the United States and England. Moreover, we observe
clusters including sequences from neighboring geographic
areas, for example, Wales–England–Scotland, Luxembourg–
Belgium, Belgium–the Netherlands, Scotland–Iceland. We ob-
serve two additional characteristic patterns: (i) clusters where
the majority of sequences are from a single country and (ii)
clades including viral sequences sampled from diverse loca-
tions. The type (i) clusters include Sweden–Wales–England,
Australia–the United States, England–Australia, England–
Russia–Australia–Hungary–the Netherlands–the United
States. The more diverse type (ii) clusters are smaller in size
and comprise viral sequences sampled at diverse locations.

The observed patterns suggest that clustering and thus
spread occurred mainly according to geographic location at
the time our data snapshot was taken (human mobility was
severely limited due to lock-downs in numerous countries).
This finding is compatible with the diseases spread through
respiratory particles, but also across different countries and

remote locations following the patterns of human mobility.
The results of nextstrain analyses, where major clades were
detected for the United States and other regions, but also a
considerable number of cross border transmissions was
reported, support our findings. Notably, our and other anal-
yses are limited by the available data sampling. The lack of
large monophyletic clusters for several geographic areas is
probably due to the limited availability of data from the re-
spective countries.

We used the Pangolin tool (Rambaut et al. 2020) for super-
imposing a naming scheme onto the MRE consensus tree
(FMSAO-CE) of the plausible tree set for the FMSAO data
set in figure 5. We chose the pangolin tool, as it is easy to use
and the three alternative naming schemes implemented in
GISAID, nextstrain, and the Pangolin tool do not appear to
exhibit major differences (Alm et al. 2020). Moreover, the
Pangolin tool provides the most fine-grained classification
scheme.

Most of the sequences were classified within lineage B
(N¼ 4,202, 86.3%), with the remaining falling within lineage
A (N¼ 667, 13.7%) The phylogenetic clustering is mostly con-
gruent with the distinct haplotypes, that is, major branches
are differently colored. More specifically, the B1 lineage, that is
the most frequent with 3,068 sequences (63.0% of the sam-
ple), forms a distinct group. The sequences of the A lineage
(A, A:1 through A:6), that includes sequences from the early
stages of the pandemic in China, also cluster according to
their sublineage classification. We observe a similar clustering
for the sequences of lineage B. To investigate if the sequences
within the highly supported clades belong to the same line-
age, we inspected 17 highly supported clusters and found that
almost all sequences within each such cluster from part of the
same lineage. Thus, our findings indicate that the outbreak
lineages as identified by the Pangolin tool are, to a large ex-
tent, congruent with the structure and highly supported

FIG. 4. Extended majority rule consensus tree (FMSAO-CE) of the
plausible tree set of the FMSAO alignment. We colored the tree by
the region of origin of each sequence.

FIG. 5. Pangolin tool lineages displayed on the extended majority rule
consensus tree (FMSAO-CE) of the plausible tree set for the FMSAO
data set. We color the tree by Pangolin tool lineages. The numbers in
parentheses next to the pangolin tool lineage labels indicate the
number of taxa in the tree per lineage.
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clusters of the MRE consensus tree computed on the plausi-
ble tree set of the FMSAO data set.

Tree Thinning
For the sake of simplicity, we executed both thinning meth-
ods only on FMSA and SMSA. We executed the support
selection thinning method on the respective MRE consensus
trees (FMSA-CE, SMSA-CE) instead of the MR consensus tree,
as it yielded a thinned tree comprising an order of magnitude
fewer taxa. As the MR consensus comprised too many multi-
furcations, it yielded too small thinned alignments (compris-
ing fewer than 50 taxa) that were not apt for biological
interpretation. As maximum entropy thinning does not re-
quire a tree as an input (see description of the method
above), we executed it directly on the FMSA and SMSA
alignments.

Finally, we also executed a naı̈ve thinning by randomly
removing a given number of sequences from the initial
SMSA and FMSA alignments, to assess if our two thinning
approaches perform better than random thinning.

For improved clarity, we introduced the following nota-
tions for the different thinned alignments we computed:

• F-SST: alignment obtained from the FMSA alignment us-
ing support selection thinning.

• F-MET: alignment obtained from the FMSA alignment
using maximum entropy thinning.

• F-RAND: alignment obtained from the FMSA alignment
using random thinning.

• FMSA-SS-P: plausible tree set of F-SST.
• S-SST: alignment obtained from the SMSA alignment us-

ing support selection thinning.
• S-MET: alignment obtained from the SMSA alignment

using maximum entropy thinning.
• S-RAND: alignment obtained from the SMSA alignment

using random thinning.
• SMSA-SS-P: plausible tree set of S-SST.

We calculated the same quality metrics as used for the tree
inferences on the comprehensive nonthinned MSAs for the
thinned MSAs in table 2. We find that the stability of tree
inferences is slightly improved by support selection thinning
and maximum entropy thinning. The average relative RF

distance between all 100 inferred ML trees decreases on all
four alignment versions from approximately 0.78 down to
0.67 using support selection thinning and down to 0.63 via
maximum entropy thinning. The resolution (r(T)) of the con-
sensi improves for support selection thinning as well as max-
imum entropy thinning. The better MRE resolution of
support selection thinning versus maximum entropy thin-
ning is due to the design of the support selection algorithm
that uses the MRE on the comprehensive tree as an input. In
other words, the method works as intended. Further, we can
reduce the size of the plausible tree set by approximately 40–
50% with both approaches. Nonetheless, the substantial re-
duction in the number of taxa by these thinning approaches
does not alleviate the problem of weak signal and multiple
ML optima.

Finally, we find that support selection thinning and max-
imum entropy thinning perform consistently better than ran-
dom thinning.

Rooting
In tables 3 and 4, we present the results for the outgroup
rooting analyses using EPA-NG for the pangolin and bat out-
group sequences, respectively.

We present the mean placement probability (likelihood
weight) and its SD for the most likely placements of all trees
contained in the respective plausible tree sets obtained for
the comprehensive MSAs. Remember that FMSAO and
SMSAO stand for alignments conducted with MAFFT includ-
ing the outgroups, whereas FMSAO-HMMER and SMSAO-
HMMER represent the ingroup MSAs (excluding the out-
groups) to which we subsequently aligned the outgroup
sequences via hmmalign in a separate step. We did this to
assess the potential impact of the alignment procedure onto
the placement result. Note that, a mean placement

Table 2. Metrics for the Thinned Alignment Versions.

Metric F-SST F-MET F-RAND S-SST S-MET S-RAND

Taxa 912 912 912 434 434 434
ML trees RF 0.67 0.66 0.77 0.68 0.63 0.79
Search RF 0.19 0.20 0.15 0.21 0.21 0.18
Plausible trees 39 45 73 31 47 59
MR resolution 0.166 0.218 0.144 0.164 0.245 0.141
MRE resolution 0.918 0.842 0.72 0.912 0.85 0.72

NOTE.—Taxa is the number of taxa in the alignment. ML trees RF is the average
relative RF distance between all 100 inferred ML trees. Search RF is the average
relative RF distance between the parsimony starting trees and the final ML trees of
the respective tree searches on these starting trees. Plausible trees represents the
number of trees (out of 100) in the plausible tree sets. MR and MRE resolutions are
the resolution ratios (see definition in the text) of the MR and MRE trees computed
on the plausible tree sets.

Table 3. EPA-NG Root Placement Probability and Entropy Statistics
for the Pangolin Outgroup Sequence over All Trees in the Respective
Plausible Tree Sets for Distinct MSA Versions.

Alignment Max LWR LWR Entropy

Mean SD Mean SD

FMSAO 0.033 0.001 5.332 0.010
FMSAO-HMMER 0.034 0.000 5.325 0.010
SMSAO 0.647 0.010 2.074 0.046
SMSAO-HMMER 0.001 0.000 5.634 0.000

NOTE.—Highlighted in italics is the highest confidence signal, which is the only
among all tested data sets to reach >0.04 mean LWR.

Table 4. EPA-NG Root Placement Probability and Entropy Statistics
for the Bat Outgroup Sequence over All Trees in the Respective
Plausible Tree Sets for Distinct MSA Versions.

Alignment Max LWR LWR Entropy

Mean SD Mean SD

FMSAO 0.037 0.001 5.437 0.009
FMSAO-HMMER 0.037 0.001 5.438 0.008
SMSAO 0.025 0.001 5.378 0.006
SMSAO-HMMER 0.004 0.000 5.546 0.013
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probability value of 0.033 represents a placement probability
of the outgroup onto the most likely branch of the reference
phylogeny amounting to 3.3%. To further characterize the
LWR distribution over the branches of the tree, we computed
the mean and SD of the entropy, calculated across each LWR
distribution of the outgroup on a given tree (see subsection
Outgroup Rooting with EPA-NG).

As tables 3 and 4 show, support for an outgroup rooting
using either the bat or the pangolin sequence was generally
low (<0.04). The only exception is a possible well-supported
pangolin-based rooting of the plausible trees in the SMSAO
data set. This is surprising, as, with the exception of a small
fragment in the spike protein, the pangolin is more divergent
from the ingroup than the bat. For this specific alignment,
EPA-NG yielded a well-supported placement of the pangolin
outgroup for all plausible trees, yet always residing on the
terminal branch leading to sequence EPI_ISL_411956
(GISAID accession). Although this sequence is among the
early sequences of the pandemic, a placement of the root
on the branch leading to it, does not appear to be epidemi-
ologically plausible.

This is because, this strain has been collected in the United
States on February 11, 2020 and is not among the viral strains
isolated at the early stage of the pandemic in Asia that are
included in our analysis. More specifically, although the se-
quence EPI_ISL_411956 has been assigned to lineage A (see
https://cov-lineages.org/ and Rambaut et al. 2020; corre-
sponding to lineage 19B and S according to the nextstrain
and GISAID classifications, respectively) which is considered
as the root lineage of the pandemic, it is not among the
earliest sampled sequences from China and other Asian
regions in our analyses. As suggested before (G�omez-
Carballa et al. 2020), the sequences sampled during the early
stage of the pandemic in Asia are considered as being the
most plausible ones for rooting the tree.

Further, this specific root placement also appears to also be
computationally implausible, as the placement signal was
only present in one out of the four MSA versions. After prun-
ing EPI_ISL_411956 from SMSAO-B and SMSAO and subse-
quently recalculating the pangolin placement, the placement
confidence was lower (0.176). In addition, the new placement
location with 0.176 support is located at a large distance to
the initial highly supported location of EPI_ISL_411956. The
path length, in terms of inner nodes along the tree, between
the initial and the new placement location amounts to 105
inner nodes.

As we suspected that the confident placement of the pan-
golin constitutes an artifact of the alignment process, we
repeated the MSA procedure under distinct settings.
Initially, we removed the bat outgroup from the initial set
of unaligned sequences. This yielded an increased LWR (Mean
0.87, SD 0.002) for placing pangolin on the branch leading to
EPI_ISL_411956. Second, we added two additional bat out-
group sequences (MG772933 and MG772934) to the un-
aligned sequence set. Although this lowered the LWR of
the pangolin placement (Mean 0.206, SD 0.01, again located
on the branch leading to EPI_ISL_411956), the signal was still
considerably stronger than for all other outgroups and MSA

versions. A visual inspection of the SMSAO alignment to
identify the reasons for the strong pangolin placement signal
was inconclusive. The same holds true for an inspection of the
per-site log-likelihood values for pangolin placements into
distinct branches (including the highly supported one) of
the corresponding best ML tree (SMSAO-B).

Overall, despite our efforts, we were not able to disentangle
the reasons behind this strong, yet epidemiologically implau-
sible placement of the pangolin. The additional experiments
we conducted using alternative outgroups indicate that this is
potentially due to an alignment artifact in just one out of
the four alignment versions we scrutinized. Hence, not only
the tree inference itself but also the alignment strategy used
can impact the results of phylogenetic postanalyses of
SARS-CoV-2.

In an additional experiment, we assessed if one of the early
sequences from Wuhan (EPI_ISL_406801 Wuhan/WH04/
2020) can be used for rooting. As it was initially filtered out
in the MSA assembly step, we first aligned it to all four
ingroup MSA versions via hmmalign and subsequently com-
puted placement weights for inserting it into all branches of
all ingroup phylogenies in the respective plausible tree sets
using EPA-NG. We found that there is no strong signal in
terms of placement weight (maximum mean LWR among all
four MSA versions of 0.02) for confidently placing this early
Wuhan sequence onto the tree.

We present our results for the root placement certainty as
calculated with the RootDigger tool on the ingroup phylog-
eny in table 5. We executed RootDigger searches on the four
plausible tree sets inferred on the FMSA, SMSA, FMSA-SS,
SMSA-SS (thinned FMSA, and SMSA alignments with sup-
port selection thinning, see previous section). As mentioned
above, we performed RootDigger analyses only on the top 5%
of the trees in the respective plausible tree sets due to exces-
sive runtimes. This resulted in performing rooting analysis on
eight trees from FMSA-P, four trees from FMSAN-SS-P, eight
trees from SMSA-P, and four trees for SMSA-SS-P. We used
the same method to calculate the LWR entropy of
RootDigger root placements as for the EPA-NG results above.

Although the root inferences on the thinned MSAs do not
yield strong signal for any particular root placement, this is
not the case for the original alignments. In particular, we
obtain a strong average (over the eight trees with the highest

Table 5. Results of RootDigger Analysis for Different MSA Versions.

Alignment Max LWR LWR Entropy

Mean SD Mean SD

FMSA 0.240 0.006 8.053 0.059
FMSA-SS 0.041 0.001 7.872 0.036
SMSA 0.613 0.038 4.279 0.474
SMSA-SS 0.101 0.002 7.327 0.023

NOTE.—Because of excessive runtimes, for every data set, we only analyzed the 5% of
trees with the highest likelihood with RootDigger in exhaustive mode. To further
summarize the results, we also compute the entropy of the LWR distributions for
each resulting tree and report the average for each data set. The results are averages
over the included plausible trees. Highlighted in italics is the highest confidence
signal.
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likelihood score) root placement signal for a specific root on
the SMSA alignment which we discuss in further detail below.

To this end, we visually inspected the eight rooted trees for
SMSA as inferred with RootDigger. For two out of eight trees
(trees 1 and 2, trees are labeled 0� 7), we observed an epi-
demiologically plausible root placement, since among the
sequences which cluster close to the inferred root, there are
several from Wuhan and other Asian areas sampled during
the early phase of the pandemic. We show the respective
rooted ML tree number 2 colored by geographic regions in
figure 6. Nonetheless, we obtained such a virologically plau-
sible root placement with RootDigger only for 25% of the
rooted trees and only for one out of four alignment versions.
Hence, the plausibility of the root placement heavily depends
on the selected MSA version as well as selected tree from the
plausible tree set and the results cannot be generalized.

The same holds for the outgroup placements with EPA-
NG. Here, although we do again observe a relatively strong
signal only on one out of four alignment versions, the out-
group placement location does not appear to be virologically
plausible. Thus, we conclude that the root of the SARS-CoV-2
phylogeny cannot be reliably determined via the methods we
have applied here. An independent study on root placement
using distinct computational methods comes to analogous
conclusions (Pipes et al. 2020). A further study (G�omez-
Carballa et al. 2020) concludes that it is difficult yet not im-
possible, whereas Andersen et al. (2020) propose two main
hypotheses for the origin of the pandemic.

mPTP
The mPTP runs on all plausible tree sets using the longest
branch rooting option and either the ML delimitation or the
MCMC delimitation procedures yielded a species count of 1.

This means that mPTP in default mode cannot distinguish if
there is one species or if there are n species, where n is the
number of taxa in the given phylogeny.

The mPTP runs that explored all possible rootings on all
plausible tree sets under the ML delimitation option exhibit a
large variance in results.

We show a representative histogram for the SMSA-P set of
plausible trees in figure 7 for the median number of delimited
species over all possible rootings per plausible tree. The results
on the remaining data sets were analogous (data not shown).
The maximum number of delimited species for all rootings
per tree in SMSA-P ranged between 198 and 781 with a flat
distribution (i.e., two identical maximum species counts
appeared 9 times, and three identical ones only once). The
minimum number of delimited species was 1 for all trees in
SMSA-P.

We hence conclude that mPTP cannot be used to delimit
distinct subclasses of the virus as the default mode (rooting at
the longest branch) consistently yielded inconclusive delim-
itations. Further, as shown by our experiments that evaluate
all possible rootings, the number of delimited species exhibits
a large variance as a function of the root position and is hence
also inconclusive. Given that, the trees can, in general, not be
reliably rooted, we conclude that we cannot delimit/classify
the viral sequences using mPTP. Other authors have also put
into question our ability to identify distinct virus types using
alternative computational methods (MacLean et al. 2020).

Discussion
We studied the intrinsic difficulties of inferring and postpro-
cessing phylogenetic trees on the May 5 snapshot of the
available whole-genome data for SARS-CoV-2. To quantify
the impact of distinct filtering and alignment strategies, we
use four different alignment versions throughout our
analyses.

We find that the tree search task per se is difficult due to
the rugged likelihood surface that exhibits a multitude of local
optima. We cannot distinguish among the majority of these
local optima via standard statistical significance tests and
observe large pairwise topological differences that exceed
70%. We therefore suggest that instead of using and display-
ing a single tree one should compute summary statistics on a

FIG. 6. Rooted SMSA Maximum Likelihood tree number 2. We color
the tree by geographic regions and root it via RootDigger using a
nonreversible model of nucleotide substitution. The tree inference
randomly resolved multifurcations by introducing branches of length
zero. For visualization purposes, we collapsed these branches, hence
yielding a multifurcating tree again.
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“plausible tree set” that comprises the indistinguishable local
maxima of the tree search space that were found by the
respective search algorithm.

Although the clustering in the consensus tree in figure 4
appears to segregate well by region, several nodes receive low
support. Therefore, our confidence regarding the observed
clusters is not high, despite the fact that they appear to be
epidemiologically plausible and do contain sequences sam-
pled from the same geographic region. As we generally advo-
cate for being cautious when interpreting results, we solely
assess if the highly supported clades comprising sequences
from a single geographic area match epidemiological expect-
ations. We find that there do exist some plausible clusters
that are well supported and appear to be insulated from the
substantial data analysis challenges we describe. In addition,
the phylogenetic tree structure is mostly concordant with the
lineage scheme inferred via the Pangolin tool (see fig. 5).

Beyond these computational challenges, biological phe-
nomena such as homoplasies, convergent evolution, and po-
tential recombination events may constitute another key
contributing factor for observing numerous indistinguishable
local ML optima. Yet, the phenomenon of rugged likelihood
surfaces has also been observed for empirical data sets that
are less prone to the aforementioned phenomena.

Another challenge is that, since downloading our data
snapshot in May, tens of thousands of additional genomes
have been sequenced and uploaded surpassing 167,000 at
present (https://www.gisaid.org/, accessed October 30,
2020). Therefore, likelihood-based analyses of these data cur-
rently also face substantial computational challenges, yet
tools such as FastTree (Price et al. 2010) might still be able
to handle them. Given the increased number of sequences in
conjunction with the already weak signal in our data snap-
shot, we expect the issues described here to become even
more prevalent for the currently available data. Furthermore,
more advanced tree thinning strategies than presented here
need to be developed. In addition, a plausibility assessment
via visual inspection of respective consensus trees and iden-
tifying clustering patterns for geographic regions as con-
ducted here might not be feasible any more. This is
because mobility increased substantially with the end of
lock-downs in numerous countries around May and June
2020.

Although using an ML approach to infer trees, our post-
analysis strategy rather follows a Bayesian paradigm. Thus, the
question arises if one could use Bayesian inference via MCMC
methods directly. Because of the size of the data sets, their
lack of signal, and the large number of taxa we expect MCMC
analyses to require excessive runtimes to reach and explore
some of the peaks we identified with the more targeted ML
searches. In addition, our experience, based on user interac-
tions, is that MCMC analyses are more difficult to properly set
up and interpret than ML analyses, especially on such a chal-
lenging data set that requires a profound understanding of
the underlying methods.

To this end, the current common practice of inferring
SARS-CoV-2 phylogenies under the default search parameters
of standard ML inference tools corresponds to randomly

picking (without potentially being aware of it) a tree from
the plausible tree set. Due to the large topological variations,
the respective conclusions that we draw can constitute a
product of pure chance.

Beyond this, we also identified substantial numerical issues
pertaining to the optimization of branch lengths and the
rates in the free rates model of rate heterogeneity. Branch
length optimization is problematic because the sequences are
highly similar and, as a consequence, the branch lengths are
short. Thus, assessing the effect of the minimum branch
length setting in ML inference tools on the results constitutes
a necessary prerequisite for conducting thorough phyloge-
netic analyses of these data. The issues associated with the
parameter optimization in the free rates model are likely to
not only occur on difficult data sets but we believe that they
become more prevalent on such.

We also address the problem of reducing the size of the
plausible tree sets in the hope that a reduction in size will
induce a decrease of average pairwise RF distances and an
increase of consensus tree resolution, thereby simplifying the
interpretation and postanalyses. In addition, we can also in-
terpret a reduction of the plausible tree set size as an indicator
of stronger signal. To this end, we introduce and test two
novel tree thinning algorithms that strive to maximize the
entropy and support of the thinned alignments and respec-
tive trees. Although these algorithms do reduce the size of the
plausible tree sets and perform better than random thinning,
the plausible tree sets still remain comparatively large (com-
prising approximately 40 out of 100 ML trees) and diverse
(average pairwise topological RF distance among the plausible
trees slightly <70%).

Overall, we believe that using an MRE consensus tree in-
ferred on the plausible tree sets represents a reasonable ap-
proach to carefully interpreting the results by taking into
account the ruggedness of the tree search space. For certain
epidemiological assessments, it will suffice if the branching
order near the tips of the phylogeny is well resolved.

With respect to postanalyses, we find that rooting the trees
either via outgroup placement or by using nonreversible
models of evolution does not yield a clear root position.
Obtaining an epidemiologically reasonable root with some
statistical support appears to be a matter of chance: it
depends on the specific tree topology used for conducting
the rooting analysis, which we selected from the plausible tree
set inferred from one specific alignment. With respect to
outgroup placement, the single strong, yet epidemiologically
implausible signal was also observed on one specific align-
ment version only. We cannot draw general, nor confident
conclusions about the position of the root using the two
mathematically highly distinct approaches that we have
deployed here. This confirms analogous independent findings
(Pipes et al. 2020).

Finally, we find that distinct viral subclasses cannot be
identified by executing our mPTP tool for molecular species
delimitation on all trees in the respective plausible tree sets of
all four alignment versions.
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Conclusions
Phylogenetic analysis of SARS-CoV-2 data is challenging due
to numerical difficulties and the rugged likelihood surface.
Therefore, we strongly advocate against naı̈vely using the de-
fault parameters of common ML programs to just infer “a
tree” and using this single tree for epidemiological interpre-
tation or any type of postanalysis.

We are also skeptical about the utility of computing boot-
strap support values, as the data sets as such only contain a
low number of distinct site patterns while containing thou-
sands of taxa. One should preferably invest computational
effort to more exhaustively sample the rugged likelihood sur-
face which already constitutes a source of large topological
variability.

As the phylogenetic signal is weak, we suggest using a
plausible tree set comprising all ML trees from independent
tree searches that we cannot distinguish from each other via
the standard phylogenetic significance tests, but that does
adequately represent the rugged tree search space.

In analogy to summarizing results from Bayesian tree infer-
ences, we suggest to use this plausible tree set for computing
summary statistics on the trees such as the MR or MRE
consensi. Also, we should conduct and summarize all poten-
tial postanalyses on such plausible tree sets to better capture
topological uncertainty and circumvent potential misinter-
pretations that can be caused by randomly picking a tree
from the plausible tree set.

To this end, we believe that we need to develop novel
methods that can automatically summarize such plausible
tree sets. In addition, there is a need for theoretical work
on criteria to identify data sets that exhibit rugged likelihood
surfaces, as the term is admittedly colloquial and vague at
present. Ideally, phylogenetic inference programs should be
able to identify such difficult data sets and either warn the
users about it or by default conduct multiple ML searches and
automatically return a plausible tree set.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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