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Abstract 

 
Many fields, such as neuroscience, are experiencing the vast proliferation of cellular data, underscoring 
the need for organizing and interpreting large datasets. A popular approach partitions data into 
manageable subsets via hierarchical clustering, but objective methods to determine the appropriate 
classification granularity are missing. We recently introduced a technique to systematically identify 
when to stop subdividing clusters based on the fundamental principle that cells must differ more 
between than within clusters. Here we present the corresponding protocol to classify cellular datasets 
by combining data-driven unsupervised hierarchical clustering with statistical testing. These general-
purpose functions are applicable to any cellular dataset that can be organized as two-dimensional 
matrices of numerical values, including molecular, physiological, and anatomical datasets. We 
demonstrate the protocol using cellular data from the Janelia MouseLight project to characterize 
morphological aspects of neurons. 
 
Introduction 

 
Biomedical data in many fields are accumulating at ever increasing rates1–3, and neuroscience is no 
exception4,5. In particular, large numbers of individual cells are now routinely characterized with high-
throughput molecular sequencing and microscopic imaging, prompting multiple large-scale projects for 
comprehensive cellular classification across organisms and biological systems6,7. The most popular 
approach to managing a cumbersome dataset is to partition it into more intelligible parts using 
hierarchical clustering8–12. However, there is no agreed-upon objective method to determine the 
appropriate granularity of clusters13. Instead, after generating a clustering dendrogram from a dataset, 
an expert, but somewhat arbitrary, scientific judgement typically guides the final data classification by 
drawing a single horizontal line across the dendrogram14,15. We recently devised an original technique to 
improve this practice based on the fundamental principle that cells must differ more significantly 
between than within classes16. This simple reasoning can be implemented algorithmically by combining 
unsupervised hierarchical clustering with rigorous statistical test of variance17, yielding an intrinsically 
data-driven classification.  
 
The main protocol describes the execution of this enhanced cellular classification starting from any 
dataset organized as a two-dimensional matrix of numerical values, with rows and columns respectively 
representing individual cells and their features, such as gene expression or morphological traits. As 
customary, pairwise distances between the horizontal vectors of cellular values undergo unsupervised 
hierarchical clustering to generate a dendrogram (Figure 1). Starting from the top of the dendrogram 
(encompassing all cells) and proceeding down, at every branching point the (remaining) data are 
shuffled to generate an equivalent but homogeneous distribution of values. Next, the distribution of 
pairwise vector distances from the original data is compared to the distribution of pairwise vector 



distances from the shuffled data. The rationale is that, if the original data consists of (at least) two 
classes, its pairwise distances will include both (smaller) intra-class differences and (larger) inter-class 
differences, thus yielding a wider distribution than that resulting from the shuffled data, which instead 
represent the “one-class” null hypothesis. Specifically, Levene’s one-tailed statistical test rigorously 
assesses whether the variance of the original distribution is significantly greater than the variance of the 
shuffled distribution. If so, the original data are partitioned into two separate classes in accordance with 
the clustering dendrogram, and the procedure repeats to analyze each of the distinct branches 
independently. If not, progress ceases down this branch of the dendrogram, and all cells below this 
point are classified as belonging to the same cluster. Note that this enhanced classification scheme 
creates a multi-tiered partitioning of the clustering dendrogram, because each branch will stop at its 
own distinct, data-driven granularity, thus providing a more refined data classification.  
 

 
Figure 1. Pipeline for combining unsupervised hierarchical clustering with Levene’s one-tailed statistical 
test to reveal the inherent classifications in cellular data. A) The set of pairwise distances between the 
horizontal vectors of the two-dimensional data matrix undergoes unsupervised hierarchical clustering to 
generate a dendrogram. B) The first branching point in the dendrogram is evaluated: can the cellular 
data be partitioned into at least two classes? C) The matrix of original data is shuffled to generate an 
equivalent distribution of homogeneous data values, corresponding to the null (one-class) hypothesis. 
D) The pairwise vector distances from the original and shuffled datasets are computed for statistical 
comparison. E) The widths of the original and shuffled distance distributions are quantified in terms of 
their variances. F) Levene’s one-tailed statistical test is used to compare the original and shuffled 
variances. G) If the variance of the original distribution is statistically greater, then the data are 
partitioned into two separate classes according to the clustering dendrogram, and the process is 
repeated at each of the subsequent branches. H) If the original variance is not statistically greater, the 
procedure stops, and all cells located below the current branch are classified as belonging to the same 
cluster. 
 
The secondary protocol presented here describes the execution of other functions of the same 
computer program, which were developed to analyze specific characteristics of the cellular data 
generated by the Janelia MouseLight project18. Based on the three-dimensional reconstructions of 
neurons, which are downloadable either from MouseLight (https://ml-neuronbrowser.janelia.org) or 
from the repository NeuroMorpho.Org19, these data are numerical descriptions of how the parts of 

varorig > varsh?

Y

N

stop

original
data

homogeneous
distribution

compute
pairwise
distances

compute
pairwise
distances

B

C D E

G

F

H

A

>1 class?

shuffle

distorig

distsh



neurons, such as axonal and dendritic branches, are distributed across regions of the brain. The 
functions analyze the divergence and convergence of axonal projections, the soma distributions, the 
population sizes of identified clusters, and the Strahler order numbers.  
 
Figures accompany both protocols to convey what the user can expect when executing the various 
functions of the program. The example data matrix referenced in these figures is from the Janelia 
MouseLight project and represents the amount of axonal presence the neurons have in each of the 
arrayed brain regions, which forms the basis of an approach for classifying neurons20,21. The program is 
designed to be executable on a basic laptop or desktop computer loaded with readily available software. 
 
Equipment. 
 

1. Standard personal computer: the described analyses were run on a 2019 16” MacBook Pro 
running macOS Ventura 13.6.1. 

 
Software. 
 

1. Custom-written MATLAB algorithms, in conjunction with exemplary data files, are freely 
accessible22 through a GitHub repository (https://github.com/Projectomics/MATLAB). 

2. MATLAB commercial license: the described algorithms were run with MATLAB 23.2.0.2365128 
(R2023b). 

 
Image dataset and additional requirements. 
 

1. Janelia MouseLight reconstructions (https://www.janelia.org/project-
team/mouselight/neuronbrowser/), both JSON and SWC versions23. 

2. Tract values from a source, such as the regional connectivity from anterograde tracing to the 
known targets, as presented in the Allen Mouse Brain Connectivity Atlas 
(http://connectivity.brain-map.org/projection). 

 
Protocol Formatting. 
 

1. File and directory names are in “double quotes.” 
2. MATLAB commands or functions are in italics. 
3. Variable names are in the font Courier New. 
4. Menu selections for the analyses are in ‘single quotes.’ 
5. A labeled step in the protocol is in bold font. 

 
Procedures for General Modality-free Data. 
 

1. Organize the main input matrix in the manner of 
“PRE_matrix__axonal_counts_per_neuron_per_parcel.xlsx,” where the number of counts for 
each neuron per category is stored and where the counts for each neuron compose a row vector 
whose components are the counts in each category. For example, neuron information is listed 
across each row, and parcel information listed down each column (Figure 2). 

 



 
Figure 2. Main source data file. 
 

2. Run main_menu_selector(). Including no variable arguments will default to setting the variables 
nShuffles = 100,000 and isUseOriginalAlgorithm = 1. 

i. nShuffles is the number of times the original data file is shuffled to generate a 
randomized version for the determination of the statistical significance of the value 
distributions in the original data file. 

ii. isUseOriginalAlgorithm determines whether the shuffling algorithm used is 
the one from the manuscript (= 1) or a newer improved algorithm that more 
completely randomizes the data (= 0). 

3. Choose the function to use to process the selected data file (Figure 3). 
 

 
Figure 3. Main menu selection screen. 
 

i. The potential functions to be called can be expanded by editing the choices 
variable in the function select_function(), which is found in the “lib” folder, and any 
additional functions will have to be added to elseif selections in 
main_menu_selector(). 

ii. Select ‘Shuffle Data’ to create a randomized version of the original data file in the 
manner described by Wheeler et al. (accepted). 

1. Select the data-file name base to process (Figure 4). 
 

 
Figure 4. Data file selection screen. 
 

a. All possible data name bases are stored in the file 
“data_file_name_bases.xlsx.” The file name is stored in the variable 
dataFileNameBase, e.g., 
“PRE_matrix__axonal_counts_per_neuron_per_parcel,” and the 
“.xlsx” suffix is automatically applied to assigned to 
dataFileNameBase when it is needed. 



2. The function shuffle_raw_updated() is called automatically, where the 
parameters being passed are the input file name, the label for the number 
of shuffles, the number of shuffles, and the flag determining which shuffling 
algorithm to use. 

3. The function shuffle_matrix() is called automatically, where the parameters 
being passed are the original data matrix, the number of shuffles, and the 
flag determining which shuffling algorithm to use. 

a. A value from the data matrix is selected, as is another value from a 
different row and a different column. 

b. For the original shuffling algorithm, the maximum possible value 
(maxBound) to be swapped is determined from the four values 
that are derived from the two rows and two columns involved in the 
swap by always starting by directly comparing the top left value to 
the bottom right value. 

c. For the newer improved shuffling algorithm, which balances 
whether the top-left to bottom-right or the top-right to bottom-left 
diagonal is considered first, find the minimal values comparing the 
top-left to the bottom-right (minTopLeftBottomRight) and 
comparing the top-right to the bottom-left 
(minTopRightBottomLeft). 

d. The randomized data matrix is automatically saved to the “data/” 
and “output/” directories. 

i. The auto-generated example randomized output file is 
named in the manner of 
“PRE_matrix__axonal_counts_per_neuron_per_parcel__10
0K__fully_shuffled_yyyymmddHHMMSS.xlsx,” where ‘yyyy’ 
is the 4-digit year, ‘mm’ is the 2-digit month, ‘dd’ is the 2-
digit day, ‘HH’ is the 2-digit hour in 24-hour format, ‘MM’ is 
the 2-digit minute, and ‘SS’ is the 2-digit seconds. 

iii. Select ‘Statistically Analyze Data’ to statistically compare the original data file to the 
randomized data file and to generate the associated histograms, which tally the 
angles between the count vectors for the original data and for the randomized data. 

1. Select the data-file name base to process (Figure 3). 
2. Select the shuffled data-file name base to process (Figure 5). 

 

 
Figure 5. Shuffled data file selection screen. 
 

3. The function determine_vector_angles() is automatically called, where the 
parameters being passed are the file name of the data (either original or 
randomized), the label for the number of shuffles, and a value of 0 or 1 for 



the flag that determines whether to use the label for the number of shuffles 
(1 for original data and 0 for randomized data). 

a. The necessary data file is loaded, where the original data file is 
loaded automatically, and the randomized data is loaded after a 
selection is made from a presented menu listing, such as 
“PRE_matrix__axonal_counts_per_neuron_per_parcel__100K__full
y_shuffled_yyyymmddHHMMSS.xlsx.” 

b. The function compute_angle_between_vectors() is automatically 
called, where the parameter being passed is the data matrix. The 
count row vectors in the data matrix are compared two at a time by 
taking the arccosine of the dot product of the two row vectors to 
determine the angle between them, and a matrix is returned, which 
contains the number of the first row vector being compared in the 
first column, the number of the second row vector being compared 
in the second column, and the angle between the two row vectors 
in the third column (Figure 6). 

 

 
Figure 6. Vector differences data file. 
 

c. The data are automatically saved to the “data/” and “output/” 
directories. The auto-generated file for the original data is named in 
the manner of 
“PRE_matrix__axonal_counts_per_neuron_per_parcel__100K__ang
les_yyyymmddHHMMSS.xlsx,” and the auto-generated example file 
for the randomized data is named in the manner of 
“PRE_matrix__axonal_counts_per_neuron_per_parcel__100K__full
y_shuffled_yyyymmddHHMMSS 
__angles_yyyymmddHHMMSS.xlsx.” 

4. The function create_scaled_histogram() is automatically called, where the 
parameters being passed are the differences matrix for the original data, 
the differences matrix for the randomized data, and the label for the 
number of shuffles. The parameters being returned are the p-value and the 
statistics resulting from the one-tailed Levene’s test between the original 
and randomized data. 

a. A figure is generated (Figure 7), which overlays the histogram of the 
original data (blue) with that of the randomized data (orange), and 
it is saved to the “output/” directory in a MATLAB figure file named 
in the manner of 
“PRE_matrix__axonal_counts_per_neuron_per_parcel__100K__hist
ogram_yyyymmddHHMMSS.fig” and to a PNG file named in the 
manner of 
“PRE_matrix__axonal_counts_per_neuron_per_parcel__100K__hist
ogram_yyyymmddHHMMSS.png.” 

 



 
Figure 7. Histogram of angle differences between the original and shuffled data. 
 

b. Reported are the variances of the distributions of the original and 
randomized data, and the p-value resulting from a statistical 
comparison of the original and randomized data using a one-tailed 
Levene’s test to determine if the variance of the original data is 
significantly larger than the variance of the randomized data. 

iv. Select ‘Hierarchical Clustering’ to generate a clustering dendrogram, where the 
original data are statistically compared to a randomized version of the original data 
by performing a one-tailed Levene’s test at each potential branching point. 

1. Select the data-file name base to process (Figure 3). 
2. Select the vector differences file for the original data (Figure 8). 

 

 
Figure 8. Angles data file selection screen. 
 

3. The function hierarchical_clustering() is automatically called, where the 
parameters being passed are the file name for the vector differences for the 
original data, the label for the number of shuffles, the number of shuffles, 
and the flag determining which shuffling algorithm to use. 

a. The dendrogram is generated using the built-in linkages() function 
with the ‘average’ parameter setting (Figure 9) and is saved to the 
“output/” directory in a MATLAB figure file named in the manner of 
“PRE_matrix__axonal_counts_per_neuron_per_parcel__100K__ave
rage_dendrogram.fig” and in a PNG file named in the manner of 
“PRE_matrix__axonal_counts_per_neuron_per_parcel__100K__ave
rage_dendrogram.png.” 

 



 
Figure 9. Hierarchical clustering dendrogram. 
 

b. A listing of which neuron entries (or row numbers) in the original 
dataset correspond to separate clusters is generated and saved to 
the “output/” directory with a format in the manner of 
“PRE_matrix__axonal_counts_per_neuron_per_parcel__neuron_nu
mbers_by_cluster_yyyymmddHHMMSS.xlsx.” 

c. A listing of which neuron names (or row labels) in the original 
dataset correspond to separate clusters is generated and saved in 
five separate files. The listing is saved to the “output/” directory and 
is named in the manner of 
“PRE_matrix__axonal_counts_per_neuron_per_parcel__neuron_na
mes_by_cluster_yyyymmddHHMMSS.xlsx.” The listing is also saved 
to the “data/” directory and is named in the manner of 
“divergence__PRE_matrix__axonal_counts_per_neuron_per_parcel
__neuron_names_by_cluster_yyyymmddHHMMSS.xlsx,” 
“convergence__PRE_matrix__axonal_counts_per_neuron_per_parc
el__neuron_names_by_cluster_yyyymmddHHMMSS.xlsx,” 
“somata__PRE_matrix__axonal_counts_per_neuron_per_parcel__n
euron_names_by_cluster_yyyymmddHHMMSS.xlsx,” and 
“nnls__PRE_matrix__axonal_counts_per_neuron_per_parcel__neur
on_names_by_cluster_yyyymmddHHMMSS.xlsx.” 

d. NNLS preparation: A listing of the counts per parcel (for neuronal 
data) per cluster is generated in preparation for the non-negative 
least squares analysis and saved to the “output/” directory with a 
format in the manner of 
“PRE_matrix__axonal_counts_per_parcel_per_cluster_yyyymmddH
HMMSS.xlsx.” 
 

Procedures for Janelia MouseLight-Specific Data. 



 
1. Choose the function to use to process the selected data file. 

i. Select ‘Load MouseLight JSON Files and Pre-process Data’ to load all the MouseLight 
JSON files, which describe the locations of all the axonal, dendritic, and somatic points 
that make up a given neuronal reconstruction and save the data to various files. The 
parameter being passed is the current date string, nowDateStr, and the parameter 
being returned is the matrix morphologyMatrix of tallies of all axonal and dendritic 
points and the matrix of locations of all somata. All the MouseLight JSON files are loaded 
from the directory “data/Mouse_Neurons/MouseLight-neurons/.” 

1. The matrix of tallies of all axonal and dendritic points and the matrix of 
locations of all somata are saved to files in the “output/” directory. 

a. The axonal and dendritic counts are saved to a file named in the 
manner of “ALL__axon-
dendrite_counts_yyyymmddHHMMSS.xlsx,” the associated 
neuron names are saved to a file named in the manner of 
“ALL__neurons_yyyymmddHHMMSS.xlsx,” the associated 
targeted parcels are saved to a file named in the manner of 
“ALL__parcels_yyyymmddHHMMSS.xlsx,” the soma locations 
are saved to a file named in the manner of 
“ALL__soma_locations_yyyymmddHHMMSS.xlsx,” a binary 
summary of which parcels are invaded by axons is saved to a file 
named in the manner of 
“ALL__axonal_parcel_invasions_yyyymmddHHMMSS.xlsx,” and 
a summary of the axonal counts per parcel is saved to a file 
named in the manner of 
“ALL__axonal_counts_summary_yyyymmddHHMMSS.xlsx.” 

2. The function filter_matrix() is automatically called in which the columns 
of the matrix, where a particular parcel has no associated axonal counts, 
are filtered out, and the final listing of remaining parcels and the 
resulting matrix of axonal counts are saved to a file, where the 
parameters being passed are morphologyMatrix, the region prefix, 
and nowDateStr, and the parameter being returned is the filtered 
version of morphologyMatrix called filteredRawMatrix. 

a. The filtered file of parcels is saved to the “data/” and “output/” 
directories and is named in the manner of 
“ALL__filtered_parcels_yyyymmddHHMMSS.xlsx,” and the 
matrix of axonal counts is saved to a file in the “data/” and 
“output/” directories and is named in the manner of 
“ALL__axonal_counts_per_parcel_yyyymmddHHMMSS.xlsx.” 

ii. Select ‘Analysis of Axonal Divergence’ to analyze the extent of divergence from the 
source of the clusters (e.g., the presubiculum) to all targeted parcels selected by the 
user. The program automatically targets both the ipsilateral and contralateral parcels 
from the prepared lists when computing the number of axonal point invasions in each 
targeted parcel. 

1. Pre-prepare lists of the parcels targeted by each cluster and save them 
to files in the “data/” directory in the manner of 
“PRE__divergence_parcels__clusterC3.xlsx,” where “PRE” represents 



the originating parcel abbreviation and “3” represents the number of 
neurons associated with the originating parcel cluster “C.” 

a. The list of potential targeted parcels can be found in the “data/” 
directory in a pre-prepared file named something in the manner 
of “PRE__parcel_names.xlsx.” 

2. Select the divergence source file from the “data/” directory (Figure 10), 
stored in the variable neuronNamesByClusterCellArray, that 
groups the neuron names (or row labels) by cluster, where the file 
begins with the phrase “divergence” and is loaded automatically once 
selected, in the manner of 
“divergence__PRE_matrix__axonal_counts_per_neuron_per_parcel__n
euron_names_by_cluster_yyyymmddHHMMSS.xlsx.” 

 

 
Figure 10. Divergence analysis source file selection screen. 
 

3. Enter the abbreviation for the originating parcel for the divergence 
analysis, which is stored in the variable parcelAbbreviation. 

a. Formal parcel abbreviations can be found in the 
“brainAreas.json” file located in the “data/” directory, e.g., 
“PRE” for “presubiculum.” 

4. The function analysis_divergence() is automatically called, which 
automatically steps through all axonal points for each neuron in each 
cluster to determine the total axonal length between points in each 
targeted ipsilateral or contralateral parcel, where the parameters being 
passed are neuronNamesByClusterCellArray and 
parcelAbbreviation. The sets of axonal lengths for the targeted 
parcels are compared to each other using a Wilcoxon Signed Rank Test, 
and the resulting p values from the set of statistical tests are corrected 
for by False Discovery Rate to determine their significance. 

a. A box and whisker plot is generated using the built-in boxplot() 
function and is saved to the “output/” directory in a MATLAB 
figure file named in the manner of 
“PRE__divergence_box_and_whisker_plot__for_clusterE6_ 
yyyymmddHHMMSS.fig” and in a PNG file named in the manner 
of “PRE__divergence_box_and_whisker_plot__for_clusterE6_ 
yyyymmddHHMMSS.png.” 

b. The results of all statistical tests are saved to files in the 
“output/” directory in files named in the manner of 
“PRE__clusterE6__Wilcoxon_and_FDR_yyyymmddHHMMSS.xls
x.” 



iii. Select ‘Analysis of Axonal Convergence’ to analyze the extent of convergence from all 
the clusters in an originating parcel (e.g., the presubiculum) to each targeted parcel 
selected by the user. 

1. Pre-prepare a list of the parcels targeted by each cluster and save them 
to files in the “data/” directory in the manner of 
“PRE__convergence_parcels.xlsx.” 

2. Select the convergence source file from the “data/” directory (Figure 
11), stored in the variable neuronNamesByClusterCellArray, 
that groups the neuron names (or row labels) by cluster, where the file 
begins with the phrase “convergence” and is loaded automatically once 
selected, in the manner of 
“convergence__PRE_matrix__axonal_counts_per_neuron_per_parcel__
neuron_names_by_cluster_yyyymmddHHMMSS.xlsx.” 

 

 
Figure 11. Convergence analysis source file selection screen. 
 

3. Enter the abbreviation for the originating parcel for the convergence 
analysis, which is stored in the variable parcelAbbreviation. 

4. The program automatically loads the convergence parcels into the 
variable parcelsCellArray from a file named in the manner of 
“PRE__convergence_parcels.xlsx.” 

5. The function analysis_convergence() is automatically called, which 
automatically steps through all axonal points for each neuron in each 
ipsilateral or contralateral half of the cluster to determine the total 
axonal length between points in each targeted parcel, where the 
parameters being passed are 
neuronNamesByClusterCellArray, parcelsCellArray, 
and parcelAbbreviation. The sets of axonal lengths for the 
targeted parcels are compared to each other using a Wilcoxon Signed 
Rank Test, and the resulting p values from the set of statistical tests are 
corrected for by False Discovery Rate to determine their significance. 

a. Box and whisker plots are generated using the built-in boxplot() 
function and are saved to the “output/” directory in MATLAB 
figure files named in the manner of 
“PRE__convergence_box_and_whisker_plot__(I)Entorhinal 
area, lateral part_ yyyymmddHHMMSS.fig” and in a PNG file 
named in the manner of 
“PRE__convergence_box_and_whisker_plot__(I)Entorhinal 
area, lateral part_ yyyymmddHHMMSS.png.” 

b. The results of all statistical tests are saved to files in the 
“output/” directory in files named in the manner of 



“PRE__(I)Entorhinal area, lateral 
part__Wilcoxon_and_FDR_yyyymmddHHMMSS.xlsx.” 

iv. Select ‘Soma Analysis’ to analyze the physical distribution of somata locations (e.g., in 
the presubiculum) via the determination of convex hulls for the associated clusters. 

1. Select the somata analysis source file from the “data/” directory (Figure 
12), which groups the neuron names (or row labels) by cluster, where 
the file begins with the phrase “somata,” is loaded automatically once 
selected into the variable neuronNamesByClusterCellArray 
and is named in the manner of 
“somata__PRE_matrix__axonal_counts_per_neuron_per_parcel__neur
on_names_by_cluster_yyyymmddHHMMSS.xlsx.” 

 

 
Figure 12. Somatic analysis data file selection screen. 
 

2. Enter the abbreviation for the originating parcel for the soma analysis. 
3. The function convex_hull_outliers() is automatically called, which 

determines the somata locations for the two clusters being analyzed, 
infers which somata are co-localized in the two clusters, and computes 
the volume fraction of the co-localization based on the convex hull 
volumes of the two clusters. The parameters being passed are 
neuronNamesByClusterCellArray and 
parcelAbbreviationStr. 

4. Select the first cluster to be analyzed. 
5. Select the second cluster to be analyzed. 
6. Multiple output files are generated and saved to the “/output” 

directory. 
a. A figure is generated of the convex hull volumes of the two 

clusters and is saved to a MATLAB figure file named in the 
manner of 
“PRE__clusterD19_and_clusterA38__convex_hulls_with_outlier
s_yyyymmddHHMMSS.fig” and to a PNG file named in the 
manner of 
“PRE__clusterD19_and_clusterA38__convex_hulls_with_outlier
s_yyyymmddHHMMSS.png.” 

b. A figure is generated of the somata locations of the two clusters 
and is saved to a MATLAB figure file named in the manner of 
“PRE__clusterD19_and_clusterA38__somata_locations_yyyym
mddHHMMSS.fig” and to a PNG file named in the manner of 
“PRE__clusterD19_and_clusterA38__somata_locations_yyyym
mddHHMMSS.png.” 

c. A figure is generated of the co-localized somata locations of the 
two clusters overlayed with the convex hull volume of the first 
cluster and the somata locations of the second cluster and is 



saved to a MATLAB figure file named in the manner of 
“PRE__clusterD19_somata_locations_in_intersection_with_clus
terA38_yyyymmddHHMMSS.fig” and to a PNG file named in the 
manner of 
“PRE__clusterD19_somata_locations_in_intersection_with_clus
terA38_yyyymmddHHMMSS.png.” 

d. A figure is generated of the co-localized somata locations of the 
two clusters overlayed with the convex hull volume of the 
second cluster and the somata locations of the first cluster and 
is saved to a MATLAB figure file named in the manner of 
“PRE__clusterA38_somata_locations_in_intersection_with_clus
terD19_yyyymmddHHMMSS.fig” and to a PNG file named in the 
manner of 
“PRE__clusterA38_somata_locations_in_intersection_with_clus
terD19_yyyymmddHHMMSS.png.” 

e. A figure is generated of the co-localized somata locations of the 
two clusters overlayed with the convex hull volumes of the two 
clusters and is saved to a MATLAB figure file named in the 
manner of 
“PRE__somata_locations_in_intersection_of_clusterD19_and_cl
usterA38_yyyymmddHHMMSS.fig” and to a PNG file named in 
the manner of 
“PRE__somata_locations_in_intersection_of_clusterD19_and_cl
usterA38_yyyymmddHHMMSS.png.” 

f. A text file containing the overlap volume percentage of the co-
localized somata locations of the two clusters is saved to a file 
named in the manner of 
“PRE__overlap_volume_of_clusterD19_and_clusterA38_is_15_
percent_yyyymmddHHMMSS.txt.” 

v. Select ‘NNLS Analysis’ to perform a non-negative least squares analysis. 
1. Pre-prepare the data for this analysis by taking the data from the step 

NNLS preparation and adding a last column of tract values from a 
source, such as the regional connectivity from anterograde tracing to 
the m known targets, as presented in the Allen Mouse Brain 
Connectivity Atlas (http://connectivity.brain-map.org/projection). 

2. Select the pre-prepared file (Figure 13), which is named in the manner 
of 
“nnls__PRE_matrix__axonal_counts_per_parcel_per_cluster_and_tract
_values.xlsx.” 

 

 
Figure 13. Non-negative least squares analysis data file selection screen. 
 



3. The function nnls() is called, which automatically bi-normalizes the data 
and applies non-negative least square to the data, where the 
parameters being passed are 
axonalCountsPerParcelPerClusterCellArray and the 
name of the pre-prepared file. Multiple output files are generated and 
saved to the “/output” directory. 

a. Data are normalized by row and saved to a file named in the 
manner of 
“nnls__PRE_matrix__axonal_counts_per_parcel_per_cluster_an
d_tract_values__row_normalized_yyyymmddHHMMSS.xlsx.” 

b. Data are scaled, where each value is divided by the number of 
regions and multiplied by the number of clusters, such that the 
sum of all values is equal to the number of clusters and saved to 
a file named in the manner of 
“nnls__PRE_matrix__axonal_counts_per_parcel_per_cluster_an
d_tract_values__scaled_yyyymmddHHMMSS.xlsx.” 

c. Data are normalized by column and saved to a file named in the 
manner of 
“nnls__PRE_matrix__axonal_counts_per_parcel_per_cluster_an
d_tract_values__column_normalized_yyyymmddHHMMSS.xlsx.
” 

d. Tract values are normalized, and the final bi-normalization data 
are saved to a file named in the manner of 
“nnls__PRE_matrix__axonal_counts_per_parcel_per_cluster_an
d_tract_values__bi_normalized_yyyymmddHHMMSS.xlsx.” 

e. The resulting vector x, where x is the k-dimensional vector 
representing the fractions of neurons in each neuronal class, is 
saved in a file named in the manner of 
“nnls__PRE_matrix__axonal_counts_per_parcel_per_cluster_an
d_tract_values__X_vector_yyyymmddHHMMSS.xlsx.” 

f. The squared Euclidean norm of the residual of the MATLAB 
function lsqnonneg() is calculated and the result saved in a file 
named in the manner of 
“nnls__PRE_matrix__axonal_counts_per_parcel_per_cluster_an
d_tract_values__residual_norm_yyyymmddHHMMSS.xlsx.” 

vi. Select ‘Strahler Order Analysis of the Presubiculum’ to calculate the Strahler order 
values of the axonal branches in the presubiculum subset of the MouseLight dataset. 
The function Strahler() is automatically called with no parameters, which loads 
presubiculum-related SWC files and generates axonal branch-related statistics. Data are 
stored the “data/Mouse_Neurons/MouseLight_PRE-SWC_files/” directory in files named 
in the manner of “AA0021.swc.” Multiple output files are generated and saved to the 
“/output” directory. 

1. On a per neuron basis, the mean branch length, the number of 
branches, and the mean number of reconstruction nodes are listed as a 
function of Strahler order number and are saved to the “/output” 
directory in a file named in the manner of 
“branch_statistics_per_neuron__yyyymmddHHMMSS.xlsx.” 



2. On a per branch basis, the branch length, number of reconstruction 
nodes per branch, and the Strahler order number are listed and are 
saved to the “/output” directory in a file named in the manner of 
“branch_statistics_per_branch__yyyymmddHHMMSS.xlsx.” 

3. New copies of the input SWC files are generated, where reconstruction 
node type is changed from a value of 2 to a value of 5 when the node’s 
Strahler order number is in the range of 1-3 and are saved in a sub-
directory of the “/output” directory named in the manner of 
“MouseLight_PRE_SWC_files_modified_yyyymmddHHMMSS” in files 
named in the manner of “AA0021_modified.swc.” 

 
Conclusions. 
 
Presented are a pair of protocols for the analysis of cellular data: one that involves a general approach 
to cellular classification and another that explores specific characteristics of neuronal data from the 
Janelia MouseLight project. Cellular classification is achieved using unsupervised hierarchical clustering 
that has been enhanced by an associated statistical test. The described computer code is freely 
available22 from a GitHub repository (https://github.com/Projectomics/MATLAB) to facilitate its 
adoption for the study of wide varieties of cellular data. 
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