
A Novel Method for Clustering Cellular Data to Improve Classification

Diek W. Wheeler and Giorgio A. Ascoli*

Center for Neural Informatics, Structures, & Plasticity, Krasnow Institute for Advanced Study; and
Bioengineering Department, Volgenau School of Engineering; George Mason University, Fairfax, VA
22030-4444, USA

*For correspondence: ascoli@gmu.edu

Abstract

Many fields, such as neuroscience, are experiencing the vast proliferation of cellular data, underscoring
the need for organizing and interpreting large datasets. A popular approach partitions data into
manageable subsets via hierarchical clustering, but objective methods to determine the appropriate
classification granularity are missing. We recently introduced a technique to systematically identify
when to stop subdividing clusters based on the fundamental principle that cells must differ more
between than within clusters. Here we present the corresponding protocol to classify cellular datasets
by combining data-driven unsupervised hierarchical clustering with statistical testing. These general-
purpose functions are applicable to any cellular dataset that can be organized as two-dimensional
matrices of numerical values, including molecular, physiological, and anatomical datasets. We
demonstrate the protocol using cellular data from the Janelia MouseLight project to characterize
morphological aspects of neurons.

Introduction

Biomedical data in many fields are accumulating at ever increasing rates1–3, and neuroscience is no
exception4,5. In particular, large numbers of individual cells are now routinely characterized with high-
throughput molecular sequencing and microscopic imaging, prompting multiple large-scale projects for
comprehensive cellular classification across organisms and biological systems6,7. The most popular
approach to managing a cumbersome dataset is to partition it into more intelligible parts using
hierarchical clustering8–12. However, there is no agreed-upon objective method to determine the
appropriate granularity of clusters13. Instead, after generating a clustering dendrogram from a dataset,
an expert, but somewhat arbitrary, scientific judgement typically guides the final data classification by
drawing a single horizontal line across the dendrogram14,15. We recently devised an original technique to
improve this practice based on the fundamental principle that cells must differ more significantly
between than within classes16. This simple reasoning can be implemented algorithmically by combining
unsupervised hierarchical clustering with rigorous statistical test of variance17, yielding an intrinsically
data-driven classification.

The main protocol describes the execution of this enhanced cellular classification starting from any
dataset organized as a two-dimensional matrix of numerical values, with rows and columns respectively
representing individual cells and their features, such as gene expression or morphological traits. As
customary, pairwise distances between the horizontal vectors of cellular values undergo unsupervised
hierarchical clustering to generate a dendrogram (Figure 1). Starting from the top of the dendrogram
(encompassing all cells) and proceeding down, at every branching point the (remaining) data are
shuffled to generate an equivalent but homogeneous distribution of values. Next, the distribution of
pairwise vector distances from the original data is compared to the distribution of pairwise vector

distances from the shuffled data. The rationale is that, if the original data consists of (at least) two
classes, its pairwise distances will include both (smaller) intra-class differences and (larger) inter-class
differences, thus yielding a wider distribution than that resulting from the shuffled data, which instead
represent the “one-class” null hypothesis. Specifically, Levene’s one-tailed statistical test rigorously
assesses whether the variance of the original distribution is significantly greater than the variance of the
shuffled distribution. If so, the original data are partitioned into two separate classes in accordance with
the clustering dendrogram, and the procedure repeats to analyze each of the distinct branches
independently. If not, progress ceases down this branch of the dendrogram, and all cells below this
point are classified as belonging to the same cluster. Note that this enhanced classification scheme
creates a multi-tiered partitioning of the clustering dendrogram, because each branch will stop at its
own distinct, data-driven granularity, thus providing a more refined data classification.

Figure 1. Pipeline for combining unsupervised hierarchical clustering with Levene’s one-tailed statistical
test to reveal the inherent classifications in cellular data. A) The set of pairwise distances between the
horizontal vectors of the two-dimensional data matrix undergoes unsupervised hierarchical clustering to
generate a dendrogram. B) The first branching point in the dendrogram is evaluated: can the cellular
data be partitioned into at least two classes? C) The matrix of original data is shuffled to generate an
equivalent distribution of homogeneous data values, corresponding to the null (one-class) hypothesis.
D) The pairwise vector distances from the original and shuffled datasets are computed for statistical
comparison. E) The widths of the original and shuffled distance distributions are quantified in terms of
their variances. F) Levene’s one-tailed statistical test is used to compare the original and shuffled
variances. G) If the variance of the original distribution is statistically greater, then the data are
partitioned into two separate classes according to the clustering dendrogram, and the process is
repeated at each of the subsequent branches. H) If the original variance is not statistically greater, the
procedure stops, and all cells located below the current branch are classified as belonging to the same
cluster.

The secondary protocol presented here describes the execution of other functions of the same
computer program, which were developed to analyze specific characteristics of the cellular data
generated by the Janelia MouseLight project18. Based on the three-dimensional reconstructions of
neurons, which are downloadable either from MouseLight (https://ml-neuronbrowser.janelia.org) or
from the repository NeuroMorpho.Org19, these data are numerical descriptions of how the parts of

varorig > varsh?

Y

N

stop

original
data

homogeneous
distribution

compute
pairwise
distances

compute
pairwise
distances

B

C D E

G

F

H

A

>1 class?

shuffle

distorig

distsh

neurons, such as axonal and dendritic branches, are distributed across regions of the brain. The
functions analyze the divergence and convergence of axonal projections, the soma distributions, the
population sizes of identified clusters, and the Strahler order numbers.

Figures accompany both protocols to convey what the user can expect when executing the various
functions of the program. The example data matrix referenced in these figures is from the Janelia
MouseLight project and represents the amount of axonal presence the neurons have in each of the
arrayed brain regions, which forms the basis of an approach for classifying neurons20,21. The program is
designed to be executable on a basic laptop or desktop computer loaded with readily available software.

Equipment.

1. Standard personal computer: the described analyses were run on a 2019 16” MacBook Pro
running macOS Ventura 13.6.1.

Software.

1. Custom-written MATLAB algorithms, in conjunction with exemplary data files, are freely
accessible22 through a GitHub repository (https://github.com/Projectomics/MATLAB).

2. MATLAB commercial license: the described algorithms were run with MATLAB 23.2.0.2365128
(R2023b).

Image dataset and additional requirements.

1. Janelia MouseLight reconstructions (https://www.janelia.org/project-
team/mouselight/neuronbrowser/), both JSON and SWC versions23.

2. Tract values from a source, such as the regional connectivity from anterograde tracing to the
known targets, as presented in the Allen Mouse Brain Connectivity Atlas
(http://connectivity.brain-map.org/projection).

Protocol Formatting.

1. File and directory names are in “double quotes.”
2. MATLAB commands or functions are in italics.
3. Variable names are in the font Courier New.
4. Menu selections for the analyses are in ‘single quotes.’
5. A labeled step in the protocol is in bold font.

Procedures for General Modality-free Data.

1. Organize the main input matrix in the manner of
“PRE_matrix__axonal_counts_per_neuron_per_parcel.xlsx,” where the number of counts for
each neuron per category is stored and where the counts for each neuron compose a row vector
whose components are the counts in each category. For example, neuron information is listed
across each row, and parcel information listed down each column (Figure 2).

Figure 2. Main source data file.

2. Run main_menu_selector(). Including no variable arguments will default to setting the variables
nShuffles = 100,000 and isUseOriginalAlgorithm = 1.

i. nShuffles is the number of times the original data file is shuffled to generate a
randomized version for the determination of the statistical significance of the value
distributions in the original data file.

ii. isUseOriginalAlgorithm determines whether the shuffling algorithm used is
the one from the manuscript (= 1) or a newer improved algorithm that more
completely randomizes the data (= 0).

3. Choose the function to use to process the selected data file (Figure 3).

Figure 3. Main menu selection screen.

i. The potential functions to be called can be expanded by editing the choices
variable in the function select_function(), which is found in the “lib” folder, and any
additional functions will have to be added to elseif selections in
main_menu_selector().

ii. Select ‘Shuffle Data’ to create a randomized version of the original data file in the
manner described by Wheeler et al. (accepted).

1. Select the data-file name base to process (Figure 4).

Figure 4. Data file selection screen.

a. All possible data name bases are stored in the file
“data_file_name_bases.xlsx.” The file name is stored in the variable
dataFileNameBase, e.g.,
“PRE_matrix__axonal_counts_per_neuron_per_parcel,” and the
“.xlsx” suffix is automatically applied to assigned to
dataFileNameBase when it is needed.

2. The function shuffle_raw_updated() is called automatically, where the
parameters being passed are the input file name, the label for the number
of shuffles, the number of shuffles, and the flag determining which shuffling
algorithm to use.

3. The function shuffle_matrix() is called automatically, where the parameters
being passed are the original data matrix, the number of shuffles, and the
flag determining which shuffling algorithm to use.

a. A value from the data matrix is selected, as is another value from a
different row and a different column.

b. For the original shuffling algorithm, the maximum possible value
(maxBound) to be swapped is determined from the four values
that are derived from the two rows and two columns involved in the
swap by always starting by directly comparing the top left value to
the bottom right value.

c. For the newer improved shuffling algorithm, which balances
whether the top-left to bottom-right or the top-right to bottom-left
diagonal is considered first, find the minimal values comparing the
top-left to the bottom-right (minTopLeftBottomRight) and
comparing the top-right to the bottom-left
(minTopRightBottomLeft).

d. The randomized data matrix is automatically saved to the “data/”
and “output/” directories.

i. The auto-generated example randomized output file is
named in the manner of
“PRE_matrix__axonal_counts_per_neuron_per_parcel__10
0K__fully_shuffled_yyyymmddHHMMSS.xlsx,” where ‘yyyy’
is the 4-digit year, ‘mm’ is the 2-digit month, ‘dd’ is the 2-
digit day, ‘HH’ is the 2-digit hour in 24-hour format, ‘MM’ is
the 2-digit minute, and ‘SS’ is the 2-digit seconds.

iii. Select ‘Statistically Analyze Data’ to statistically compare the original data file to the
randomized data file and to generate the associated histograms, which tally the
angles between the count vectors for the original data and for the randomized data.

1. Select the data-file name base to process (Figure 3).
2. Select the shuffled data-file name base to process (Figure 5).

Figure 5. Shuffled data file selection screen.

3. The function determine_vector_angles() is automatically called, where the
parameters being passed are the file name of the data (either original or
randomized), the label for the number of shuffles, and a value of 0 or 1 for

the flag that determines whether to use the label for the number of shuffles
(1 for original data and 0 for randomized data).

a. The necessary data file is loaded, where the original data file is
loaded automatically, and the randomized data is loaded after a
selection is made from a presented menu listing, such as
“PRE_matrix__axonal_counts_per_neuron_per_parcel__100K__full
y_shuffled_yyyymmddHHMMSS.xlsx.”

b. The function compute_angle_between_vectors() is automatically
called, where the parameter being passed is the data matrix. The
count row vectors in the data matrix are compared two at a time by
taking the arccosine of the dot product of the two row vectors to
determine the angle between them, and a matrix is returned, which
contains the number of the first row vector being compared in the
first column, the number of the second row vector being compared
in the second column, and the angle between the two row vectors
in the third column (Figure 6).

Figure 6. Vector differences data file.

c. The data are automatically saved to the “data/” and “output/”
directories. The auto-generated file for the original data is named in
the manner of
“PRE_matrix__axonal_counts_per_neuron_per_parcel__100K__ang
les_yyyymmddHHMMSS.xlsx,” and the auto-generated example file
for the randomized data is named in the manner of
“PRE_matrix__axonal_counts_per_neuron_per_parcel__100K__full
y_shuffled_yyyymmddHHMMSS
__angles_yyyymmddHHMMSS.xlsx.”

4. The function create_scaled_histogram() is automatically called, where the
parameters being passed are the differences matrix for the original data,
the differences matrix for the randomized data, and the label for the
number of shuffles. The parameters being returned are the p-value and the
statistics resulting from the one-tailed Levene’s test between the original
and randomized data.

a. A figure is generated (Figure 7), which overlays the histogram of the
original data (blue) with that of the randomized data (orange), and
it is saved to the “output/” directory in a MATLAB figure file named
in the manner of
“PRE_matrix__axonal_counts_per_neuron_per_parcel__100K__hist
ogram_yyyymmddHHMMSS.fig” and to a PNG file named in the
manner of
“PRE_matrix__axonal_counts_per_neuron_per_parcel__100K__hist
ogram_yyyymmddHHMMSS.png.”

Figure 7. Histogram of angle differences between the original and shuffled data.

b. Reported are the variances of the distributions of the original and
randomized data, and the p-value resulting from a statistical
comparison of the original and randomized data using a one-tailed
Levene’s test to determine if the variance of the original data is
significantly larger than the variance of the randomized data.

iv. Select ‘Hierarchical Clustering’ to generate a clustering dendrogram, where the
original data are statistically compared to a randomized version of the original data
by performing a one-tailed Levene’s test at each potential branching point.

1. Select the data-file name base to process (Figure 3).
2. Select the vector differences file for the original data (Figure 8).

Figure 8. Angles data file selection screen.

3. The function hierarchical_clustering() is automatically called, where the
parameters being passed are the file name for the vector differences for the
original data, the label for the number of shuffles, the number of shuffles,
and the flag determining which shuffling algorithm to use.

a. The dendrogram is generated using the built-in linkages() function
with the ‘average’ parameter setting (Figure 9) and is saved to the
“output/” directory in a MATLAB figure file named in the manner of
“PRE_matrix__axonal_counts_per_neuron_per_parcel__100K__ave
rage_dendrogram.fig” and in a PNG file named in the manner of
“PRE_matrix__axonal_counts_per_neuron_per_parcel__100K__ave
rage_dendrogram.png.”

Figure 9. Hierarchical clustering dendrogram.

b. A listing of which neuron entries (or row numbers) in the original
dataset correspond to separate clusters is generated and saved to
the “output/” directory with a format in the manner of
“PRE_matrix__axonal_counts_per_neuron_per_parcel__neuron_nu
mbers_by_cluster_yyyymmddHHMMSS.xlsx.”

c. A listing of which neuron names (or row labels) in the original
dataset correspond to separate clusters is generated and saved in
five separate files. The listing is saved to the “output/” directory and
is named in the manner of
“PRE_matrix__axonal_counts_per_neuron_per_parcel__neuron_na
mes_by_cluster_yyyymmddHHMMSS.xlsx.” The listing is also saved
to the “data/” directory and is named in the manner of
“divergence__PRE_matrix__axonal_counts_per_neuron_per_parcel
__neuron_names_by_cluster_yyyymmddHHMMSS.xlsx,”
“convergence__PRE_matrix__axonal_counts_per_neuron_per_parc
el__neuron_names_by_cluster_yyyymmddHHMMSS.xlsx,”
“somata__PRE_matrix__axonal_counts_per_neuron_per_parcel__n
euron_names_by_cluster_yyyymmddHHMMSS.xlsx,” and
“nnls__PRE_matrix__axonal_counts_per_neuron_per_parcel__neur
on_names_by_cluster_yyyymmddHHMMSS.xlsx.”

d. NNLS preparation: A listing of the counts per parcel (for neuronal
data) per cluster is generated in preparation for the non-negative
least squares analysis and saved to the “output/” directory with a
format in the manner of
“PRE_matrix__axonal_counts_per_parcel_per_cluster_yyyymmddH
HMMSS.xlsx.”

Procedures for Janelia MouseLight-Specific Data.

1. Choose the function to use to process the selected data file.

i. Select ‘Load MouseLight JSON Files and Pre-process Data’ to load all the MouseLight
JSON files, which describe the locations of all the axonal, dendritic, and somatic points
that make up a given neuronal reconstruction and save the data to various files. The
parameter being passed is the current date string, nowDateStr, and the parameter
being returned is the matrix morphologyMatrix of tallies of all axonal and dendritic
points and the matrix of locations of all somata. All the MouseLight JSON files are loaded
from the directory “data/Mouse_Neurons/MouseLight-neurons/.”

1. The matrix of tallies of all axonal and dendritic points and the matrix of
locations of all somata are saved to files in the “output/” directory.

a. The axonal and dendritic counts are saved to a file named in the
manner of “ALL__axon-
dendrite_counts_yyyymmddHHMMSS.xlsx,” the associated
neuron names are saved to a file named in the manner of
“ALL__neurons_yyyymmddHHMMSS.xlsx,” the associated
targeted parcels are saved to a file named in the manner of
“ALL__parcels_yyyymmddHHMMSS.xlsx,” the soma locations
are saved to a file named in the manner of
“ALL__soma_locations_yyyymmddHHMMSS.xlsx,” a binary
summary of which parcels are invaded by axons is saved to a file
named in the manner of
“ALL__axonal_parcel_invasions_yyyymmddHHMMSS.xlsx,” and
a summary of the axonal counts per parcel is saved to a file
named in the manner of
“ALL__axonal_counts_summary_yyyymmddHHMMSS.xlsx.”

2. The function filter_matrix() is automatically called in which the columns
of the matrix, where a particular parcel has no associated axonal counts,
are filtered out, and the final listing of remaining parcels and the
resulting matrix of axonal counts are saved to a file, where the
parameters being passed are morphologyMatrix, the region prefix,
and nowDateStr, and the parameter being returned is the filtered
version of morphologyMatrix called filteredRawMatrix.

a. The filtered file of parcels is saved to the “data/” and “output/”
directories and is named in the manner of
“ALL__filtered_parcels_yyyymmddHHMMSS.xlsx,” and the
matrix of axonal counts is saved to a file in the “data/” and
“output/” directories and is named in the manner of
“ALL__axonal_counts_per_parcel_yyyymmddHHMMSS.xlsx.”

ii. Select ‘Analysis of Axonal Divergence’ to analyze the extent of divergence from the
source of the clusters (e.g., the presubiculum) to all targeted parcels selected by the
user. The program automatically targets both the ipsilateral and contralateral parcels
from the prepared lists when computing the number of axonal point invasions in each
targeted parcel.

1. Pre-prepare lists of the parcels targeted by each cluster and save them
to files in the “data/” directory in the manner of
“PRE__divergence_parcels__clusterC3.xlsx,” where “PRE” represents

the originating parcel abbreviation and “3” represents the number of
neurons associated with the originating parcel cluster “C.”

a. The list of potential targeted parcels can be found in the “data/”
directory in a pre-prepared file named something in the manner
of “PRE__parcel_names.xlsx.”

2. Select the divergence source file from the “data/” directory (Figure 10),
stored in the variable neuronNamesByClusterCellArray, that
groups the neuron names (or row labels) by cluster, where the file
begins with the phrase “divergence” and is loaded automatically once
selected, in the manner of
“divergence__PRE_matrix__axonal_counts_per_neuron_per_parcel__n
euron_names_by_cluster_yyyymmddHHMMSS.xlsx.”

Figure 10. Divergence analysis source file selection screen.

3. Enter the abbreviation for the originating parcel for the divergence
analysis, which is stored in the variable parcelAbbreviation.

a. Formal parcel abbreviations can be found in the
“brainAreas.json” file located in the “data/” directory, e.g.,
“PRE” for “presubiculum.”

4. The function analysis_divergence() is automatically called, which
automatically steps through all axonal points for each neuron in each
cluster to determine the total axonal length between points in each
targeted ipsilateral or contralateral parcel, where the parameters being
passed are neuronNamesByClusterCellArray and
parcelAbbreviation. The sets of axonal lengths for the targeted
parcels are compared to each other using a Wilcoxon Signed Rank Test,
and the resulting p values from the set of statistical tests are corrected
for by False Discovery Rate to determine their significance.

a. A box and whisker plot is generated using the built-in boxplot()
function and is saved to the “output/” directory in a MATLAB
figure file named in the manner of
“PRE__divergence_box_and_whisker_plot__for_clusterE6_
yyyymmddHHMMSS.fig” and in a PNG file named in the manner
of “PRE__divergence_box_and_whisker_plot__for_clusterE6_
yyyymmddHHMMSS.png.”

b. The results of all statistical tests are saved to files in the
“output/” directory in files named in the manner of
“PRE__clusterE6__Wilcoxon_and_FDR_yyyymmddHHMMSS.xls
x.”

iii. Select ‘Analysis of Axonal Convergence’ to analyze the extent of convergence from all
the clusters in an originating parcel (e.g., the presubiculum) to each targeted parcel
selected by the user.

1. Pre-prepare a list of the parcels targeted by each cluster and save them
to files in the “data/” directory in the manner of
“PRE__convergence_parcels.xlsx.”

2. Select the convergence source file from the “data/” directory (Figure
11), stored in the variable neuronNamesByClusterCellArray,
that groups the neuron names (or row labels) by cluster, where the file
begins with the phrase “convergence” and is loaded automatically once
selected, in the manner of
“convergence__PRE_matrix__axonal_counts_per_neuron_per_parcel__
neuron_names_by_cluster_yyyymmddHHMMSS.xlsx.”

Figure 11. Convergence analysis source file selection screen.

3. Enter the abbreviation for the originating parcel for the convergence
analysis, which is stored in the variable parcelAbbreviation.

4. The program automatically loads the convergence parcels into the
variable parcelsCellArray from a file named in the manner of
“PRE__convergence_parcels.xlsx.”

5. The function analysis_convergence() is automatically called, which
automatically steps through all axonal points for each neuron in each
ipsilateral or contralateral half of the cluster to determine the total
axonal length between points in each targeted parcel, where the
parameters being passed are
neuronNamesByClusterCellArray, parcelsCellArray,
and parcelAbbreviation. The sets of axonal lengths for the
targeted parcels are compared to each other using a Wilcoxon Signed
Rank Test, and the resulting p values from the set of statistical tests are
corrected for by False Discovery Rate to determine their significance.

a. Box and whisker plots are generated using the built-in boxplot()
function and are saved to the “output/” directory in MATLAB
figure files named in the manner of
“PRE__convergence_box_and_whisker_plot__(I)Entorhinal
area, lateral part_ yyyymmddHHMMSS.fig” and in a PNG file
named in the manner of
“PRE__convergence_box_and_whisker_plot__(I)Entorhinal
area, lateral part_ yyyymmddHHMMSS.png.”

b. The results of all statistical tests are saved to files in the
“output/” directory in files named in the manner of

“PRE__(I)Entorhinal area, lateral
part__Wilcoxon_and_FDR_yyyymmddHHMMSS.xlsx.”

iv. Select ‘Soma Analysis’ to analyze the physical distribution of somata locations (e.g., in
the presubiculum) via the determination of convex hulls for the associated clusters.

1. Select the somata analysis source file from the “data/” directory (Figure
12), which groups the neuron names (or row labels) by cluster, where
the file begins with the phrase “somata,” is loaded automatically once
selected into the variable neuronNamesByClusterCellArray
and is named in the manner of
“somata__PRE_matrix__axonal_counts_per_neuron_per_parcel__neur
on_names_by_cluster_yyyymmddHHMMSS.xlsx.”

Figure 12. Somatic analysis data file selection screen.

2. Enter the abbreviation for the originating parcel for the soma analysis.
3. The function convex_hull_outliers() is automatically called, which

determines the somata locations for the two clusters being analyzed,
infers which somata are co-localized in the two clusters, and computes
the volume fraction of the co-localization based on the convex hull
volumes of the two clusters. The parameters being passed are
neuronNamesByClusterCellArray and
parcelAbbreviationStr.

4. Select the first cluster to be analyzed.
5. Select the second cluster to be analyzed.
6. Multiple output files are generated and saved to the “/output”

directory.
a. A figure is generated of the convex hull volumes of the two

clusters and is saved to a MATLAB figure file named in the
manner of
“PRE__clusterD19_and_clusterA38__convex_hulls_with_outlier
s_yyyymmddHHMMSS.fig” and to a PNG file named in the
manner of
“PRE__clusterD19_and_clusterA38__convex_hulls_with_outlier
s_yyyymmddHHMMSS.png.”

b. A figure is generated of the somata locations of the two clusters
and is saved to a MATLAB figure file named in the manner of
“PRE__clusterD19_and_clusterA38__somata_locations_yyyym
mddHHMMSS.fig” and to a PNG file named in the manner of
“PRE__clusterD19_and_clusterA38__somata_locations_yyyym
mddHHMMSS.png.”

c. A figure is generated of the co-localized somata locations of the
two clusters overlayed with the convex hull volume of the first
cluster and the somata locations of the second cluster and is

saved to a MATLAB figure file named in the manner of
“PRE__clusterD19_somata_locations_in_intersection_with_clus
terA38_yyyymmddHHMMSS.fig” and to a PNG file named in the
manner of
“PRE__clusterD19_somata_locations_in_intersection_with_clus
terA38_yyyymmddHHMMSS.png.”

d. A figure is generated of the co-localized somata locations of the
two clusters overlayed with the convex hull volume of the
second cluster and the somata locations of the first cluster and
is saved to a MATLAB figure file named in the manner of
“PRE__clusterA38_somata_locations_in_intersection_with_clus
terD19_yyyymmddHHMMSS.fig” and to a PNG file named in the
manner of
“PRE__clusterA38_somata_locations_in_intersection_with_clus
terD19_yyyymmddHHMMSS.png.”

e. A figure is generated of the co-localized somata locations of the
two clusters overlayed with the convex hull volumes of the two
clusters and is saved to a MATLAB figure file named in the
manner of
“PRE__somata_locations_in_intersection_of_clusterD19_and_cl
usterA38_yyyymmddHHMMSS.fig” and to a PNG file named in
the manner of
“PRE__somata_locations_in_intersection_of_clusterD19_and_cl
usterA38_yyyymmddHHMMSS.png.”

f. A text file containing the overlap volume percentage of the co-
localized somata locations of the two clusters is saved to a file
named in the manner of
“PRE__overlap_volume_of_clusterD19_and_clusterA38_is_15_
percent_yyyymmddHHMMSS.txt.”

v. Select ‘NNLS Analysis’ to perform a non-negative least squares analysis.
1. Pre-prepare the data for this analysis by taking the data from the step

NNLS preparation and adding a last column of tract values from a
source, such as the regional connectivity from anterograde tracing to
the m known targets, as presented in the Allen Mouse Brain
Connectivity Atlas (http://connectivity.brain-map.org/projection).

2. Select the pre-prepared file (Figure 13), which is named in the manner
of
“nnls__PRE_matrix__axonal_counts_per_parcel_per_cluster_and_tract
_values.xlsx.”

Figure 13. Non-negative least squares analysis data file selection screen.

3. The function nnls() is called, which automatically bi-normalizes the data
and applies non-negative least square to the data, where the
parameters being passed are
axonalCountsPerParcelPerClusterCellArray and the
name of the pre-prepared file. Multiple output files are generated and
saved to the “/output” directory.

a. Data are normalized by row and saved to a file named in the
manner of
“nnls__PRE_matrix__axonal_counts_per_parcel_per_cluster_an
d_tract_values__row_normalized_yyyymmddHHMMSS.xlsx.”

b. Data are scaled, where each value is divided by the number of
regions and multiplied by the number of clusters, such that the
sum of all values is equal to the number of clusters and saved to
a file named in the manner of
“nnls__PRE_matrix__axonal_counts_per_parcel_per_cluster_an
d_tract_values__scaled_yyyymmddHHMMSS.xlsx.”

c. Data are normalized by column and saved to a file named in the
manner of
“nnls__PRE_matrix__axonal_counts_per_parcel_per_cluster_an
d_tract_values__column_normalized_yyyymmddHHMMSS.xlsx.
”

d. Tract values are normalized, and the final bi-normalization data
are saved to a file named in the manner of
“nnls__PRE_matrix__axonal_counts_per_parcel_per_cluster_an
d_tract_values__bi_normalized_yyyymmddHHMMSS.xlsx.”

e. The resulting vector x, where x is the k-dimensional vector
representing the fractions of neurons in each neuronal class, is
saved in a file named in the manner of
“nnls__PRE_matrix__axonal_counts_per_parcel_per_cluster_an
d_tract_values__X_vector_yyyymmddHHMMSS.xlsx.”

f. The squared Euclidean norm of the residual of the MATLAB
function lsqnonneg() is calculated and the result saved in a file
named in the manner of
“nnls__PRE_matrix__axonal_counts_per_parcel_per_cluster_an
d_tract_values__residual_norm_yyyymmddHHMMSS.xlsx.”

vi. Select ‘Strahler Order Analysis of the Presubiculum’ to calculate the Strahler order
values of the axonal branches in the presubiculum subset of the MouseLight dataset.
The function Strahler() is automatically called with no parameters, which loads
presubiculum-related SWC files and generates axonal branch-related statistics. Data are
stored the “data/Mouse_Neurons/MouseLight_PRE-SWC_files/” directory in files named
in the manner of “AA0021.swc.” Multiple output files are generated and saved to the
“/output” directory.

1. On a per neuron basis, the mean branch length, the number of
branches, and the mean number of reconstruction nodes are listed as a
function of Strahler order number and are saved to the “/output”
directory in a file named in the manner of
“branch_statistics_per_neuron__yyyymmddHHMMSS.xlsx.”

2. On a per branch basis, the branch length, number of reconstruction
nodes per branch, and the Strahler order number are listed and are
saved to the “/output” directory in a file named in the manner of
“branch_statistics_per_branch__yyyymmddHHMMSS.xlsx.”

3. New copies of the input SWC files are generated, where reconstruction
node type is changed from a value of 2 to a value of 5 when the node’s
Strahler order number is in the range of 1-3 and are saved in a sub-
directory of the “/output” directory named in the manner of
“MouseLight_PRE_SWC_files_modified_yyyymmddHHMMSS” in files
named in the manner of “AA0021_modified.swc.”

Conclusions.

Presented are a pair of protocols for the analysis of cellular data: one that involves a general approach
to cellular classification and another that explores specific characteristics of neuronal data from the
Janelia MouseLight project. Cellular classification is achieved using unsupervised hierarchical clustering
that has been enhanced by an associated statistical test. The described computer code is freely
available22 from a GitHub repository (https://github.com/Projectomics/MATLAB) to facilitate its
adoption for the study of wide varieties of cellular data.

Acknowledgements.

This work was supported in part by NIH grants R01NS39600, U01MH114829, and RF1MH128693. This
methodology was used in Wheeler et al. “Unsupervised classification of brain-wide axons reveals
neuronal projection blueprint: an illustrative application to the presubiculum”16.

Competing Interests.

The authors declare no competing financial interests.

Ethics.

All original data analyzed using this protocol were published previously in accordance with the authors’
respective ethics committees.

References.

1. Kahn, S. D. On the Future of Genomic Data. Science 331, 728–729 (2011).
2. The power of big data must be harnessed for medical progress. Nature 539, 467–468 (2016).
3. Database under maintenance. Nat Methods 13, 699–699 (2016).
4. Stevenson, I. H. & Kording, K. P. How advances in neural recording affect data analysis. Nat Neurosci

14, 139–142 (2011).
5. Urai, A. E., Doiron, B., Leifer, A. M. & Churchland, A. K. Large-scale neural recordings call for new

insights to link brain and behavior. Nat Neurosci 25, 11–19 (2022).
6. BRAIN Initiative Cell Census Network (BICCN). A multimodal cell census and atlas of the mammalian

primary motor cortex. Nature 598, 86–102 (2021).
7. Human Cell Atlas Standards and Technology Working Group et al. Building a high-quality Human Cell

Atlas. Nat Biotechnol 39, 149–153 (2021).

8. Yao, Z. et al. A transcriptomic and epigenomic cell atlas of the mouse primary motor cortex. Nature
598, 103–110 (2021).

9. Bakken, T. E. et al. Comparative cellular analysis of motor cortex in human, marmoset and mouse.
Nature 598, 111–119 (2021).

10. Liu, H. et al. DNA methylation atlas of the mouse brain at single-cell resolution. Nature 598,
120–128 (2021).

11. Li, Y. E. et al. An atlas of gene regulatory elements in adult mouse cerebrum. Nature 598, 129–
136 (2021).

12. Peng, H. et al. Morphological diversity of single neurons in molecularly defined cell types. Nature
598, 174–181 (2021).

13. Hawrylycz, M. et al. A guide to the BRAIN Initiative Cell Census Network data ecosystem. PLoS
Biol 21, e3002133 (2023).

14. Harris, J. A. et al. Hierarchical organization of cortical and thalamic connectivity. Nature 575,
195–202 (2019).

15. Muñoz-Castañeda, R. et al. Cellular anatomy of the mouse primary motor cortex. Nature 598,
159–166 (2021).

16. Wheeler, D. W., Banduri, S., Sankararaman, S., Vinay, S. & Ascoli, G. A. Unsupervised
classification of brain-wide axons reveals the presubiculum neuronal projection blueprint. Nat
Commun 15, 1555 (2024).

17. Levene, H. Robust Tests for Equality of Variances. in Contributions to Probability and Statistics:
Essays in Honor of Harold Hotelling 278–292 (Stanford University Press, 1960).

18. Economo, M. N. et al. A platform for brain-wide imaging and reconstruction of individual
neurons. Elife 5, e10566 (2016).

19. Akram, M. A., Nanda, S., Maraver, P., Armañanzas, R. & Ascoli, G. A. An open repository for
single-cell reconstructions of the brain forest. Sci Data 5, 180006 (2018).

20. Venkadesh, S., Santarelli, A., Boesen, T., Dong, H.-W. & Ascoli, G. A. Combinatorial quantification
of distinct neural projections from retrograde tracing. Nat Commun 14, 7271 (2023).

21. Ascoli, G. A. & Wheeler, D. W. In search of a periodic table of the neurons: Axonal-dendritic
circuitry as the organizing principle: Patterns of axons and dendrites within distinct anatomical
parcels provide the blueprint for circuit-based neuronal classification. BioEssays 38, 969–976 (2016).

22. Gleeson, P., Davison, A. P., Silver, R. A. & Ascoli, G. A. A Commitment to Open Source in
Neuroscience. Neuron 96, 964–965 (2017).

23. Mehta, K. et al. Online conversion of reconstructed neural morphologies into standardized SWC
format. Nat Commun 14, 7429 (2023).

